Two-dimensional MXenes and their applications
Guangcun Shan, Zejian Ding, Yury Gogotsi
Two-dimensional MXenes and their applications
[1] |
M. Naguib , M. Kurtoglu , V. Presser , J. Lu , J. Niu , M. Heon , L. Hultman , Y. Gogotsi , M. W. Barsoum . Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 2011, 23(37): 4248
CrossRef
ADS
Google scholar
|
[2] |
M. Anayee , N. Kurra , M. Alhabeb , M. Seredych , M. N. Hedhili , A. Emwas , H. N. Alshareef , B. Anasori , Y. Gogotsi . Role of acid mixtures etching on the surface chemistry and sodium ion storage in Ti3C2Tx MXene. Chem. Commun. (Camb.), 2020, 56(45): 6090
CrossRef
ADS
Google scholar
|
[3] |
A. VahidMohammadi , J. Rosen , Y. Gogotsi . The world of two-dimensional carbides and nitrides (MXenes). Science, 2021, 372: eabf1581
CrossRef
ADS
Google scholar
|
[4] |
J. Zhang , Z. Cui , J. Liu , C. Li , H. Tan , G. Shan , R. Ma . Bifunctional oxygen electrocatalysts for rechargeable zinc−air battery based on MXene and beyond. Front. Phys., 2023, 18(1): 13603
CrossRef
ADS
Google scholar
|
[5] |
B. Liu , L. Qian , Y. Zhao , Y. Zhang , F. Liu , Y. Zhang , Y. Xie , W. Shi . A polarization-sensitive, self-powered, broadband and fast Ti3C2Tx MXene photodetector from visible to near-infrared driven by photogalvanic effects. Front. Phys., 2022, 17(5): 53501
CrossRef
ADS
Google scholar
|
[6] |
R. Qin , G. Shan , M. Hu , W. Huang . Two-dimensional transition metal carbides and/or nitrides (MXenes) and their applications in sensors. Mater. Today Phys., 2021, 21: 100527
CrossRef
ADS
Google scholar
|
[7] |
H. Kim , H. N. Alshareef . MXetronics: MXene-enabled electronic and photonic devices. ACS Mater. Lett., 2020, 2: 55
CrossRef
ADS
Google scholar
|
[8] |
M. Hu , N. Zhang , G. Shan , J. Gao , J. Liu , R. K. Y. Li . Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber. Front. Phys., 2018, 13(4): 138113
CrossRef
ADS
Google scholar
|
[9] |
Q. Liao , H. Liu , Z. Chen , Y. Zhang , R. Xiong , Z. Cui , C. Wen , B. Sa . Flexible and ultrathin dopamine modified MXene and cellulose nanofiber composite films with alternating multilayer structure for superior electromagnetic interference shielding performance. Front. Phys., 2023, 18(3): 33300
CrossRef
ADS
Google scholar
|
[10] |
K. S. Novoselov , D. Andreeva , W. Ren , G. Shan . Graphene and other two-dimensional materials. Front. Phys., 2019, 14(1): 13301
CrossRef
ADS
Google scholar
|
[11] |
G. Gao , G. Ding , J. Li , K. Yao , M. Wu , M. Qian . Monolayer MXenes: Promising half-metals and spin gapless semiconductors. Nanoscale, 2016, 8(16): 8986
CrossRef
ADS
Google scholar
|
[12] |
N. Frey , A. Bandyopadhyay , H. Kumar , B. Anasori , Y. Gogotsi , V. Shenoy . Surface engineered MXenes: Electric field control of magnetism and enhanced magnetic anisotropy. ACS Nano, 2019, 13(3): 2831
CrossRef
ADS
Google scholar
|
[13] |
M. Zhao , J. Chen , S. S. Wang , M. An , S. Dong . Multiferroic properties of oxygen-functionalized magnetic i-MXene. Phys. Rev. Mater., 2021, 5(9): 094408
CrossRef
ADS
Google scholar
|
[14] |
K. Hantanasirisakul , B. Anasori , S. Nemsak , J. L. Hart , J. Wu , Y. Yang , R. V. Chopdekar , P. Shafer , A. F. May , E. J. Moon , J. Zhou , Q. Zhang , M. L. Taheri , S. J. May , Y. Gogotsi . Evidence of magnetic transition in atomically thin Cr2TiC2Tx MXene. Nanoscale Horiz., 2020, 5(12): 1557
CrossRef
ADS
Google scholar
|
[15] |
Y. Zhang , Z. Cui , B. Sa , N. Miao , J. Zhou , Z. Sun . Computational design of double transition metal MXenes with intrinsic magnetic properties. Nanoscale Horiz., 2022, 7(3): 276
CrossRef
ADS
Google scholar
|
[16] |
V. Kamysbayev , A. S. Filatov , H. Hu , X. Rui , F. Lagunas , D. Wang , R. F. Klie , D. V. Talapin . Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science, 2020, 369(6506): 979
CrossRef
ADS
Google scholar
|
[17] |
X. Zhang , P. Gong , F. Liu , K. Yao , J. Wu , S. Zhu . High efficiency giant magnetoresistive device based on two-dimensional MXene (Mn2NO2). Front. Phys., 2022, 17(5): 53510
CrossRef
ADS
Google scholar
|
[18] |
K.S. NovoselovA.MishchenkoA.CarvalhoA.H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)
|
[19] |
Z. Yan , Z. H. Jiang , J. P. Lu , Z. H. Ni . Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure. Front. Phys., 2018, 13(4): 138115
CrossRef
ADS
Google scholar
|
[20] |
J. K. El-Demellawi , S. Lopatin , J. Yin , O. F. Mohammed , H. N. Alshareef . Tunable multipolar surface plasmons in 2D Ti3C2Tx MXene flakes. ACS Nano, 2018, 12(8): 8485
CrossRef
ADS
Google scholar
|
[21] |
G. Kyriakou , M. B. Boucher , A. D. Jewell , E. A. Lewis , T. J. Lawton , A. E. Baber , H. L. Tierney , M. Flyzani-Stephanopoulos , E. C. H. Sykes . Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science, 2012, 335(6073): 1209
CrossRef
ADS
Google scholar
|
[22] |
M. Ono , M. Hata , M. Tsunekawa , K. Nozaki , H. Sumikura , H. Chiba , M. Notomi . Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat. Photonics, 2020, 14(1): 37
CrossRef
ADS
Google scholar
|
[23] |
Y. Zhang , F. Zhang , B. Du , H. Chen , S. Wageh , O. A. Al-Hartomy , A. G. Al-Sehemi , B. Zhang , H. Zhang . Au/MXene based ultrafast all-optical switching. Front. Phys., 2023, 18(3): 33301
CrossRef
ADS
Google scholar
|
[24] |
X. Li , G. Shan , R. Ma , C. H. Shek , H. Zhao , S. Ramakrishna . Bioinspired mineral MXene hydrogels for tensile strain sensing and radionuclide adsorption applications. Front. Phys., 2022, 17(6): 63501
CrossRef
ADS
Google scholar
|
[25] |
R. Qin , M. Hu , X. Li , L. Yan , C. Wu , J. Liu , H. Gao , G. Shan , W. Huang . A highly sensitive piezoresistive sensor based on MXene and polyvinyl butyral with a wide detection limit and low power consumption. Nanoscale, 2020, 12(34): 17715
CrossRef
ADS
Google scholar
|
[26] |
L. Zhang , J. He , Y. Liao , X. Zeng , N. Qiu , Y. Liang , P. Xiao , T. Chen . A self-protective, reproducible textile sensor with high performance towards human–machine interactions. J. Mater. Chem. A, 2019, 7(46): 26631
CrossRef
ADS
Google scholar
|
[27] |
Z. Zhu , D. W. H. Ng , H. S. Park , M. C. McAlpine . 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat. Rev. Mater., 2020, 6(1): 27
CrossRef
ADS
Google scholar
|
[28] |
R.QinG.C. ShanX.LiJ.C. LiS.Ramakrishna, MXene-based flexible and wearable electronics for personal healthcare monitoring, in: International Conference on Frontier Materials 2022 (2022), doi: icfm.2022.5.29/14.10.D03
|
[29] |
Y. Gogotsi , Q. Huang . MXenes: Two-dimensional building blocks for future materials and devices. ACS Nano, 2021, 15(4): 5775
CrossRef
ADS
Google scholar
|
[30] |
B. Anasori , Y. Gogotsi . MXenes: Trends, growth, and future directions. Graphene and 2D Mater., 2022, 7: 75
CrossRef
ADS
Google scholar
|
[31] |
P. P. Michałowski , M. Anayee , T. S. Mathis , S. Kozdra , A. Wójcik , K. Hantanasirisakul , I. Jóźwik , A. Piatkowska , M. Możdżonek , A. Malinowska , R. Diduszko , E. Wierzbicka , Y. Gogotsi . Oxycarbide MXenes and MAX phases identification using monoatomic layer-by-layer analysis with ultralow-energy secondary-ion mass spectrometry. Nat. Nanotechnol., 2022, 17(11): 1192
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |