Magnetic phase transition and continuous spin switching in a high-entropy orthoferrite single crystal

Wanting Yang, Shuang Zhu, Xiong Luo, Xiaoxuan Ma, Chenfei Shi, Huan Song, Zhiqiang Sun, Yefei Guo, Yuriy Dedkov, Baojuan Kang, Jin-Ke Bao, Shixun Cao

PDF(7667 KB)
PDF(7667 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (2) : 23203. DOI: 10.1007/s11467-023-1343-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Magnetic phase transition and continuous spin switching in a high-entropy orthoferrite single crystal

Author information +
History +

Abstract

Rare-earth orthoferrite REFeO3 (where RE is a rare-earth ion) is gaining interest. We created a high-entropy orthoferrite (Tm0.2Nd0.2Dy0.2Y0.2Yb0.2)FeO3 (HEOR) by doping five RE ions in equimolar ratios and grew the single crystal by optical floating zone method. It strongly tends to form a single-phase structure stabilized by high configurational entropy. In the low-temperature region (11.6‒ 14.4 K), the spin reorientation transition (SRT) of Γ2 (Fx, Cy, Gz)‒Γ24‒Γ4 (Gx, Ay, Fz) occurs. The weak ferromagnetic (FM) moment, which comes from the Fe sublattices distortion, rotates from the a- to c-axis. The two-step dynamic processes (Γ2‒Γ24‒Γ4) are identified by AC susceptibility measurements. SRT in HEOR can be tuned in the range of 50‒60000 Oe, which is an order of magnitude larger than that of orthoferrites in the peer system, making it a candidate for high-field spin sensing. Typical spin-switching (SSW) and continuous spin-switching (CSSW) effects occur under low magnetic fields due to the strong interactions between RE‒Fe sublattices. The CSSW effect is tunable between 20‒50 Oe, and hence, HEOR potentially can be applied to spin modulation devices. Furthermore, because of the strong anisotropy of magnetic entropy change ( ΔSm) and refrigeration capacity (RC) based on its high configurational entropy, HEOR is expected to provide a novel approach for refrigeration by altering the orientations of the crystallographic axes (anisotropic configurational entropy).

Graphical abstract

Keywords

high-entropy oxide / rare-earth orthoferrite / spin reorientation transition / spin switching / magnetocaloric effect

Cite this article

Download citation ▾
Wanting Yang, Shuang Zhu, Xiong Luo, Xiaoxuan Ma, Chenfei Shi, Huan Song, Zhiqiang Sun, Yefei Guo, Yuriy Dedkov, Baojuan Kang, Jin-Ke Bao, Shixun Cao. Magnetic phase transition and continuous spin switching in a high-entropy orthoferrite single crystal. Front. Phys., 2024, 19(2): 23203 https://doi.org/10.1007/s11467-023-1343-x

References

[1]
S. E. Hahn, A. A. Podlesnyak, G. Ehlers, G. E. Granroth, R. S. Fishman, A. I. Kolesnikov, E. Pomjakushina, K. Conder. Inelastic neutron scattering studies of YFeO3. Phys. Rev. B, 2014, 89(1): 014420
CrossRef ADS Google scholar
[2]
W. C. Fan, H. Y. Chen, G. Zhao, X. X. Ma, R. Chakaravarthy, B. J. Kang, W. L. Lu, W. Ren, J. C. Zhang, S. X. Cao. Thermal control magnetic switching dominated by spin reorientation transition in Mn-doped PrFeO3 single crystals. Front. Phys., 2022, 17(3): 33504
CrossRef ADS Google scholar
[3]
R. L. White. Review of recent work on the magnetic and spectroscopic properties of the rare‐earth orthoferrites. J. Appl. Phys., 1969, 40(3): 1061
CrossRef ADS Google scholar
[4]
V. M. Goldschmidt. Die Gesetze der Krystallochemie. Naturwissenschaften, 1926, 14(21): 477
CrossRef ADS Google scholar
[5]
L. Shekhtman, O. Entin-Wohlman, A. Aharony. Moriya’s anisotropic superexchange interaction, frustration, and Dzyaloshinsky’s weak ferromagnetism. Phys. Rev. Lett., 1992, 69(5): 836
CrossRef ADS Google scholar
[6]
D. Treves. Magnetic studies of some orthoferrites. Phys. Rev., 1962, 125(6): 1843
CrossRef ADS Google scholar
[7]
I.Dzyaloshinsky, A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics, J. Phys. Chem. Solids 4(4), 241 (1958)
[8]
T. Yamaguchi, K. Tsushima. Magnetic symmetry of rare-earth orthochromites and orthoferrites. Phys. Rev. B, 1973, 8(11): 5187
CrossRef ADS Google scholar
[9]
E.F. Bertaut, Spin configurations of ionic structures: Theory and practice, in: Spin Arrangements and Crystal Structure, Domains, and Micromagnetics, edited by G. T. Rado and H. Suhl, Elsevier, 1963, page 149
[10]
D. Treves. Studies on orthoferrites at the Weizmann institute of science. J. Appl. Phys., 1965, 36(3): 1033
CrossRef ADS Google scholar
[11]
T. Yamaguchi. Theory of spin reorientation in rare-earth orthochromites and orthoferrites. J. Phys. Chem. Solids, 1974, 35(4): 479
CrossRef ADS Google scholar
[12]
W. Y. Zhao, S. X. Cao, R. X. Huang, Y. M. Cao, K. Xu, B. J. Kang, J. C. Zhang, W. Ren. Spin reorientation transition in dysprosium-samarium orthoferrite single crystals. Phys. Rev. B, 2015, 91(10): 104425
CrossRef ADS Google scholar
[13]
Ya. B. Bazaliy, L. T. Tsymbal, G. N. Kakazei, V. I. Kamenev, P. E. Wigen. Measurements of spin reorientation in YbFeO3 and comparison with modified mean-field theory. Phys. Rev. B, 2005, 72(17): 174403
CrossRef ADS Google scholar
[14]
X. Y. Zhao, K. L. Zhang, X. M. Liu, B. Wang, K. Xu, S. X. Cao, A. H. Wu, L. B. Su, G. H. Ma. Spin reorientation transition in Sm0.5Tb0.5FeO3 orthoferrite single crystal. AIP Adv., 2016, 6(1): 015201
CrossRef ADS Google scholar
[15]
X. X. Ma, N. Yuan, X. Luo, Y. K. Chen, B. J. Kang, W. Ren, J. C. Zhang, S. X. Cao. Field tunable spin switching in perovskite YbFeO3 single crystal. Mater. Today Commun., 2021, 27: 102438
CrossRef ADS Google scholar
[16]
J. S. Zhang, W. Y. Zhao, Z. J. Feng, J. Y. Ge, J. C. Zhang, S. X. Cao. Spin reorientation and rare earth antiferromagnetic transition in single crystal Sm0.15Dy0.85FeO3. J. Alloys Compd., 2019, 804: 396
CrossRef ADS Google scholar
[17]
L. Hou, L. Shi, J. Y. Zhao, S. Y. Pan, Y. Xin, X. Y. Yuan. Spin-reorientation transition driven by double exchange in CeFeO3 ceramics. J. Phys. Chem. C, 2020, 124(28): 15399
CrossRef ADS Google scholar
[18]
S. X. Cao, L. Chen, W. Y. Zhao, K. Xu, G. H. Wang, Y. L. Yang, B. J. Kang, H. J. Zhao, P. Chen, A. Stroppa, R. H. Zheng, J. C. Zhang, W. Ren, J. Íñiguez, L. Bellaiche. Tuning the weak ferromagnetic states in dysprosium orthoferrite. Sci. Rep., 2016, 6(1): 37529
CrossRef ADS Google scholar
[19]
S. X. Cao, H. Z. Zhao, B. J. Kang, J. C. Zhang, W. Ren. Temperature induced spin switching in SmFeO3 single crystal. Sci. Rep., 2014, 4(1): 5960
CrossRef ADS Google scholar
[20]
X. X. Zhang, Z. C. Xia, Y. J. Ke, X. Q. Zhang, Z. H. Cheng, Z. W. Ouyang, J. F. Wang, S. Huang, F. Yang, Y. J. Song, G. L. Xiao, H. Deng, D. Q. Jiang. Magnetic behavior and complete high-field magnetic phase diagram of the orthoferrite ErFeO3. Phys. Rev. B, 2019, 100(5): 054418
CrossRef ADS Google scholar
[21]
S. J. Yuan, W. Ren, F. Hong, Y. B. Wang, J. C. Zhang, L. Bellaiche, S. X. Cao, G. Cao. Spin switching and magnetization reversal in single-crystal NdFeO3. Phys. Rev. B, 2013, 87(18): 184405
CrossRef ADS Google scholar
[22]
M. Das, S. Roy, P. Mandal. Giant reversible magnetocaloric effect in a multiferroic GdFeO3 single crystal. Phys. Rev. B, 2017, 96(17): 174405
CrossRef ADS Google scholar
[23]
R. X. Huang, S. X. Cao, W. Ren, S. Zhan, B. J. Kang, J. C. Zhang. Large rotating field entropy change in ErFeO3 single crystal with angular distribution contribution. Appl. Phys. Lett., 2013, 103(16): 162412
CrossRef ADS Google scholar
[24]
S. Mahana, U. Manju, D. Topwal. Giant magnetocaloric effect in GdAlO3 and a comparative study with GdMnO3. J. Phys. D Appl. Phys., 2017, 50(3): 035002
CrossRef ADS Google scholar
[25]
V.K. PecharskyJrGschneidner, Magnetocaloric effect and magnetic refrigeration, J. Magn. Magn. Mater. 200(1‒3), 44 (1999)
[26]
M. J. Shao, S. X. Cao, S. J. Yuan, J. C. Shang, B. J. Kang, B. Lu, J. C. Zhang. Large magnetocaloric effect induced by intrinsic structural transition in Dy1−xHoxMnO3. Appl. Phys. Lett., 2012, 100(22): 222404
CrossRef ADS Google scholar
[27]
Y. J. Ke, X. Q. Zhang, H. Ge, Y. Ma, Z. H. Cheng. Low field induced giant anisotropic magnetocaloric effect in DyFeO3 single crystal. Chin. Phys. B, 2015, 24(3): 037501
CrossRef ADS Google scholar
[28]
J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004, 6(5): 299
CrossRef ADS Google scholar
[29]
C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. C. Dickey, D. Hou, J. L. Jones, S. Curtarolo, J. P. Maria. Entropy-stabilized oxides. Nat. Commun., 2015, 6(1): 8485
CrossRef ADS Google scholar
[30]
S.C. JiangT. HuJ.GildN.X. ZhouJ.Nie M.D. QinT. HarringtonK.VecchioJ.Luo, A new class of high-entropy perovskite oxides, Scr. Mater. 142, 116 (2018)
[31]
S. Y. Zhou, Y. P. Pu, Q. W. Zhang, R. K. Shi, X. Guo, W. Wang, J. M. Ji, T. C. Wei, T. Ouyang. Microstructure and dielectric properties of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides. Ceram. Int., 2020, 46(6): 7430
CrossRef ADS Google scholar
[32]
A. Sarkar, B. Breitung, H. Hahn. High entropy oxides: The role of entropy, enthalpy and synergy. Scr. Mater., 2020, 187: 43
CrossRef ADS Google scholar
[33]
U. Staub, L. Rettig, E. M. Bothschafter, Y. W. Windsor, M. Ramakrishnan, S. R. V. Avula, J. Dreiser, C. Piamonteze, V. Scagnoli, S. Mukherjee, C. Niedermayer, M. Medarde, E. Pomjakushina. Interplay of Fe and Tm moments through the spin-reorientation transition in TmFeO3. Phys. Rev. B, 2017, 96(17): 174408
CrossRef ADS Google scholar
[34]
H. Shen, Z. X. Cheng, F. Hong, J. Y. Xu, S. J. Yuan, S. X. Cao, X. L. Wang. Magnetic field induced discontinuous spin reorientation in ErFeO3 single crystal. Appl. Phys. Lett., 2013, 103(19): 192404
CrossRef ADS Google scholar
[35]
A.BombikA. W. Pacyna, AC susceptibility of TmFeO3 single-crystal, J. Magn. Magn. Mater. 220(1), 18 (2000)
[36]
G. B. Song, J. J. Jiang, B. J. Kang, J. C. Zhang, Z. X. Cheng, G. H. Ma, S. X. Cao. Spin reorientation transition process in single crystal NdFeO3. Solid State Commun., 2015, 211: 47
CrossRef ADS Google scholar
[37]
K. A. GschneidnerJr, V. K. Pecharsky, A. O. Tsokol. Recent developments in magnetocaloric materials. Rep. Prog. Phys., 2005, 68(6): 1479
CrossRef ADS Google scholar
[38]
A. Arrott. Criterion for ferromagnetism from observations of magnetic isotherms. Phys. Rev., 1957, 108(6): 1394
CrossRef ADS Google scholar
[39]
J. Inoue, M. Shimizu. First- and second-order magnetic phase transitions in (R-Y)Co2 and R(Co-Al)2 (R = heavy rare-earth element) compounds. J. Phys. F Met. Phys., 1988, 18(11): 2487
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the research grant from the National Natural Science Foundation of China (NSFC) (Nos. 12074242 and 12204298) and the Science and Technology Commission of Shanghai Municipality (No. 21JC1402600).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(7667 KB)

Accesses

Citations

Detail

Sections
Recommended

/