Coupling interfaces between hollow carbon dodecahedrons and layered double hydroxides for high-performance rechargeable zinc−air batteries

Jing Zhang, Luo Xu, Yan Lin, Baojian Xie, Chunjie Li, Tao Hu, Ulla Lassi, Ruguang Ma, Chang Ming Li

PDF(5546 KB)
PDF(5546 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (1) : 014210. DOI: 10.15302/frontphys.2025.014210
RESEARCH ARTICLE

Coupling interfaces between hollow carbon dodecahedrons and layered double hydroxides for high-performance rechargeable zinc−air batteries

Author information +
History +

Abstract

The rational design of high-performance bifunctional electrocatalysts toward both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is critical for the development of high-efficiency zinc−air batteries (ZABs). Herein, we report a facile method to synthesize a bifunctional electrocatalyst (FeNC/LDHs), which consists of Fe-doped hollow carbon dodecahedron (FeNC) coupling with NiFe-layered double hydroxides (LDHs). The coupling integration of FeNC dodecahedra and LDH nanosheets enriches the electrochemically active surface area and modulates the electron redistribution via oxygen bridges between FeNC and LDHs, thus effectively improving electrocatalytic activity and exhibiting a small potential difference of ΔE = 0.68 V during the ORR and OER process. The optimized FeNC/LDH-21 as a cathode in zinc-air batteries demonstrates a specific capacity of 810 mAh·g−1 at 10 mA·cm−2 and a power density of 85 mW·cm−2, and stable operation over 160 h. Moreover, the as-assembled solid-state flexible ZAB reaches a power density of 32.4 mW·cm−2 and maintains a stable charge-discharge process at different bending or hammering states. This work opens an avenue for the facile and large-scale synthesis of bifunctional electrocatalysts and would propel the practical application of ZABs.

Graphical abstract

Keywords

metal−organic framework / bifunctional electrocatalyst / rechargeable zinc−air battery

Cite this article

Download citation ▾
Jing Zhang, Luo Xu, Yan Lin, Baojian Xie, Chunjie Li, Tao Hu, Ulla Lassi, Ruguang Ma, Chang Ming Li. Coupling interfaces between hollow carbon dodecahedrons and layered double hydroxides for high-performance rechargeable zinc−air batteries. Front. Phys., 2025, 20(1): 014210 https://doi.org/10.15302/frontphys.2025.014210

References

[1]
L.ZhangC.JiaF.BaiW.WangS.AnK.ZhaoZ.LiJ.LiH.Sun, A comprehensive review of the promising clean energy carrier: Hydrogen production, transportation, storage, and utilization (HPTSU) technologies, Fuel 355, 129455 (2024)
[2]
L. Ju , J. Liu , M. Wang , S. Yang , and S. Liu , Modulation of charge in C9N4 monolayer for a high-capacity hydrogen storage as a switchable strategy, Front. Phys. 19(4), 43208 (2024)
CrossRef ADS Google scholar
[3]
X. L. Dong , L. Hou , X. Hu , Y. T. Wu , L. Y. Dong , X. F. Yu , G. P. Hao , and A. H. Lu , Synthetic porous carbons for clean energy storage and conversion, Energy Chem. 5(4), 100099 (2023)
CrossRef ADS Google scholar
[4]
X. Wang , J. Liu , Y. Hu , R. Ma , and J. Wang , Oxygen vacancy-expedited ion diffusivity in transition-metal oxides for high-performance lithium-ion batteries, Sci. China Mater. 65(6), 1421 (2022)
CrossRef ADS Google scholar
[5]
M.ShahjalalP.K. RoyT.ShamsA.FlyJ.I. ChowdhuryM.R. AhmedK.Liu, A review on second-life of Li-ion batteries: Prospects, challenges, and issues, Energy 241, 122881 (2022)
[6]
S. F. Zhao , C. Li , Z. Cui , J. Zhang , W. Hu , R. Ma , and C. M. Li , Biomass-derived micro-mesoporous carbon with oxygen functional groups for high-rate Na–S batteries at room temperature, Adv. Energy Mater. 13(45), 2302490 (2023)
CrossRef ADS Google scholar
[7]
K. Mathiyalagan , D. Shin , and Y. C. Lee , Difficulties, strategies, and recent research and development of layered sodium transition metal oxide cathode materials for high-energy sodium-ion batteries, J. Energy Chem. 90, 40 (2024)
CrossRef ADS Google scholar
[8]
Y. Zhao , Y. Kang , J. Wozny , J. Lu , H. Du , C. Li , T. Li , F. Kang , N. Tavajohi , and B. Li , Recycling of sodium-ion batteries, Nat. Rev. Mater. 8(9), 623 (2023)
CrossRef ADS Google scholar
[9]
K. Xu , H. J. Zhu , H. Zhu , G. F. Zhang , and W. M. Liu , Charging and self-discharging process of a quantum battery in composite environments, Front. Phys. 18(3), 31301 (2023)
CrossRef ADS Google scholar
[10]
Q. Wang , S. Kaushik , X. Xiao , and Q. Xu , Sustainable zinc–air battery chemistry: Advances, challenges and prospects, Chem. Soc. Rev. 52(17), 6139 (2023)
CrossRef ADS Google scholar
[11]
J. Zhang , Z. Cui , J. Liu , C. Li , H. Tan , G. Shan , and R. Ma , Bifunctional oxygen electrocatalysts for rechargeable zinc-air battery based on MXene and beyond, Front. Phys. 18(1), 13603 (2023)
CrossRef ADS Google scholar
[12]
J. Li , H. Xue , N. Xu , X. Zhang , Y. Wang , R. He , H. Huang , and J. Qiao , Co/Ni dual-metal embedded in heteroatom doped porous carbon core-shell bifunctional electrocatalyst for rechargeable Zn‒air batteries, Mater. Rep. Energy 2(2), 100090 (2022)
CrossRef ADS Google scholar
[13]
S. Zhao , X. Wu , J. Zhang , C. Li , Z. Cui , W. Hu , R. Ma , and C. Li , Biomass-derived porous carbon with single-atomic cobalt toward high-performance aqueous zinc‒sulfur batteries at room temperature, J. Energy Chem. 95, 325 (2024)
CrossRef ADS Google scholar
[14]
R. Christensen , H. A. Hansen , C. F. Dickens , J. K. Nørskov , and T. Vegge , Functional independent scaling relation for ORR/OER catalysts, J. Phys. Chem. C 120(43), 24910 (2016)
CrossRef ADS Google scholar
[15]
G. Shan , Z. Ding , and Y. Gogotsi , Two-dimensional MXenes and their applications, Front. Phys. 18(1), 13604 (2023)
CrossRef ADS Google scholar
[16]
S. Pan , Z. Ma , W. Yang , B. Dongyang , H. Yang , S. Lai , F. Dong , X. Yang , and Z. Lin , Magnesium incorporation activates perovskite cobaltites toward efficient and stable electrocatalytic oxygen evolution, Mater. Rep. Energy 3(3), 100212 (2023)
CrossRef ADS Google scholar
[17]
Z. Li , X. Wu , X. Jiang , B. Shen , Z. Teng , D. Sun , G. Fu , and Y. Tang , Surface carbon layer controllable Ni3Fe particles confined in hierarchical N-doped carbon framework boosting oxygen evolution reaction, Adv. Powder Mater. 1(2), 100020 (2022)
CrossRef ADS Google scholar
[18]
X. Ma , M. Liu , Q. Li , X. Xiao , J. Liu , X. Xu , Y. Yin , P. Qiao , L. Zhang , X. Zou , R. Wang , and B. Jiang , Associating Co single atoms with RuO2 nanoparticles anchor on nitrogen-doped ultrathin porous carbon nanosheets as effective bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries, J. Mater. Chem. A 11(31), 16889 (2023)
CrossRef ADS Google scholar
[19]
Y. Liu , Z. Jiang , and Z. J. Jiang , Plasma-assisted formation of oxygen defective NiCoO/NiCoN heterostructure with improved ORR/OER activities for highly durable all-solid-state zinc-air batteries, Adv. Funct. Mater. 33(35), 2302883 (2023)
CrossRef ADS Google scholar
[20]
L. Y. Zhang , T. Zeng , L. Zheng , Y. Wang , W. Yuan , M. Niu , C. X. Guo , D. Cao , and C. M. Li , Epitaxial growth of Pt–Pd bimetallic heterostructures for the oxygen reduction reaction, Adv. Powder Mater. 2(4), 100131 (2023)
CrossRef ADS Google scholar
[21]
Z. Wang , J. Jian , X. Wang , Y. Qiao , M. Wang , S. Gao , P. Nie , and L. Chang , CoNi2S4@CoNi-LDH heterojunction grown on SSM as a highly efficient trifunctional catalyst for water-splitting and Zn–air batteries, J. Mater. Chem. C 11(46), 16384 (2023)
CrossRef ADS Google scholar
[22]
Z. Q. Liu , X. Liang , F. X. Ma , Y. X. Xiong , G. Zhang , G. Chen , L. Zhen , and C. Y. Xu , Decoration of NiFe-LDH nanodots endows lower Fe-d band center of Fe1-N-C hollow nanorods as bifunctional oxygen electrocatalysts with small overpotential gap, Adv. Energy Mater. 13(13), 2203609 (2023)
CrossRef ADS Google scholar
[23]
Q. Shi , H. Guo , D. Ou , L. Gao , S. Ye , Q. Liu , W. Yang , F. Hu , and Z. Liang , NiFe-LDH nanosheets anchored on Fe, N decorated carbon nanofibers as efficient bifunctional electrocatalysts for long-term rechargeable Zn-air batteries, J. Energy Storage 72, 108073 (2023)
CrossRef ADS Google scholar
[24]
Y.ChenX.KongY.WangH.YeJ.GaoY.QiuS.WangW.ZhaoY.WangJ.ZhouQ.Yuan, A binary single atom Fe3C| FeNC catalyst by an atomic fence evaporation strategy for high performance ORR/OER and flexible Zinc-air battery, Chem. Eng. J. 454, 140512 (2023)
[25]
X. Lu , P. Yang , Y. Wan , H. Zhang , H. Xu , L. Xiao , R. Li , Y. Li , J. Zhang , and M. An , Active site engineering toward atomically dispersed M−N−C catalysts for oxygen reduction reaction, Coord. Chem. Rev. 495, 215400 (2023)
CrossRef ADS Google scholar
[26]
X. Li , S. Zheng , L. Jin , Y. Li , P. Geng , H. Xue , H. Pang , and Q. Xu , Metal−organic framework-derived carbons for battery applications, Adv. Energy Mater. 8(23), 1800716 (2018)
CrossRef ADS Google scholar
[27]
Z. Wang , H. Jin , T. Meng , K. Liao , W. Meng , J. Yang , D. He , Y. Xiong , and S. Mu , Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc–air batteries, Adv. Funct. Mater. 28(39), 1802596 (2018)
CrossRef ADS Google scholar
[28]
G. Wang , Y. Wang , B. Guan , J. Liu , Y. Zhang , X. Shi , C. Tang , G. Li , Y. Li , X. Wang , and L. Li , Hierarchical K-Birnessite-MnO2 carbon framework for high-energy-density and durable aqueous zinc-ion battery, Small 17(45), 2104557 (2021)
CrossRef ADS Google scholar
[29]
A. Kundu , T. Kuila , N. C. Murmu , P. Samanta , and S. Das , Metal–organic framework-derived advanced oxygen electrocatalysts as air-cathodes for Zn–air batteries: Rrecent trends and future perspectives, Mater. Horiz. 10(3), 745 (2023)
CrossRef ADS Google scholar
[30]
B. Devi and S. Kurungot , Conductive metal–organic frameworks for zinc–air battery application: Design principles, recent trends and prospects, J. Mater. Chem. A 12(5), 2605 (2024)
CrossRef ADS Google scholar
[31]
U. Bhardwaj , P. Janjani , R. Sharma , and H. S. Kushwaha , Investigation of single-metal Fe-based metal–organic framework as an electrocatalyst for a rechargeable zinc‒air battery, J. Electron. Mater. 52(2), 917 (2023)
CrossRef ADS Google scholar
[32]
L. Li , N. Li , J. Xia , S. Zhou , X. Qian , F. Yin , G. He , and H. Chen , Metal–organic framework-derived Co single atoms anchored on N-doped hierarchically porous carbon as a pH-universal ORR electrocatalyst for Zn–air batteries, J. Mater. Chem. A Mater. Energy Sustain. 11(5), 2291 (2023)
CrossRef ADS Google scholar
[33]
L. Peng , L. Shang , T. Zhang , and G. I. N. Waterhouse , Recent advances in the development of single-atom catalysts for oxygen electrocatalysis and zinc–air batteries, Adv. Energy Mater. 10(48), 2003018 (2020)
CrossRef ADS Google scholar
[34]
S. Das , A. Kundu , T. Kuila , and N. C. Murmu , Recent advancements on designing transition metal-based carbon-supported single atom catalysts for oxygen electrocatalysis: Miles to go for sustainable Zn‒air batteries, Energy Storage Mater. 61, 102890 (2023)
CrossRef ADS Google scholar
[35]
Z. Hu , S. Dong , Q. He , Z. Chen , and D. Yuan , Synergetic nanostructure engineering and electronic modulation of a 3D hollow heterostructured NiCo2O4@NiFe-LDH self-supporting electrode for rechargeable Zn–air batteries, Inorg. Chem. 62(19), 7471 (2023)
CrossRef ADS Google scholar
[36]
J. Li , Y. Qin , Z. Bai , S. Li , L. Li , B. Ouyang , E. Kan , and W. Zhang , Investigating the role of 3D hierarchical Ni-CAT/NiFe-LDH/CNFs in enhancing the oxygen evolution reaction and Zn‒air battery performance, Appl. Surf. Sci. 648, 159080 (2024)
CrossRef ADS Google scholar
[37]
D. Wu , X. Hu , Z. Yang , T. Yang , J. Wen , G. Lu , Q. Zhao , Z. Li , X. Jiang , and C. Xu , NiFe LDH anchoring on Fe/N-Doped carbon nanofibers as a bifunctional electrocatalyst for rechargeable zinc–air batteries, Ind. Eng. Chem. Res. 61(22), 7523 (2022)
CrossRef ADS Google scholar
[38]
J. Zhang , Z. Cui , J. Liu , C. Li , H. Tan , G. Shan , and R. Ma , Bifunctional oxygen electrocatalysts for rechargeable zinc‒air battery based on MXene and beyond, Front. Phys. 18(1), 13603 (2023)
CrossRef ADS Google scholar
[39]
G. Kresse and J. Furthmüller , Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[40]
P. E. Blöchl , Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef ADS Google scholar
[41]
X. Wang , Y. Jia , X. Mao , D. Liu , W. He , J. Li , J. Liu , X. Yan , J. Chen , L. Song , A. Du , and X. Yao , Edge-rich Fe−N4 active sites in defective carbon for oxygen reduction catalysis, Adv. Mater. 32(16), 2000966 (2020)
CrossRef ADS Google scholar
[42]
M. Hassan , Y. Slimani , M. A. Gondal , M. J. S. Mohamed , S. Güner , M. A. Almessiere , A. M. Surrati , A. Baykal , S. Trukhanov , and A. Trukhanov , Structural parameters, energy states and magnetic properties of the novel Se-doped NiFe2O4 ferrites as highly efficient electrocatalysts for HER, Ceram. Int. 48(17), 24866 (2022)
CrossRef ADS Google scholar
[43]
Y. Hou , M. R. Lohe , J. Zhang , S. Liu , X. Zhuang , and X. Feng , Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: An efficient 3D electrode for overall water splitting, Energy Environ. Sci. 9(2), 478 (2016)
CrossRef ADS Google scholar
[44]
M.ZhangJ.ZhangS.RanL.QiuW.SunY.YuJ.ChenZ.Zhu, A robust bifunctional catalyst for rechargeable Zn-air batteries: Ultrathin NiFe-LDH nanowalls vertically anchored on soybean-derived Fe-N-C matrix, Nano Res. 14(4), 1175 (2021)
[45]
Z. Li , R. Ma , Q. Ju , Q. Liu , L. Liu , Y. Zhu , M. Yang , and J. Wang , Spin engineering of single-site metal catalysts, Innovation 3(4), 100268 (2022)
CrossRef ADS Google scholar
[46]
C. He , Q. Liu , H. Wang , C. Xia , F. M. Li , W. Guo , and B. Y. Xia , Regulating reversible oxygen electrocatalysis by built-in electric field of heterojunction electrocatalyst with modified d-band, Small 19(15), 2207474 (2023)
CrossRef ADS Google scholar
[47]
S. Chandrasekaran , R. Hu , L. Yao , L. Sui , Y. Liu , A. Abdelkader , Y. Li , X. Ren , and L. Deng , Mutual self-regulation of d-electrons of single atoms and adjacent nanoparticles for bifunctional oxygen electrocatalysis and rechargeable zinc−air batteries, Nano-Micro Lett. 15(1), 48 (2023)
CrossRef ADS Google scholar

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Jing Zhang: Methodology, Data curation, Investigation, Writing – original draft. Luo Xu: Conceptualization, Methodology, Data curation, Investigation. Yan Lin: Formal analysis, Validation. Baojian Xie: Formal analysis, Validation. Chunjie Li: Methodology. Tao Hu: Investigation, Formal analysis, Validation. Ulla Lassi: Supervision, Writing – review & editing. Ruguang Ma: Supervision, Writing – review & editing, Funding acquisition. Chang Ming Li: Conceptualization, Writing – review & editing, Funding acquisition.

Data availability

Data will be made available on request.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.15302/frontphys.2025.014210.

Acknowledgements

The authors are grateful to the financial support from the National Natural Science Foundation of China (No. 52172058).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5546 KB)

Accesses

Citations

Detail

Sections
Recommended

/