Quantum vortices get stretched
Emanuel A. L. Henn
Quantum vortices get stretched
[1] |
P. Kapitza. Viscosity of liquid helium below the λ-point. Nature, 1938, 141(3558): 74
CrossRef
ADS
Google scholar
|
[2] |
J. F. Allen, A. D. Misener. Flow phenomena in liquid helium II. Nature, 1938, 142(3597): 643
CrossRef
ADS
Google scholar
|
[3] |
L.PitaevskiiS.Stringari, Bose‒Einstein Condensation and Superfluidity, Vol. 164, Oxford: Oxford University Press, 2016
|
[4] |
B. P. Anderson, P. C. Haljan, C. E. Wieman, E. A. Cornell. Vortex precession in Bose‒Einstein condensates: Observations with filled and empty cores. Phys. Rev. Lett., 2000, 85(14): 2857
CrossRef
ADS
Google scholar
|
[5] |
K. W. Madison, F. Chevy, W. Wohlleben, J. Dalibard. Vortex formation in a stirred Bose‒Einstein condensate. Phys. Rev. Lett., 2000, 84(5): 806
CrossRef
ADS
Google scholar
|
[6] |
M. Zwierlein, J. Abo-Shaeer, A. Schirotzek, C. H. Schunck, W. Ketterle. Vortices and superfluidity in a strongly interacting Fermi gas. Nature, 2005, 435(7045): 1047
CrossRef
ADS
Google scholar
|
[7] |
K. W. Madison, F. Chevy, W. Wohlleben, J. Dalibard. Vortex formation in a stirred Bose‒Einstein condensate. Phys. Rev. Lett., 2000, 84(5): 806
CrossRef
ADS
Google scholar
|
[8] |
J. R. Abo-Shaeer, C. Raman, J. M. Vogels, W. Ketterle. Observation of vortex lattices in Bose‒Einstein condensates. Science, 2001, 292(5516): 476
CrossRef
ADS
Google scholar
|
[9] |
E. Hodby, C. Hechenblaikner, S. A. Hopkins, O. M. Marago, C. J. Foot. Vortex nucleation in Bose‒Einstein condensates in an oblate, purely magnetic potential. Phys. Rev. Lett., 2001, 88(1): 010405
CrossRef
ADS
Google scholar
|
[10] |
J. A. M. Huhtamäki, M. Mottonen, S. M. M. Virtanen. Dynamically stable multiply quantized vortices in dilute Bose‒Einstein condensates. Phys. Rev. A, 2006, 74(6): 063619
CrossRef
ADS
Google scholar
|
[11] |
W. Neely, E. C. Samson, A. S. Bradley, M. J. Davis, B. P. Anderson. Observation of vortex dipoles in an oblate Bose‒Einstein condensate. Phys. Rev. Lett., 2010, 104(16): 160401
CrossRef
ADS
Google scholar
|
[12] |
E. A. L. Henn, J. A. Seman, G. Roati, K. M. F. Magalhaes, V. S. Bagnato. Emergence of turbulence in an oscillating Bose‒Einstein condensate. Phys. Rev. Lett., 2009, 103(4): 045301
CrossRef
ADS
Google scholar
|
[13] |
N. Navon, A. L. Gaunt, R. P. Smith, Z. Hadzibabic. Emergence of a turbulent cascade in a quantum gas. Nature, 2016, 539(7627): 72
CrossRef
ADS
Google scholar
|
[14] |
W. F. Vinen, J. J. Niemela. Quantum turbulence. J. Low Temp. Phys., 2002, 128(5/6): 167
CrossRef
ADS
Google scholar
|
[15] |
L. Skrbek, D. Schmoranzer, S. Midlik, K. Sreenivasan. Phenomenology of quantum turbulence in superfluid helium. Proc. Natl. Acad. Sci. USA, 2021, 118(16): e2018406118
CrossRef
ADS
Google scholar
|
[16] |
A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, T. Pfau. Bose‒Einstein condensation of chromium. Phys. Rev. Lett., 2005, 94(16): 160401
CrossRef
ADS
Google scholar
|
[17] |
K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, F. Ferlaino. Bose‒Einstein condensation of erbium. Phys. Rev. Lett., 2012, 108(21): 210401
CrossRef
ADS
Google scholar
|
[18] |
M. Lu, N. Q. Burdick, S. H. Youn, B. L. Lev. Strongly dipolar Bose‒Einstein condensate of dysprosium. Phys. Rev. Lett., 2011, 107(19): 190401
CrossRef
ADS
Google scholar
|
[19] |
L. Chomaz, I. Ferrier-Barbut, F. Ferlaino, B. Laburthe-Tolra, B. L. Lev, T. Pfau. Dipolar physics: A review of experiments with magnetic quantum gases. Rep. Prog. Phys., 2023, 86(2): 026401
CrossRef
ADS
Google scholar
|
[20] |
E. Fonda, D. Meichle, N. Ouellette, S. Hormoz, D. Lathrop. Direct observation of Kelvin waves excited by quantized vortex reconnection. Proc. Natl. Acad. Sci. USA, 2014, 111(Suppl. 1): 4707
CrossRef
ADS
Google scholar
|
[21] |
R. Schützhold, M. Uhlmann, Y. Xu, U. R. Fischer. Mean-field expansion in Bose–Einstein condensates with finite-range interactions. Int. J. Mod. Phys. B, 2006, 20(24): 3555
CrossRef
ADS
Google scholar
|
[22] |
A. R. P. Lima, A. Pelster. Quantum fluctuations in dipolar Bose gases. Phys. Rev. A, 2011, 84(4): 041604
CrossRef
ADS
Google scholar
|
[23] |
Supersolid phases are also predicted and observed for mixtures of quantum fluids.
|
[24] |
L. Tanzi, E. Lucioni, F. Fam’a, J. Catani, A. Fioretti, C. Gabbanini, R. N. Bisset, L. Santos, G. Modugno. Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett., 2019, 122(13): 130405
CrossRef
ADS
Google scholar
|
[25] |
L. Chomaz, D. Petter, P. Ilzhöfer, G. Natale, A. Trautmann, C. Politi, G. Durastante, R. M. W. van Bijnen, A. Patscheider, M. Sohmen, M. J. Mark, F. Ferlaino. Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X, 2019, 9(2): 021012
CrossRef
ADS
Google scholar
|
[26] |
F. Böttcher, J. N. Schmidt, M. Wenzel, J. Hertkorn, M. Guo, T. Langen, T. Pfau. Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X, 2019, 9(1): 011051
CrossRef
ADS
Google scholar
|
[27] |
Z.H. LuoW. PangB.LiuY.Y. LiB.A. Malomed, A new form of liquid matter: Quantum droplets, Front. Phys. 16(3), 32201 (2021)
|
[28] |
M.GuoT. Pfau, A new state of matter of quantum droplets, Front. Phys. 16(3), 32202 (2021)
|
[29] |
L. Klaus, T. Bland, E. Poli, C. Politi, G. Lamporesi, E. Casotti, R. N. Bisset, M. J. Mark, F. Ferlaino. Observation of vortices and vortex stripes in a dipolar condensate. Nat. Phys., 2022, 18(12): 1453
CrossRef
ADS
Google scholar
|
[30] |
E.Casotti,
|
[31] |
A. Cidrim, F. E. A. dos Santos, E. A. L. Henn, T. Macrı. Vortices in self-bound dipolar droplets. Phys. Rev. A, 2018, 98(2): 023618
CrossRef
ADS
Google scholar
|
[32] |
G. Li, X. Jiang, B. Liu, Z. Chen, B. A. Malomed, Y. Li. Two-dimensional anisotropic vortex quantum droplets in dipolar Bose‒Einstein condensates. Front. Phys., 2024, 19(2): 22202
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |