Van der Waals epitaxy of type-II band alignment CsPbI3/TMDC heterostructure for optoelectronic applications

Chang Lu, Shunhui Zhang, Meili Chen, Haitao Chen, Mengjian Zhu, Zhengwei Zhang, Jun He, Lin Zhang, Xiaoming Yuan

Front. Phys. ›› 2024, Vol. 19 ›› Issue (5) : 53206.

PDF(11143 KB)
PDF(11143 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (5) : 53206. DOI: 10.1007/s11467-024-1404-9
RESEARCH ARTICLE

Van der Waals epitaxy of type-II band alignment CsPbI3/TMDC heterostructure for optoelectronic applications

Author information +
History +

Abstract

Van der Waals epitaxy allows heterostructure formation without considering the lattice match requirement, thus is a promising method to form 2D/2D and 2D/3D heterojunction. Considering the unique optical properties of CsPbI3 and transition metal dichalcogenides (TMDCs), their heterostructure present potential applications in both photonics and optoelectronics fields. Here, we demonstrate selective growth of cubic phase CsPbI3 nanofilm with thickness as thin as 4.0 nm and Zigzag/armchair orientated nanowires (NWs) on monolayer WSe2. Furthermore, we show growth of CsPbI3 on both transferred WSe2 on copper grid and WSe2 based optoelectrical devices, providing a platform for structure analysis and device performance modification. Transmission electron microscopy (TEM) results reveal the epitaxial nature of cubic CsPbI3 phase. The revealed growth fundamental of CsPbI3 is universal valid for other two-dimensional substrates, offering a great advantage to fabricate CsPbI3 based van der Waals heterostructures (vdWHs). X-ray photoelectron spectroscopy (XPS) and optical characterization confirm the type-II band alignment, resulting in a fast charger transfer process and the occurrence of a broad emission peak with lower energy. The formation of WSe2/CsPbI3 heterostructure largely enhance the photocurrent from 2.38 nA to 38.59 nA. These findings are vital for bottom-up epitaxy of inorganic semiconductor on atomic thin 2D substrates for optoelectronic applications.

Graphical abstract

Keywords

van der Waals epitaxy / band alignment / growth fundamental / charge transfer / photodetector

Cite this article

Download citation ▾
Chang Lu, Shunhui Zhang, Meili Chen, Haitao Chen, Mengjian Zhu, Zhengwei Zhang, Jun He, Lin Zhang, Xiaoming Yuan. Van der Waals epitaxy of type-II band alignment CsPbI3/TMDC heterostructure for optoelectronic applications. Front. Phys., 2024, 19(5): 53206 https://doi.org/10.1007/s11467-024-1404-9

References

[1]
M. Long , P. Wang , H. Fang , W. Hu . Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater., 2019, 29(19): 1803807
CrossRef ADS Google scholar
[2]
N. Huo , G. Konstantatos . Recent progress and future prospects of 2D‐based photodetectors. Adv. Mater., 2018, 30(51): 1801164
CrossRef ADS Google scholar
[3]
S. B. Mitta , M. S. Choi , A. Nipane , F. Ali , C. Kim , J. T. Teherani , J. Hone , W. J. Yoo . Electrical characterization of 2D materials-based field-effect transistors. 2D Mater., 2021, 8(1): 012002
CrossRef ADS Google scholar
[4]
Z. Wang , Y. Yang , B. Hua , Q. Ji . Synthetic two-dimensional electronics for transistor scaling. Front. Phys., 2023, 18(6): 63601
CrossRef ADS Google scholar
[5]
J. F. Gonzalez Marin , D. Unuchek , Z. Sun , C. Y. Cheon , F. Tagarelli , K. Watanabe , T. Taniguchi , A. Kis . Room-temperature electrical control of polarization and emission angle in a cavity-integrated 2D pulsed LED. Nat. Commun., 2022, 13(1): 4884
CrossRef ADS Google scholar
[6]
K. F. Mak , J. Shan . Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics, 2016, 10(4): 216
CrossRef ADS Google scholar
[7]
S. Wu , S. Buckley , J. R. Schaibley , L. Feng , J. Yan , D. G. Mandrus , F. Hatami , W. Yao , J. Vučković , A. Majumdar , X. Xu . Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 2015, 520(7545): 69
CrossRef ADS Google scholar
[8]
Y. Ye , Z. J. Wong , X. Lu , X. Ni , H. Zhu , X. Chen , Y. Wang , X. Zhang . Monolayer excitonic laser. Nat. Photonics, 2015, 9(11): 733
CrossRef ADS Google scholar
[9]
M. Bernardi , M. Palummo , J. C. Grossman . Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett., 2013, 13(8): 3664
CrossRef ADS Google scholar
[10]
C. K. Sumesh . Towards efficient photon management in nanostructured solar cells: Role of 2D layered transition metal dichalcogenide semiconductors. Sol. Energy Mater. Sol. Cells, 2019, 192: 16
CrossRef ADS Google scholar
[11]
D. Wu , Y. Wang , L. Zeng , C. Jia , E. Wu , T. Xu , Z. Shi , Y. Tian , X. Li , Y. H. Tsang . Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector. ACS Photonics, 2018, 5(9): 3820
CrossRef ADS Google scholar
[12]
L. Zhang , Z. Zhang , F. Wu , D. Wang , R. Gogna , S. Hou , K. Watanabe , T. Taniguchi , K. Kulkarni , T. Kuo , S. R. Forrest , H. Deng . Twist-angle dependence of moiré excitons in WS2/MoSe2 heterobilayers. Nat. Commun., 2020, 11(1): 5888
CrossRef ADS Google scholar
[13]
D. Kozawa , A. Carvalho , I. Verzhbitskiy , F. Giustiniano , Y. Miyauchi , S. Mouri , A. Castro Neto , K. Matsuda , G. Eda . Evidence for fast interlayer energy transfer in MoSe2/WS2 heterostructures. Nano Lett., 2016, 16(7): 4087
CrossRef ADS Google scholar
[14]
A. Liu , H. Zhu , S. Bai , Y. Reo , T. Zou , M. G. Kim , Y. Y. Noh . High-performance inorganic metal halide perovskite transistors. Nat. Electron., 2022, 5(2): 78
CrossRef ADS Google scholar
[15]
R. Singh , P. Singh , G. Balasubramanian . Effect of heterostructure engineering on electronic structure and transport properties of two-dimensional halide perovskites. Comput. Mater. Sci., 2021, 200: 110823
CrossRef ADS Google scholar
[16]
A. G. Ricciardulli , S. Yang , J. H. Smet , M. Saliba . Emerging perovskite monolayers. Nat. Mater., 2021, 20(10): 1325
CrossRef ADS Google scholar
[17]
S. S. Lo , T. Mirkovic , C. H. Chuang , C. Burda , G. D. Scholes . Emergent properties resulting from type‐II band alignment in semiconductor nanoheterostructures. Adv. Mater., 2011, 23(2): 180
CrossRef ADS Google scholar
[18]
Y. Liu , H. Li , X. Zheng , X. Cheng , T. Jiang . Giant photoluminescence enhancement in monolayer WS2 by energy transfer from CsPbBr3 quantum dots. Opt. Mater. Express, 2017, 7(4): 1327
CrossRef ADS Google scholar
[19]
Q. Fang , Q. Shang , L. Zhao , R. Wang , Z. Zhang , P. Yang , X. Sui , X. Qiu , X. Liu , Q. Zhang , Y. Zhang . Ultrafast charge transfer in perovskite nanowire/2D transition metal dichalcogenide heterostructures. J. Phys. Chem. Lett., 2018, 9(7): 1655
CrossRef ADS Google scholar
[20]
M. Zhong , B. Cui , Z. Mo , Y. Yu , Q. Xia , F. Zhang , Z. Zhou , L. Huang , B. Li , J. Yang . Gate controllable band alignment transition in 2D black-arsenic/WSe2 heterostructure. Appl. Phys. Rev., 2023, 10(2): 021416
CrossRef ADS Google scholar
[21]
F. Zhao , D. Wang , F. Zhang , B. Cui , Q. Xia , M. Zhong . Gate-controlled photoresponse improvement in b-AsP/WSe2 heterostructures with type-I band alignment. Appl. Phys. Lett., 2023, 122(15): 151105
CrossRef ADS Google scholar
[22]
L. Yuan , Z. Xu , J. Li , F. Zhang , S. Liu , H. Shi , Q. Xia , M. Zhong . Broad-spectrum and ultrasensitive photodetectors based on GeSe/SnS2 heterostructures with type-III band alignment. Appl. Phys. Lett., 2023, 122(24): 241106
CrossRef ADS Google scholar
[23]
X. Song , X. Liu , D. Yu , C. Huo , J. Ji , X. Li , S. Zhang , Y. Zou , G. Zhu , Y. Wang , M. Wu , A. Xie , H. Zeng . Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl. Mater. Interfaces, 2018, 10(3): 2801
CrossRef ADS Google scholar
[24]
A. G. Saraswathy Vilasam , P. K. Prasanna , X. Yuan , Z. Azimi , F. Kremer , C. Jagadish , S. Chakraborty , H. H. Tan . Epitaxial growth of GaAs nanowires on synthetic mica by metal–organic chemical vapor deposition. ACS Appl. Mater. Interfaces, 2022, 14(2): 3395
CrossRef ADS Google scholar
[25]
L. Britnell , R. M. Ribeiro , A. Eckmann , R. Jalil , B. D. Belle , A. Mishchenko , Y. J. Kim , R. V. Gorbachev , T. Georgiou , S. V. Morozov , A. N. Grigorenko , A. K. Geim , C. Casiraghi , A. H. C. Neto , K. S. Novoselov . Strong light−matter interactions in heterostructures of atomically thin films. Science, 2013, 340(6138): 1311
CrossRef ADS Google scholar
[26]
Z. Liu , L. Song , S. Zhao , J. Huang , L. Ma , J. Zhang , J. Lou , P. M. Ajayan . Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett., 2011, 11(5): 2032
CrossRef ADS Google scholar
[27]
W. Yang , G. Chen , Z. Shi , C. C. Liu , L. Zhang , G. Xie , M. Cheng , D. Wang , R. Yang , D. Shi , K. Watanabe , T. Taniguchi , Y. Yao , Y. Zhang , G. Zhang . Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater., 2013, 12(9): 792
CrossRef ADS Google scholar
[28]
M.WangS.K. JangW.J. JangM.KimS.Y. ParkS.W. KimS.J. KahngJ.Y. ChoiR.S. RuoffY.J. SongS.Lee, A platform for large‐scale graphene electronics – CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride, Adv. Mater. 25(19), 2746 (2013)
[29]
X. Duan , C. Wang , J. C. Shaw , R. Cheng , Y. Chen , H. Li , X. Wu , Y. Tang , Q. Zhang , A. Pan , J. Jiang , R. Yu , Y. Huang , X. Duan . Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol., 2014, 9(12): 1024
CrossRef ADS Google scholar
[30]
C. Huang , S. Wu , A. M. Sanchez , J. J. P. Peters , R. Beanland , J. S. Ross , P. Rivera , W. Yao , D. H. Cobden , X. Xu . Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater., 2014, 13(12): 1096
CrossRef ADS Google scholar
[31]
M. Chen , R. Chang , X. Yang , C. Lu , S. Zhang , Z. Zhang , J. He , X. Yuan . Van der Waals epitaxy of CsPbBr3/WSe2 heterostructure and dynamics study of exciton recombination. J. Phys. D Appl. Phys., 2024, 57(23): 235103
CrossRef ADS Google scholar
[32]
Y. H. Mao , H. Shan , J. R. Wu , Z. J. Li , C. Z. Wu , X. F. Zhai , A. D. Zhao , B. Wang . Observation of pseudogap in SnSe2 atomic layers grown on graphite. Front. Phys., 2020, 15(4): 43501
CrossRef ADS Google scholar
[33]
Y. Kim , S. S. Cruz , K. Lee , B. O. Alawode , C. Choi , Y. Song , J. M. Johnson , C. Heidelberger , W. Kong , S. Choi , K. Qiao , I. Almansouri , E. A. Fitzgerald , J. Kong , A. M. Kolpak , J. Hwang , J. Kim . Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature, 2017, 544(7650): 340
CrossRef ADS Google scholar
[34]
J. Chen , Y. Fu , L. Samad , L. Dang , Y. Zhao , S. Shen , L. Guo , S. Jin . Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett., 2017, 17(1): 460
CrossRef ADS Google scholar
[35]
S. Ge , F. Huang , J. He , Z. Xu , Z. Sun , X. Han , C. Wang , L. B. Huang , C. Pan . Bidirectional photoresponse in perovskite‐ZnO heterostructure for fully optical-controlled artificial synapse. Adv. Opt. Mater., 2022, 10(11): 2200409
CrossRef ADS Google scholar
[36]
B. R. Tak , V. Gupta , A. K. Kapoor , Y. H. Chu , R. Singh . Wearable gallium oxide solar-blind photodetectors on muscovite mica having ultrahigh photoresponsivity and detectivity with added high-temperature functionalities. ACS Appl. Electron. Mater., 2019, 1(11): 2463
CrossRef ADS Google scholar
[37]
P. K. Mohseni , A. Behnam , J. D. Wood , C. D. English , J. W. Lyding , E. Pop , X. Li . InxGa1−xAs nanowire growth on graphene: van der Waals epitaxy induced phase segregation. Nano Lett., 2013, 13(3): 1153
CrossRef ADS Google scholar
[38]
J. Shin , H. Kim , S. Sundaram , J. Jeong , B. I. Park , C. S. Chang , J. Choi , T. Kim , M. Saravanapavanantham , K. Lu , S. Kim , J. M. Suh , K. S. Kim , M. K. Song , Y. Liu , K. Qiao , J. H. Kim , Y. Kim , J. H. Kang , J. Kim , D. Lee , J. Lee , J. S. Kim , H. E. Lee , H. Yeon , H. S. Kum , S. H. Bae , V. Bulovic , K. J. Yu , K. Lee , K. Chung , Y. J. Hong , A. Ougazzaden , J. Kim . Vertical full-colour micro-LEDs via 2D materials-based layer transfer. Nature, 2023, 614(7946): 81
CrossRef ADS Google scholar
[39]
Y. Wang , Y. Shi , G. Xin , J. Lian , J. Shi . Two-dimensional van der Waals epitaxy kinetics in a three-dimensional perovskite halide. Cryst. Growth Des., 2015, 15(10): 4741
CrossRef ADS Google scholar
[40]
Z. Zhang , P. Chen , X. Yang , Y. Liu , H. Ma , J. Li , B. Zhao , J. Luo , X. Duan , X. Duan . Ultrafast growth of large single crystals of monolayer WS2 and WSe2. Natl. Sci. Rev., 2020, 7(4): 737
CrossRef ADS Google scholar
[41]
A. Gurarslan , Y. Yu , L. Su , Y. Yu , F. Suarez , S. Yao , Y. Zhu , M. Ozturk , Y. Zhang , L. Cao . Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano, 2014, 8(11): 11522
CrossRef ADS Google scholar
[42]
X. Yuan , H. Liu , S. Liu , R. Zhang , Y. Wang , J. He , H. H. Tan , C. Jagadish . Thermodynamic properties of metastable wurtzite InP nanosheets. J. Phys. D, 2021, 54(50): 505112
CrossRef ADS Google scholar
[43]
K. Zhang , C. Ding , B. Pan , Z. Wu , A. Marga , L. Zhang , H. Zeng , S. Huang . Visualizing van der Waals epitaxial growth of 2D heterostructures. Adv. Mater., 2021, 33(45): 2105079
CrossRef ADS Google scholar
[44]
S. Mukherjee , N. Nateghi , R. M. Jacobberger , E. Bouthillier , M. De La Mata , J. Arbiol , T. Coenen , D. Cardinal , P. Levesque , P. Desjardins , R. Martel , M. S. Arnold , O. Moutanabbir . Growth and luminescence of polytypic InP on epitaxial graphene. Adv. Funct. Mater., 2018, 28(8): 1705592
CrossRef ADS Google scholar
[45]
C. Sheng , Y. Bu , Y. Li , L. Su , Y. Yu , D. Cao , J. Zhou , X. Chen , W. Lu , H. Shu . Phase-controllable growth of air-stable SnS nanostructures for high-performance photodetectors with ultralow dark current. ACS Appl. Mater. Interfaces, 2023, 15(11): 14704
CrossRef ADS Google scholar
[46]
H.RyuH.ParkJ.H. KimF.RenJ.KimG.H. LeeS.J. Pearton, Two-dimensional material templates for van der Waals epitaxy, remote epitaxy, and intercalation growth, Appl. Phys. Rev. 9(3), 031305 (2022)
[47]
D. Trots , S. Myagkota . High-temperature structural evolution of caesium and rubidium triiodoplumbates. J. Phys. Chem. Solids, 2008, 69(10): 2520
CrossRef ADS Google scholar
[48]
J. Liang , X. Han , J. H. Yang , B. Zhang , Q. Fang , J. Zhang , Q. Ai , M. M. Ogle , T. Terlier , A. A. Martí , J. Lou . Defect-engineering-enabled high-efficiency all-inorganic perovskite solar cells. Adv. Mater., 2019, 31(51): 1903448
CrossRef ADS Google scholar
[49]
Y. Cheng , P. Tang , P. Liang , X. Liu , D. Cao , X. Chen , H. Shu . Sulfur-driven transition from vertical to lateral growth of 2D SnS–SnS2 heterostructures and their band alignments. J. Phys. Chem. C, 2020, 124(50): 27820
CrossRef ADS Google scholar
[50]
X. Liu , D. Cao , Y. Yao , P. Tang , M. Zhang , X. Chen , H. Shu . Heteroepitaxial growth and interface band alignment in a large-mismatch CsPbI3/GaN heterojunction. J. Mater. Chem. C, 2022, 10(6): 1984
CrossRef ADS Google scholar
[51]
H. Yuan , J. Su , S. Zhang , J. Di , Z. Lin , J. Zhang , J. Zhang , J. Chang , Y. Hao . Interfacial transport modulation by intrinsic potential difference of Janus TMDs based on CsPbI3/J-TMDs heterojunctions. iScience, 2022, 25(3): 103872
CrossRef ADS Google scholar
[52]
D. Guo , D. Bartesaghi , H. Wei , E. M. Hutter , J. Huang , T. J. Savenije . Photoluminescence from radiative surface states and excitons in methylammonium lead bromide perovskites. J. Phys. Chem. Lett., 2017, 8(17): 4258
CrossRef ADS Google scholar
[53]
A. Asaithambi , N. Kazemi Tofighi , N. Curreli , M. De Franco , A. Patra , N. Petrini , D. Baranov , L. Manna , F. D. Stasio , I. Kriegel . Generation of free carriers in MoSe2 monolayers via energy transfer from CsPbBr3 nanocrystals. Adv. Opt. Mater., 2022, 10(14): 2200638
CrossRef ADS Google scholar
[54]
X. Yang , S. Zhang , Z. Zhang , J. Lin , X. Liu , Z. Huang , L. Zhang , W. Luo , J. He , X. Yuan . Controlled fabrication of CsPbI2Br/transition metal dichalcogenide van der Waals heterostructure with fast carrier transfer process and interlayer exciton formation. Physica E, 2023, 153: 115788
CrossRef ADS Google scholar
[55]
M. Drüppel , T. Deilmann , P. Krüger , M. Rohlfing . Diversity of trion states and substrate effects in the optical properties of an MoS2 monolayer. Nat. Commun., 2017, 8(1): 2117
CrossRef ADS Google scholar
[56]
T. Ye , J. Li , D. Li . Charge-accumulation effect in transition metal dichalcogenide heterobilayers. Small, 2019, 15(42): 1902424
CrossRef ADS Google scholar
[57]
E. M. Alexeev , D. A. Ruiz-Tijerina , M. Danovich , M. J. Hamer , D. J. Terry , P. K. Nayak , S. Ahn , S. Pak , J. Lee , J. I. Sohn , M. R. Molas , M. Koperski , K. Watanabe , T. Taniguchi , K. S. Novoselov , R. V. Gorbachev , H. S. Shin , V. I. Fal’ko , A. I. Tartakovskii . Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature, 2019, 567: 81
CrossRef ADS Google scholar
[58]
K. Ludwiczak , A. K. Da̧browska , J. Binder , M. Tokarczyk , J. Iwański , B. Kurowska , J. Turczyński , G. Kowalski , R. Bożek , R. Stȩpniewski , W. Pacuski , A. Wysmołek . Heteroepitaxial growth of high optical quality, wafer-scale van der Waals heterostrucutres. ACS Appl. Mater. Interfaces, 2021, 13(40): 47904
CrossRef ADS Google scholar
[59]
J. Li , X. Yuan , P. Jing , J. Li , M. Wei , J. Hua , J. Zhao , L. Tian . Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films. RSC Advances, 2016, 6(82): 78311
CrossRef ADS Google scholar
[60]
J. Lu , A. Carvalho , H. Liu , S. X. Lim , A. H. Castro Neto , C. H. Sow . Hybrid bilayer WSe2–CH3NH3 PbI3 organolead halide perovskite as a high-performance photodetector. Angew. Chem., 2016, 128(39): 12124
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Supporting Information

The online version contains the additional experiment with formation of CsPbI3/WSe2 heterostructure under altered parameters, temperature-dependent PL spectra of CsPbI3 armchair orientated NW/WSe2, formation and PL spectra of CsPbI3 nanostructure on the surface of transferred hBN and DL-WSe2, and so on (PDF). See: https://doi.org/10.1007/s11467-024-1404-9 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-024-1404-9.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61974166 and 62274184) and the Hunan Provincial Natural Science Foundation of China (Grant Nos. 2021JJ20080 and 2021JJ20077).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(11143 KB)

Accesses

Citations

Detail

Sections
Recommended

/