The g-factor measurement as an ultimate test for nuclear chirality

Ernest Grodner, Michał Kowalczyk, Julian Srebrny, Leszek Próchniak, Chrystian Droste, Jan Kownacki, Maciej Kisieliński, Krzysztof Starosta, Takeshi Koike

PDF(5286 KB)
PDF(5286 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (3) : 34202. DOI: 10.1007/s11467-023-1359-2
TOPICAL REVIEW
TOPICAL REVIEW

The g-factor measurement as an ultimate test for nuclear chirality

Author information +
History +

Abstract

We present results of a series of experiments aimed at finding the most direct fingerprints of a phenomenon of nuclear chirality. These experiments brought a detailed knowledge of the so called partner bands in 132La, 128Cs and 126Cs including absolute values of E2 and M1 transition probabilities obtained through the DSA (Doppler Shift Attenuation) method. Considering the indirect character of observables such as energies and transition rates we proposed measurement of the g-factor of a chosen state as a direct, ultimate test of chirality. Our experiment on the bandhead of partner bands in 128Cs showed feasibility of this approach. Measured value of the g-factor which suggests non-chiral character of this state leads to another puzzle in the chirality studies — how the chirality emerges with increasing spin of levels along a partner band.

Graphical abstract

Keywords

nuclear chirality / electromagnetic transitions / electromagnetic moments / level lifetimes

Cite this article

Download citation ▾
Ernest Grodner, Michał Kowalczyk, Julian Srebrny, Leszek Próchniak, Chrystian Droste, Jan Kownacki, Maciej Kisieliński, Krzysztof Starosta, Takeshi Koike. The g-factor measurement as an ultimate test for nuclear chirality. Front. Phys., 2024, 19(3): 34202 https://doi.org/10.1007/s11467-023-1359-2

References

[1]
A.BohrB. R. Mottelson, Nuclear Structure, Vol. I, Benjamin Inc., 1969
[2]
E. Grodner. Staggering of the B(M1) value as a fingerprint of specific chiral bands structure. Int. J. Mod. Phys. E, 2011, 20: 380
CrossRef ADS Google scholar
[3]
B. W. Xiong, Y. Y. Wang. Nuclear chiral doublet bands data tables. At. Data Nucl. Data Tables, 2019, 125: 193
CrossRef ADS Google scholar
[4]
E. Grodner, S. G. Rohoziński, J. Srebrny. Simple picture of the nuclear system diverging from the strong chiral symmetry breaking limit. Acta Phys. Pol. B, 2007, 38: 1411
[5]
E. Grodner. Quest for the chiral symmetry breaking in atomic nuclei. Acta Phys. Pol. B, 2008, 39: 531
[6]
E. Grodner, J. Srebrny, A. A. Pasternak, Ch. Droste, M. Kowalczyk, M. Kisieliński, J. Mierzejewski, M. Goɫębiowski, T. Marchlewski, T. Krajewski, D. Karpinski, P. Olszewski, P. Jones, T. Abraham, J. Perkowski, L. Janiak, J. Samorajczyk, J. Andrzejewski, J. Kownacki, K. Hadyńska-Klęk, P. Napiorkowski, M. Komorowska, S. F. Ozmen. Spontaneous time reversal symmetry breaking in 124Cs. AIP Conf. Proc., 2012, 1491: 140
[7]
C. M. Petrache, G. B. Hagemann, I. Hamamoto, K. Starosta. Risk of misinterpretation of nearly degenerate pair bands as chiral partners in nuclei. Phys. Rev. Lett., 2006, 96: 112502
CrossRef ADS Google scholar
[8]
T. Koike, K. Starosta, P. Joshi, G. Rainovski, J. Timar, C. Vaman, R. Wadsworth. Recent progress on the investigation of spontaneous formation of chirality in rotating nuclei. J. Phys. G (London), 2005, 31: S1741
CrossRef ADS Google scholar
[9]
T.KoikeK. StarostaI.Hamamoto, Chiral bands, dynamical spontaneous symmetry breaking, and the selection rule for electromagnetic transitions in the chiral geometry, Phys. Rev. Lett. 93, 172502 (2004)
[10]
S. Frauendorf, J. Meng. Tilted rotation of triaxial nuclei. Nucl. Phys. A, 1997, 617: 131
CrossRef ADS Google scholar
[11]
Ch. Droste, S. G. Rohoziński, K. Starosta, L. Próchniak, E. Grodner. Chiral bands in odd−odd nuclei with rigid or soft cores. Eur. Phys. J. A, 2009, 42: 79
CrossRef ADS Google scholar
[12]
S. G. Rohoziński, L. Próchniak, K. Starosta, Ch. Droste. Odd−odd nuclei as the core particle−hole systems and chirality. Eur. Phys. J. A, 2011, 47: 90
[13]
L. Próchniak, S. G. Rohoziński. Ch. Droste, and K. Starosta, A symmetry of the CPHC model of odd−odd nuclei and its consequences for properties of M1 and E2 transitions. Acta Phys. Pol. B, 2011, 42: 465
[14]
K. Starosta, T. Koike, C. J. Chiara, D. B. Fossan, D. R. LaFosse, A. A. Hecht, C. W. Beausang, M. A. Caprio, J. R. Cooper, R. Krucken, J. R. Novak, N. V. Zamfir, K. E. Zyromski, D. J. Hartley, D. L. Balabanski, J.-Y. Zhang, S. Frauendorf, V. I. Dimitrov. Chiral doublet structure in odd−odd N=75 isotones: Chiral vibrations. Phys. Rev. Lett., 2001, 86: 971
CrossRef ADS Google scholar
[15]
K. Starosta, C. J. Chiara, D. B. Fossan, T. Koike, T. T. S. Kuo, D. R. LaFosse, S. G. Rohoziński, Ch. Droste, T. Morek, J. Srebrny. Role of chirality in angular momentum coupling for A~130 odd‒odd triaxial nuclei: 132La. Phys. Rev. C, 2002, 65: 044328
CrossRef ADS Google scholar
[16]
Y.LiuJ. LuY.MaS.ZhouH.Zheng, Systematic study of spin assignments and signature inversion of πh11/2νh11/2 bands in doubly odd nuclei around A~130, Phys. Rev. C 54, 719 (1996)
[17]
J.TimarD. SohlerB.M. NyakoL.ZolnaiZ.Dombradi E.S. PaulA. J. BostonC.FoxP.J. NolanJ.A. SampsonH.C. ScraggsA.WalkerJ.Gizon A.GizonD. BazzaccoS.LunardiC.M. PetracheA.Astier N.BufornP. BednarczykN.Kintz, Experimental evidence for signature inversion in 132La from a revisited level scheme, Eur. Phys. J. A 16, 1 (2003)
[18]
R. A. Bark, A. M. Baxter, A. P. Byrne, G. D. Dracoulis, T. Kibedi, T. R. McGoram, S. M. Mullins. Candidate chiral band in 134La. Nucl. Phys. A, 2001, 691: 577
[19]
K. Starosta, T. Koike, C. J. Chiara, D. B. Fossan, D. R. LaFosse. Chirality in odd‒odd triaxial nuclei. Nucl. Phys. A, 2001, 682: 375c
CrossRef ADS Google scholar
[20]
L. L. Riedinger, D. J. Hartley, A. Galindo-Uribarri, B. H. Smith, C. Baktash, M. P. Carpenter, M. Danchev, M. Devlin, C. J. Gross, R. V. F. Janssens, M. Lipoglavsek, S. D. Paul, D. C. Radford, W. Reviol, D. G. Sarantites, D. Seweryniak, C.-H. Yu, O. Zeidan. Signature inversion in odd‒odd nuclei. Acta Phys. Pol. B, 2001, 32: 2613
[21]
E. Grodner, A. A. Pasternak, Ch. Droste, T. Morek, J. Srebrny, J. Kownacki, W. Pɫóciennik, A. A. Wasilewski, M. Kowalczyk, M. Kisieliński, R. Kaczarowski, E. Ruchowska, A. Kordyasz, M. Wolinska. Lifetimes and side-feeding population of the yrast band levels in 131La. Eur. Phys. J. A, 2006, 27: 325
CrossRef ADS Google scholar
[22]
E. Grodner, J. Srebrny. Ch. Droste, T. Morek, A. Pasternak, and J. Kownacki, DSAM lifetime measurements in the yrast band of 131La and the chiral bands in 132La. Int. J. Mod. Phys. E, 2004, 13: 243
CrossRef ADS Google scholar
[23]
E. Grodner, I. Zalewska, T. Morek, J. Srebrny, Ch. Droste, M. Kowalczyk, J. Mierzejewski, M. Salata, A. A. Pasternak, J. Kownacki, M. Kisieli«ski, A. Kordyasz, P. Napiorkowski, M. Wolińska, S. G. Rohoziński, R. Kaczarowski, W. Pɫóciennik, E. Ruchowska, A. Wasilewski, J. Perkowski. Lifetime measurements in 128Cs and 132La as a test of chirality. Int. J. Mod. Phys. E, 2005, 14: 347
CrossRef ADS Google scholar
[24]
J. Srebrny, E. Grodner, T. Morek, I. Zalewska, Ch. Droste, J. Mierzejewski, A. A. Pasternak, J. Kownacki, J. Perkowski. Search for chirality in 128Cs and 132La. Acta Phys. Pol. B, 2005, 36: 1063
[25]
E. Grodner, J. Srebrny, A. A. Pasternak, I. Zalewska, T. Morek, Ch. Droste, J. Mierzejewski, M. Kowalczyk, J. Kownacki, M. Kisieliński, S. G. Rohoziński, T. Koike, K. Starosta, A. Kordyasz, P. J. Napiorkowski, M. Wolińska-Cichocka, E. Ruchowska, W. Pɫóciennik, J. Perkowski. 128Cs as the best example revealing chiral symmetry breaking. Phys. Rev. Lett., 2006, 97: 172501
CrossRef ADS Google scholar
[26]
T. Koike, K. Starosta, C. J. Chiara, D. B. Fossan, D. R. LaFosse. Observation of chiral doublet bands in odd‒odd N=73 isotones. Phys. Rev. C, 2001, 63: 061304
CrossRef ADS Google scholar
[27]
T. Koike, K. Starosta, C. J. Chiara, D. B. Fossan, D. R. LaFosse. Systematic search of πh11/2νh11/2 chiral doublet bands and role of triaxiality in odd‒odd Z=55 isotopes: 128, 130, 132, 134Cs. Phys. Rev. C, 2003, 67: 044319
[28]
E. Grodner, J. Srebrny, I. Zalewska, T. Morek, Ch. Droste, M. Kowalczyk, J. Mierzejewski, A. A. Pasternak, J. Kownacki, M. Kisieliński. Support for the chiral interpretation of partner bands in 128Cs ‒ the electromagnetic properties. Int. J. Mod. Phys. E, 2006, 15: 548
CrossRef ADS Google scholar
[29]
G.-S. Li, R. Meng, L.-H. Zhu, Z.-L. Zhang, Y. Wang, Z.-M. Wang, S.-X. Wen, J.-B. Lu, G.-Y. Zhao, X.-F. Li, L.-J. Wen, Y.-N. Zheng, Y. Zheng, Y.-Z. Liu, G.-J. Yuan, C.-X. Yang. Lifetimes of high spin yrast states in odd‒proton nucleus 131Pr. Chin. Phys. Lett., 2003, 20: 475
CrossRef ADS Google scholar
[30]
S. Wang, Y. Liu, T. Komatsubara, Y. Ma, Y. Zhang. Candidate chiral doublet bands in the odd−odd nucleus 126Cs. Phys. Rev. C, 2006, 74: 017302
CrossRef ADS Google scholar
[31]
E. Grodner, I. Sankowska, T. Morek, S. G. Rohoziński, Ch. Droste, J. Srebrny, A. A. Pasternak, M. Kisieliński, M. Kowalczyk, J. Kownacki, J. Mierzejewski, A. Krol, K. Wrzosek. Partner bands of 126Cs ‒ first observation of chiral electromagnetic selection rules. Phys. Lett. B, 2011, 703: 46
CrossRef ADS Google scholar
[32]
K.StarostaT. Koike, Nuclear chirality, a model and the data, Phys. Scr. 92, 093002 (2017)
[33]
F. Dönau, S. Frauendorf. Description of odd transitional nuclei in terms of core quasiparticle models. Phys. Lett. B, 1977, 71: 263
[34]
Ch. Droste, D. Chlebowska, J. Dobaczewski, F. Dönau, A. Kerek, G. Leander, J. Srebrny, W. Walus. Collective quadrupole dynamics and the band structure of the nucleus 127Cs. Nucl. Phys. A, 1980, 341: 98
CrossRef ADS Google scholar
[35]
L. Próchniak, S. G. Rohoziński. Quadrupole collective states within the Bohr collective hamiltonian. J. Phys. G (London), 2009, 36: 123101
CrossRef ADS Google scholar
[36]
T. Marchlewski, J. Srebrny, E. Grodner. Study of chirality in odd‒odd Cs isotopes: Search for critical frequency. Acta Phys. Pol. B Proc. Suppl., 2018, 11: 89
CrossRef ADS Google scholar
[37]
N.YoshinagaK. Higashiyama, A simple model for doublet bands in doubly odd nuclei, Eur. Phys. J. A 30, 343 (2006)
[38]
E. Grodner, J. Srebrny, Ch. Droste, L. Próchniak, S. G. Rohozinski, M. Kowalczyk, M. Ionescu-Bujor, C. A. Ur, K. Starosta, T. Ahn, M. Kisielinski, T. Marchlewski, S. Aydin, F. Recchia, G. Georgiev, R. Lozeva, E. Fiori, M. Zielińska, Q. B. Chen, S. Q. Zhang, L. F. Yu, P. W. Zhao, J. Meng. First measurement of the g factor in the chiral band: The case of the 128Cs isomeric state. Phys. Rev. Lett., 2018, 120: 022502
CrossRef ADS Google scholar
[39]
E. Grodner, M. Kowalczyk, M. Kisieliński, J. Srebrny, L. Próchniak, Ch. Droste, S. G. Rohozinski, Q. B. Chen, M. Ionescu-Bujor, C. A. Ur, F. Recchia, J. Meng, S. Q. Zhang, P. W. Zhao, G. Georgiev, R. Lozeva, E. Fiori, S. Aydin, A. Naɫęecz-Jawecki. Examination of nuclear chirality with a magnetic moment measurement of the I=9 isomeric state in 128Cs. Phys. Rev. C, 2022, 106: 014318
CrossRef ADS Google scholar
[40]
P. Olbratowski, J. Dobaczewski, J. Dudek, W. Pɫóciennik. Critical frequency in nuclear chiral rotation. Phys. Rev. Lett., 2004, 93: 052501
CrossRef ADS Google scholar
[41]
T.MarchlewskiR.SzenbornJ.SamorajczykE.GrodnerJ.SrebrnyCh.Droste L.PróchniakA.A. PasternakM.KowalczykM.KisielińskiT.AbrahamJ.AndrzejewskiP.DecowskiK.Hadyńska-KlękL.JaniakM.KomorowskaJ.MierzejewskiP.NapiorkowskiJ.PerkowskiA.Stolarz, Electromagnetic properties of chiral bands in 124Cs, Acta Phys. Pol. B 46, 689 (2015)
[42]
E.GrodnerM. KowalczykT.CapV.CharviakovaS.MianowskiJ.SrebrnyT.AbrahamM.KisielińskiT.MarchlewskiC.MihaiR.Mihai A.TurturicaS. PascuA.Korgul, First fast-timing measurement with triple coincidence techniques at HIL. Construction of the EAGLE-EYE setup, in: HIL Annual Report, Heavy Ion Laboratory UW, Warsaw, Poland, 2017, p. 48

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

We want to express our deep gratitude to our late colleagues, Alexandr A. Pasternak and Tomasz Morek, for a long-standing collaboration and a significant contribution to our studies of nuclear chirality. In particular, to Alexandr A. Pasternak for playing a leading role in DSAM analysis and creating excellent software and to Tomasz Morek for a very important role in all stages of experiments and data analysis.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5286 KB)

Accesses

Citations

Detail

Sections
Recommended

/