Bifunctional oxygen electrocatalysts for rechargeable zinc−air battery based on MXene and beyond

Jing Zhang, Zixiang Cui, Jie Liu, Chunjie Li, Haoyi Tan, Guangcun Shan, Ruguang Ma

PDF(9734 KB)
PDF(9734 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (1) : 13603. DOI: 10.1007/s11467-022-1208-8
TOPICAL REVIEW
TOPICAL REVIEW

Bifunctional oxygen electrocatalysts for rechargeable zinc−air battery based on MXene and beyond

Author information +
History +

Abstract

Oxygen electrocatalysts are of great importance for the air electrode in zinc–air batteries (ZABs). Owing to large surface area, high electrical conductivity and ease of modification, two-dimensional (2D) materials have been widely studied as oxygen electrocatalysts for the rechargable ZABs. The elaborately modified 2D materials-based electrocatalysts, usually exhibit excellent performance toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which have attracted extensive interests of worldwide researchers. Given the rapid development of bifunctional electrocatalysts toward ORR and OER, the latest progress of non-noble electrocatalysts based on layered double hydroxides (LDHs), graphene, and MXenes are intensively reviewed. The discussion ranges from fundamental structure, synthesis, electrocatalytic performance of these catalysts, as well as their applications in the rechargeable ZABs. Finally, the challenges and outlook are provided for further advancing the commercialization of rechargeable ZABs.

Graphical abstract

Keywords

MXenes / oxygen reduction reaction / oxygen evolution reaction / electrocatalysts / zinc–air battery

Cite this article

Download citation ▾
Jing Zhang, Zixiang Cui, Jie Liu, Chunjie Li, Haoyi Tan, Guangcun Shan, Ruguang Ma. Bifunctional oxygen electrocatalysts for rechargeable zinc−air battery based on MXene and beyond. Front. Phys., 2023, 18(1): 13603 https://doi.org/10.1007/s11467-022-1208-8

References

[1]
J. Han, H. Chang. Development and opportunities of clean energy in China. Appl. Sci. (Basel), 2022, 12(9): 4783
CrossRef ADS Google scholar
[2]
L. S. Martins, L. F. Guimarães, A. B. Botelho Junior, J. A. S. Tenório, D. C. R. Espinosa. Electric car battery: An overview on global demand, recycling and future approaches towards sustainability. J. Environ. Manage., 2021, 295: 113091
CrossRef ADS Google scholar
[3]
N. O. Moraga, J. P. Xamán, R. H. Araya. Cooling Li-ion batteries of racing solar car by using multiple phase change materials. Appl. Therm. Eng., 2016, 108: 1041
CrossRef ADS Google scholar
[4]
D. A. Notter, M. Gauch, R. Widmer, P. Wäger, A. Stamp, R. Zah, H. J. Althaus. Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ. Sci. Technol., 2010, 44(17): 6550
CrossRef ADS Google scholar
[5]
X. Zeng, J. Li, L. Liu. Solving spent lithium-ion battery problems in China: Opportunities and challenges. Renew. Sustain. Energy Rev., 2015, 52: 1759
CrossRef ADS Google scholar
[6]
H. Jiao, S. Jiao, W. L. Song, X. Xiao, D. She, N. Li, H. Chen, J. Tu, M. Wang, D. Fang. Al homogeneous deposition induced by N-containing functional groups for enhanced cycling stability of Al-ion battery negative electrode. Nano Res., 2021, 14(3): 646
CrossRef ADS Google scholar
[7]
J. Li, Z. Kong, X. Liu, B. Zheng, Q. H. Fan, E. Garratt, T. Schuelke, K. Wang, H. Xu, H. Jin. Strategies to anode protection in lithium metal battery: A review. InfoMat, 2021, 3(12): 1333
CrossRef ADS Google scholar
[8]
S. Chen, Z. Gao, T. Sun. Safety challenges and safety measures of Li-ion batteries. Energy Sci. Eng., 2021, 9(9): 1647
CrossRef ADS Google scholar
[9]
D. P. Finegan, J. Zhu, X. Feng, M. Keyser, M. Ulmefors, W. Li, M. Z. Bazant, S. J. Cooper. The application of data-driven methods and physics-based learning for improving battery safety. Joule, 2021, 5(2): 316
CrossRef ADS Google scholar
[10]
B. Xu, J. Lee, D. Kwon, L. Kong, M. Pecht. Mitigation strategies for Li-ion battery thermal runaway: A review. Renew. Sustain. Energy Rev., 2021, 150: 111437
CrossRef ADS Google scholar
[11]
M. Abbas, I. Cho, J. Kim. Scalable constrained attributes/issues about risk, reliability and optimization in large scale battery pack. J. Energy Storage, 2021, 39: 102632
CrossRef ADS Google scholar
[12]
G. Kovachev, A. Astner, G. Gstrein, L. Aiello, J. Hemmer, W. Sinz, C. Ellersdorfer. Thermal conductivity in aged Li-ion cells under various compression conditions and state-of-charge. Batteries, 2021, 7(3): 42
CrossRef ADS Google scholar
[13]
H. Liu, Q. Liu, Y. Wang, Y. Wang, S. Chou, Z. Hu, Z. Zhang. Bifunctional carbon-based cathode catalysts for zinc-air battery: A review. Chin. Chem. Lett., 2022, 33(2): 683
CrossRef ADS Google scholar
[14]
W. Li, W. Chen, H. Zhang, Z. Zhang. Integratable solid-state zinc−air battery with extended cycle life inspired by bionics. Chem. Eng. J., 2022, 435: 134900
CrossRef ADS Google scholar
[15]
A. R. Mainar, E. Iruin, J. A. Blázquez. High performance secondary zinc-air/silver hybrid battery. J. Energy Storage, 2021, 33: 102103
CrossRef ADS Google scholar
[16]
S. Wang, S. Chen, L. Ma, J. A. Zapien. Recent progress in cobalt-based carbon materials as oxygen electrocatalysts for zinc−air battery applications. Mater. Today Energy, 2021, 20: 100659
CrossRef ADS Google scholar
[17]
J. Zhou, L. Shan, Z. Wu, X. Guo, G. Fang, S. Liang. Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode. Chem. Commun., 2018, 54: 4457
CrossRef ADS Google scholar
[18]
K. Jayasayee, S. Clark, C. King, P. I. Dahl, J. Richard Tolchard, M. Juel. Cold sintering as a cost-effective process to manufacture porous zinc electrodes for rechargeable zinc-air batteries. Processes (Basel), 2020, 8(5): 592
CrossRef ADS Google scholar
[19]
S. Han, Y. Chen, Y. Hao, Y. Xie, D. Xie, Y. Chen, Y. Xiong, Z. He, F. Hu, L. Li, J. Zhu, S. Peng. Multi-dimensional hierarchical CoS2@MXene as trifunctional electrocatalysts for zinc-air batteries and overall water splitting. Sci. China Mater., 2021, 64(5): 1127
CrossRef ADS Google scholar
[20]
J. Huang, Y. Xie, L. Yan, B. Wang, T. Kong, X. Dong, Y. Wang, Y. Xia. Decoupled amphoteric water electrolysis and its integration with Mn–Zn battery for flexible utilization of renewables. Energy Environ. Sci., 2021, 14(2): 883
CrossRef ADS Google scholar
[21]
C. Zhou, X. Chen, S. Liu, Y. Han, H. Meng, Q. Jiang, S. Zhao, F. Wei, J. Sun, T. Tan, R. Zhang. Superdurable bifunctional oxygen electrocatalyst for high-performance zinc–air batteries. J. Am. Chem. Soc., 2022, 144(6): 2694
CrossRef ADS Google scholar
[22]
C. Han, W. Li, H. K. Liu, S. Dou, J. Wang. Design strategies for developing non-precious metal based bi-functional catalysts for alkaline electrolyte based zinc–air batteries. Mater. Horiz., 2019, 6(9): 1812
CrossRef ADS Google scholar
[23]
Z. Chen, J. Y. Choi, H. Wang, H. Li, Z. Chen. Highly durable and active non-precious air cathode catalyst for zinc air battery. J. Power Sources, 2011, 196(7): 3673
CrossRef ADS Google scholar
[24]
N. Wang, S. Ning, X. Yu, D. Chen, Z. Li, J. Xu, H. Meng, D. Zhao, L. Li, Q. Liu, B. Lu, S. Chen. Graphene composites with Ru-RuO2 heterostructures: Highly efficient Mott–Schottky-type electrocatalysts for pH-universal water splitting and flexible zinc–air batteries. Appl. Catal. B, 2022, 302: 120838
CrossRef ADS Google scholar
[25]
Q. Zhu, Y. Qu, D. Liu, K. W. Ng, H. Pan. Two-dimensional layered materials: High-efficient electrocatalysts for hydrogen evolution reaction. ACS Appl. Nano Mater., 2020, 3(7): 6270
CrossRef ADS Google scholar
[26]
L. Yu, F. Li, J. Zhao, Z. Chen. Revisiting catalytic performance of supported metal dimers for oxygen reduction reaction via magnetic coupling from first principles. Adv. Powder Mater., 2022, 1(3): 100031
CrossRef ADS Google scholar
[27]
C. Xia, Y. Zhou, C. He, A. I. Douka, W. Guo, K. Qi, B. Y. Xia. Recent advances on electrospun nanomaterials for zinc–air batteries. Small Sci., 2021, 1(9): 2100010
CrossRef ADS Google scholar
[28]
Z. Zhang, H. Zhang, Y. Yao, J. Wang, H. Guo, Y. Deng, X. Han. Controlled synthesis and structure engineering of transition metal-based nanomaterials for oxygen and hydrogen electrocatalysis in zinc-air battery and water-splitting devices. ChemSusChem, 2021, 14(7): 1659
CrossRef ADS Google scholar
[29]
Z. Zhang, Y. Tan, T. Zeng, L. Yu, R. Chen, N. Cheng, S. Mu, X. Sun. Tuning the dual-active sites of ZIF-67 derived porous nanomaterials for boosting oxygen catalysis and rechargeable Zn−air batteries. Nano Res., 2021, 14(7): 2353
CrossRef ADS Google scholar
[30]
D. Ren, J. Ying, M. Xiao, Y. P. Deng, J. Ou, J. Zhu, G. Liu, Y. Pei, S. Li, A. M. Jauhar, H. Jin, S. Wang, D. Su, A. Yu, Z. Chen. Hierarchically porous multimetal-based carbon nanorod hybrid as an efficient oxygen catalyst for rechargeable zinc–air batteries. Adv. Funct. Mater., 2020, 30(7): 1908167
CrossRef ADS Google scholar
[31]
H. Sun, M. Wang, S. Zhang, S. Liu, X. Shen, T. Qian, X. Niu, J. Xiong, C. Yan. Boosting oxygen dissociation over bimetal sites to facilitate oxygen reduction activity of zinc−air battery. Adv. Funct. Mater., 2021, 31(4): 2006533
CrossRef ADS Google scholar
[32]
X. Zhong, S. Ye, J. Tang, Y. Zhu, D. Wu, M. Gu, H. Pan, B. Xu. Engineering Pt and Fe dual-metal single atoms anchored on nitrogen-doped carbon with high activity and durability towards oxygen reduction reaction for zinc−air battery. Appl. Catal. B, 2021, 286: 119891
CrossRef ADS Google scholar
[33]
J.HanH. BaoJ.Q. WangL.ZhengS.Sun Z.L. WangC. Sun, 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc−air battery, Appl. Catal. B 280, 119411 (2021)
[34]
X. Han, T. Zhang, W. Chen, B. Dong, G. Meng, L. Zheng, C. Yang, X. Sun, Z. Zhuang, D. Wang, A. Han, J. Liu. Mn-N 4 oxygen reduction electrocatalyst: Operando investigation of active sites and high performance in zinc–air battery. Adv. Energy Mater., 2021, 11(6): 2002753
CrossRef ADS Google scholar
[35]
W. Wu, Y. Liu, D. Liu, W. Chen, Z. Song, X. Wang, Y. Zheng, N. Lu, C. Wang, J. Mao, Y. Li. Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc−air battery. Nano Res., 2021, 14(4): 998
CrossRef ADS Google scholar
[36]
J. Zhang, Q. Zhou, Y. Tang, L. Zhang, Y. Li. Zinc–air batteries: are they ready for prime time. Chem. Sci. (Camb. ), 2019, 10(39): 8924
CrossRef ADS Google scholar
[37]
M. Wu, Y. Wang, Z. Wei, L. Wang, M. Zhuo, J. Zhang, X. Han, J. Ma. Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc–air batteries. J. Mater. Chem. A, 2018, 6(23): 10918
CrossRef ADS Google scholar
[38]
Y. Zheng, Y. Jiao, Y. Zhu, Q. Cai, A. Vasileff, L. H. Li, Y. Han, Y. Chen, S. Z. Qiao. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc., 2017, 139(9): 3336
CrossRef ADS Google scholar
[39]
C. Han, W. Li, H. K. Liu, S. Dou, J. Wang. Design strategies for developing non-precious metal based bi-functional catalysts for alkaline electrolyte based zinc–air batteries. Mater. Horiz., 2019, 6(9): 1812
CrossRef ADS Google scholar
[40]
X. Cai, L. Lai, J. Lin, Z. Shen. Recent advances in air electrodes for Zn–air batteries: Electrocatalysis and structural design. Mater. Horiz., 2017, 4(6): 945
CrossRef ADS Google scholar
[41]
Y. Li, H. Dai. Recent advances in zinc–air batteries. Chem. Soc. Rev., 2014, 43(15): 5257
CrossRef ADS Google scholar
[42]
Y. Zhu, K. Yue, C. Xia, S. Zaman, H. Yang, X. Wang, Y. Yan, B. Y. Xia. Recent advances on MoF derivatives for non-noble metal oxygen electrocatalysts in zinc−air batteries. Nano-Micro Lett., 2021, 13(1): 137
CrossRef ADS Google scholar
[43]
M. Shao, Q. Chang, J. P. Dodelet, R. Chenitz. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev., 2016, 116(6): 3594
CrossRef ADS Google scholar
[44]
T. Reier, M. Oezaslan, P. Strasser, Electrocatalytic oxygen evolution reaction (OER) on Ru. Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catal., 2012, 2(8): 1765
CrossRef ADS Google scholar
[45]
S. Huang, J. Zhu, J. Tian, Z. Niu. Recent progress in the electrolytes of aqueous zinc-ion batteries. Chemistry, 2019, 25(64): 14480
CrossRef ADS Google scholar
[46]
J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng, S. Zhang, G. Bo, C. Wang, Z. Guo. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater., 2020, 30(30): 2001263
CrossRef ADS Google scholar
[47]
Y. Zhang, G. Yang, M. L. Lehmann, C. Wu, L. Zhao, T. Saito, Y. Liang, J. Nanda, Y. Yao. Separator effect on zinc electrodeposition behavior and its implication for zinc battery lifetime. Nano Lett., 2021, 21(24): 10446
CrossRef ADS Google scholar
[48]
R. Qin, G. Shan, M. Hu, W. Huang. Two-dimensional transition metal carbides and/or nitrides (MXenes) and their applications in sensors. Mater. Today Physics, 2021, 21: 100527
CrossRef ADS Google scholar
[49]
K.LiM.Liang H.WangX. WangY.HuangJ.CoelhoS.Pinilla Y.ZhangF. QiV.NicolosiY.Xu, 3D MXene architectures for efficient energy storage and conversion, Adv. Funct. Mater. 30(47), 2000842 (2020)
[50]
J. Wang, C. F. Du, Y. Xue, X. Tan, J. Kang, Y. Gao, H. Yu, Q. Yan. MXenes as a versatile platform for reactive surface modification and superior sodium-ion storages. Exploration, 2021, 1(2): 20210024
CrossRef ADS Google scholar
[51]
K.LiM.Liang H.WangX. WangY.HuangJ.CoelhoS.Pinilla Y.ZhangF. QiV.NicolosiY.Xu, 3D MXene architectures for efficient energy storage and conversion, Adv. Funct. Mater. 30(47), 2000842 (2020)
[52]
X. Zhang, J. Xu, H. Wang, J. Zhang, H. Yan, B. Pan, J. Zhou, Y. Xie. Ultrathin nanosheets of MAX phases with enhanced thermal and mechanical properties in polymeric compositions: Ti3Si0.75Al0.25C2. Angew. Chem. Int. Ed., 2013, 52(16): 4361
CrossRef ADS Google scholar
[53]
J. Halim, M. R. Lukatskaya, K. M. Cook, J. Lu, C. R. Smith, L. A. Näslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, M. W. Barsoum. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater., 2014, 26(7): 2374
CrossRef ADS Google scholar
[54]
C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo, N. Kang, X. L. Ma, H. M. Cheng, W. Ren. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater., 2015, 14(11): 1135
CrossRef ADS Google scholar
[55]
Y. Wang, F. Gu, L. Cao, L. Fan, T. Hou, Q. Zhu, Y. Wu, S. Xiong. TiCN MXene hybrid BCN nanotubes with trace level Co as an efficient ORR electrocatalyst for Zn-air batteries. Int. J. Hydrogen Energy, 2022, 47(48): 20894
CrossRef ADS Google scholar
[56]
X. Hui, P. Zhang, Z. Wang, D. Zhao, Z. Li, Z. Zhang, C. Wang, L. Yin. Vacancy defect-rich perovskite SrTiO3/Ti3C2 heterostructures in situ derived from Ti3C2 MXenes with exceptional oxygen catalytic activity for advanced Zn–air batteries. ACS Appl. Energy Mater., 2022, 5(5): 6100
CrossRef ADS Google scholar
[57]
C.ZhangH. DongB.ChenT.JinJ.Nie G.Ma, 3D MXene anchored carbon nanotube as bifunctional and durable oxygen catalysts for Zn−air batteries, Carbon 185, 17 (2021)
[58]
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 2011, 23(37): 4248
CrossRef ADS Google scholar
[59]
W.ZamanR. A. MatsumotoM.W. ThompsonY.H. LiuY.Bootwala M.B. DixitS. NemsakE.CrumlinM.C. HatzellP.T. CummingsK.B. Hatzell, In situ investigation of water on MXene interfaces, Proc. Natl. Acad. Sci. USA 118(49), e2108325118 (2021)
[60]
T. Zhou, C. Wu, Y. Wang, A. P. Tomsia, M. Li, E. Saiz, S. Fang, R. H. Baughman, L. Jiang, Q. Cheng. Super-tough MXene-functionalized graphene sheets. Nat. Commun., 2020, 11(1): 2077
CrossRef ADS Google scholar
[61]
R.QinM. HuX.LiT.LiangH.Tan J.LiuG. Shan, A new strategy for the fabrication of a flexible and highly sensitive capacitive pressure sensor, Microsyst. Nanoeng. 7(1), 100 (2021)
[62]
T. Y. Ma, J. L. Cao, M. Jaroniec, S. Z. Qiao. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem. Int. Ed., 2016, 55(3): 1138
CrossRef ADS Google scholar
[63]
G. L. Li, S. Cao, Z. F. Lu, X. Wang, Y. Yan, C. Hao. FePc nanoclusters modified NiCo layered double hydroxides in parallel with Ti3C2 MXene as a highly efficient and durable bifunctional oxygen electrocatalyst for zinc−air batteries. Appl. Surf. Sci., 2022, 591: 153142
CrossRef ADS Google scholar
[64]
B. Wei, Z. Fu, D. Legut, T. C. Germann, S. Du, H. Zhang, J. S. Francisco, R. Zhang. Rational design of highly stable and active MXene-based bifunctional ORR/OER double-atom catalysts. Adv. Mater., 2021, 33(40): 2102595
CrossRef ADS Google scholar
[65]
H. Zong, W. Liu, M. Li, S. Gong, K. Yu, Z. Zhu. Oxygen-terminated Nb2CO2 MXene with interfacial self-assembled COF as a bifunctional catalyst for durable zinc–air batteries. ACS Appl. Mater. Interfaces, 2022, 14(8): 10738
CrossRef ADS Google scholar
[66]
X. Han, N. Li, P. Xiong, M. G. Jung, Y. Kang, Q. Dou, Q. Liu, J. Y. Lee, H. S. Park. Electronically coupled layered double hydroxide/ MXene quantum dot metallic hybrids for high-performance flexible zinc–air batteries. InfoMat, 2021, 3(10): 1134
CrossRef ADS Google scholar
[67]
Y.ChenH. YaoF.KongH.TianG.Meng S.WangX. MaoX.CuiX.HouJ.Shi, V2C MXene synergistically coupling FeNi LDH nanosheets for boosting oxygen evolution reaction, Appl. Catal. B 297, 120474 (2021)
[68]
M. Faraji, N. Arianpouya. NiCoFe-layered double hydroxides/MXene/N-doped carbon nanotube composite as a high performance bifunctional catalyst for oxygen electrocatalytic reactions in metal−air batteries. J. Electroanal. Chem. (Lausanne), 2021, 901: 115797
CrossRef ADS Google scholar
[69]
H. Lei, S. Tan, L. Ma, Y. Liu, Y. Liang, M. S. Javed, Z. Wang, Z. Zhu, W. Mai. Strongly coupled NiCo2O4 nanocrystal/MXene hybrid through in situ Ni/Co–F bonds for efficient wearable Zn–air batteries. ACS Appl. Mater. Interfaces, 2020, 12(40): 44639
CrossRef ADS Google scholar
[70]
Y. Lu, D. Fan, Z. Chen, W. Xiao, C. Cao, X. Yang. Anchoring Co3O4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution. Sci. Bull. (Beijing), 2020, 65(6): 460
CrossRef ADS Google scholar
[71]
L. He, J. Liu, Y. Liu, B. Cui, B. Hu, M. Wang, K. Tian, Y. Song, S. Wu, Z. Zhang, Z. Peng, M. Du. Titanium dioxide encapsulated carbon−nitride nanosheets derived from MXene and melamine-cyanuric acid composite as a multifunctional electrocatalyst for hydrogen and oxygen evolution reaction and oxygen reduction reaction. Appl. Catal. B, 2019, 248: 366
CrossRef ADS Google scholar
[72]
A. Fasolino, J. H. Los, M. I. Katsnelson. Intrinsic ripples in graphene. Nat. Mater., 2007, 6(11): 858
CrossRef ADS Google scholar
[73]
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau. Superior thermal conductivity of single-layer graphene. Nano Lett., 2008, 8(3): 902
CrossRef ADS Google scholar
[74]
I. Y. Jeon, M. J. Ju, J. Xu, H. J. Choi, J. M. Seo, M. J. Kim, I. T. Choi, H. M. Kim, J. C. Kim, J. J. Lee, H. K. Liu, H. K. Kim, S. Dou, L. Dai, J. B. Baek. Edge-fluorinated graphene nanoplatelets as high performance electrodes for dye-sensitized solar cells and lithium ion batteries. Adv. Funct. Mater., 2015, 25(8): 1170
CrossRef ADS Google scholar
[75]
Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C. L. Brown, X. Yao. Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater., 2016, 28(43): 9532
CrossRef ADS Google scholar
[76]
Y. Zhang, X. P. Kong, X. Lin, K. Hu, W. Zhao, G. Xie, X. Lin, X. Liu, Y. Ito, H. J. Qiu. Enhanced bifunctional catalytic activities of N-doped graphene by Ni in a 3D trimodal nanoporous nanotubular network and its ultralong cycling performance in Zn-air batteries. J. Energy Chem., 2022, 66: 466
CrossRef ADS Google scholar
[77]
C. Wang, H. Zhao, J. Wang, Z. Zhao, M. Cheng, X. Duan, Q. Zhang, J. Wang, J. Wang. Atomic Fe hetero-layered coordination between g-C3N4 and graphene nanomeshes enhances the ORR electrocatalytic performance of zinc–air batteries. J. Mater. Chem. A, 2019, 7(4): 1451
CrossRef ADS Google scholar
[78]
C. Wang, Z. Li, L. Wang, X. Niu, S. Wang. Facile synthesis of 3D Fe/N codoped mesoporous graphene as efficient bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries. ACS Sustain. Chem. & Eng., 2019, 7(16): 13873
CrossRef ADS Google scholar
[79]
Z.WangX. LiaoZ.LinF.HuangY.Jiang K.A. OwusuL. XuZ.LiuJ.LiY.Zhao Y.B. ChengL. Mai, 3D nitrogen-doped graphene encapsulated metallic nickel-iron alloy nanoparticles for efficient bifunctional oxygen electrocatalysis, Chemistry 26(18), 3896 (2020)
[80]
L. Qin, L. Wang, X. Yang, R. Ding, Z. Zheng, X. Chen, B. Lv. Synergistic enhancement of oxygen reduction reaction with BC3 and graphitic-N in boron- and nitrogen-codoped porous graphene. J. Catal., 2018, 359: 242
CrossRef ADS Google scholar
[81]
L. L. Tian, J. Yang, M. Y. Weng, R. Tan, J. X. Zheng, H. B. Chen, Q. C. Zhuang, L. M. Dai, F. Pan. Fast diffusion of O2 on nitrogen-doped graphene to enhance oxygen reduction and its application for high-rate Zn–air batteries. ACS Appl. Mater. Interfaces, 2017, 9(8): 7125
CrossRef ADS Google scholar
[82]
J. Zhang, H. Zhou, J. Zhu, P. Hu, C. Hang, J. Yang, T. Peng, S. Mu, Y. Huang. Facile synthesis of defect-rich and S/N Co-doped graphene-like carbon nanosheets as an efficient electrocatalyst for primary and all-solid-state Zn–air batteries. ACS Appl. Mater. Interfaces, 2017, 9(29): 24545
CrossRef ADS Google scholar
[83]
S. Wu, D. Deng, E. Zhang, H. Li, L. Xu. CoN nanoparticles anchored on ultra-thin N-doped graphene as the oxygen reduction electrocatalyst for highly stable zinc-air batteries. Carbon, 2022, 196: 347
CrossRef ADS Google scholar
[84]
X. Zhang, Z. Yang, Z. Lu, W. Wang. Bifunctional CoNx embedded graphene electrocatalysts for OER and ORR: A theoretical evaluation. Carbon, 2018, 130: 112
CrossRef ADS Google scholar
[85]
G. Fu, X. Yan, Y. Chen, L. Xu, D. Sun, J. M. Lee, Y. Tang. Boosting bifunctional oxygen electrocatalysis with 3D graphene aerogel-supported Ni/MnO particles. Adv. Mater., 2018, 30(5): 1704609
CrossRef ADS Google scholar
[86]
L. Wei, H. E. Karahan, S. Zhai, H. Liu, X. Chen, Z. Zhou, Y. Lei, Z. Liu, Y. Chen. Amorphous bimetallic oxide–graphene hybrids as bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries. Adv. Mater., 2017, 29(38): 1701410
CrossRef ADS Google scholar
[87]
Z.WangX. LiaoZ.LinF.HuangY.Jiang K.A. OwusuL. XuZ.LiuJ.LiY.Zhao Y.B. ChengL. Mai, 3D nitrogen-doped graphene encapsulated metallic nickel–iron alloy nanoparticles for efficient bifunctional oxygen electrocatalysis, Chem. 26(18), 4044 (2020)
[88]
Y. Liu, J. Bao, Z. Li, L. Zhang, S. Zhang, L. Wang, X. Niu, P. Sun, L. Xu. Large-scale defect-rich iron/nitrogen co-doped graphene-based materials as the excellent bifunctional electrocatalyst for liquid and flexible all-solid-state zinc−air batteries. J. Colloid Interface Sci., 2022, 607: 1201
CrossRef ADS Google scholar
[89]
X. Wang, G. Zhan, Y. Wang, Y. Zhang, J. Zhou, R. Xu, H. Gai, H. Wang, H. Jiang, M. Huang. Engineering core–shell Co9S8/Co nanoparticles on reduced graphene oxide: Efficient bifunctional Mott–Schottky electrocatalysts in neutral rechargeable Zn–air batteries. J. Energy Chem., 2022, 68: 113
CrossRef ADS Google scholar
[90]
X. Shu, M. Yang, M. Liu, W. Pan, J. Zhang. The regulation of coordination structure between cobalt and nitrogen on graphene for efficient bifunctional electrocatalysis in Zn−air batteries. J. Energy Chem., 2022, 68: 213
CrossRef ADS Google scholar
[91]
Y. Xiang, C. Xu, T. Fu, Y. Tang, G. Li, Z. Xiong, C. Guo, Y. Si. Enhanced bifunctional catalytic performance of nitrogen-doped carbon composite to oxygen reduction and evolution reactions with the regulation of graphene for rechargeable Zn−air batteries. Appl. Surf. Sci., 2022, 575: 151730
CrossRef ADS Google scholar
[92]
T. Wang, J. Feng, Q. Liu, X. Han, D. Wu. Facile synthesis of amino acids-derived Fe/N-codoped reduced graphene oxide for enhanced ORR electrocatalyst. J. Electroanal. Chem. (Lausanne), 2022, 915: 116326
CrossRef ADS Google scholar
[93]
Y. Tian, L. Xu, M. Li, D. Yuan, X. Liu, J. Qian, Y. Dou, J. Qiu, S. Zhang. Interface engineering of CoS/CoO@N-doped graphene nanocomposite for high-performance rechargeable Zn–air batteries. Nano-Micro Lett., 2021, 13(1): 3
CrossRef ADS Google scholar
[94]
A. Wang, C. Zhao, M. Yu, W. Wang. Trifunctional Co nanoparticle confined in defect-rich nitrogen-doped graphene for rechargeable Zn-air battery with a long lifetime. Appl. Catal. B, 2021, 281: 119514
CrossRef ADS Google scholar
[95]
Y. Wang, N. Xu, R. He, L. Peng, D. Cai, J. Qiao. Large-scale defect-engineering tailored tri-doped graphene as a metal-free bifunctional catalyst for superior electrocatalytic oxygen reaction in rechargeable Zn−air battery. Appl. Catal. B, 2021, 285: 119811
CrossRef ADS Google scholar
[96]
X.ZhaoL. ShaoZ.WangH.ChenH.Yang L.Zeng, In situ atomically dispersed Fe doped metal-organic framework on reduced graphene oxide as bifunctional electrocatalyst for Zn–air batteries, J. Mater. Chem. C 9(34), 11252 (2021)
[97]
Z. Zhu, J. Zhang, X. Peng, Y. Liu, T. Cen, Z. Ye, D. Yuan. Co3O4–NiCo2O4 hybrid nanoparticles anchored on N-doped reduced graphene oxide nanosheets as an efficient catalyst for Zn–air batteries. Energy Fuels, 2021, 35(5): 4550
CrossRef ADS Google scholar
[98]
X.ChenD. ChenG.LiC.GongY.Chen Q.ZhangJ. SuiH.DongJ.YuL.Yu L.Dong, A hierarchical architecture of Fe/Co/Ni-doped carbon nanotubes/nanospheres grafted on graphene as advanced bifunctional electrocatalyst for Zn−air batteries, J. Alloys Comp. 873, 159833 (2021)
[99]
Z. Zhu, Q. Xu, Z. Ni, K. Luo, Y. Liu, D. Yuan. CoNi nanoalloys @ N-doped graphene encapsulated in n-doped carbon nanotubes for rechargeable Zn–air batteries. ACS Sustain. Chem. & Eng., 2021, 9(40): 13491
CrossRef ADS Google scholar
[100]
Q. Wang, D. O’Hare. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev., 2012, 112(7): 4124
CrossRef ADS Google scholar
[101]
S. Li, R. Ma, J. Hu, Z. Li, L. Liu, X. Wang, Y. Lu, G. E. Sterbinsky, S. Liu, L. Zheng, J. Liu, D. Liu, J. Wang. Coordination environment tuning of nickel sites by oxyanions to optimize methanol electro-oxidation activity. Nat. Commun., 2022, 13(1): 2916
CrossRef ADS Google scholar
[102]
Y. Zhao, X. Zhang, X. Jia, G. I. N. Waterhouse, R. Shi, X. Zhang, F. Zhan, Y. Tao, L. Z. Wu, C. H. Tung, D. O’Hare, T. Zhang. Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation. Adv. Energy Mater., 2018, 8(18): 1703585
CrossRef ADS Google scholar
[103]
G. Chen, H. Wan, W. Ma, N. Zhang, Y. Cao, X. Liu, J. Wang, R. Ma. Layered metal hydroxides and their derivatives: Controllable synthesis, chemical exfoliation, and electrocatalytic applications. Adv. Energy Mater., 2020, 10(11): 1902535
CrossRef ADS Google scholar
[104]
K. Yan, G. Wu, W. Jin. Recent advances in the synthesis of layered, double-hydroxide-based materials and their applications in hydrogen and oxygen evolution. Energy Technol. (Weinheim), 2016, 4(3): 354
CrossRef ADS Google scholar
[105]
S. Dresp, F. Luo, R. Schmack, S. Kühl, M. Gliech, P. Strasser. An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes. Energy Environ. Sci., 2016, 9(6): 2020
CrossRef ADS Google scholar
[106]
C. Tang, H. S. Wang, H. F. Wang, Q. Zhang, G. L. Tian, J. Q. Nie, F. Wei. Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv. Mater., 2015, 27(30): 4516
CrossRef ADS Google scholar
[107]
M. Gong, Y. Li, H. Wang, Y. Liang, J. Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc., 2013, 135(23): 8452
CrossRef ADS Google scholar
[108]
M. Salmanion, M. M. Najafpour. Dendrimer-Ni-based material: Toward an efficient Ni–Fe layered double hydroxide for oxygen-evolution reaction. Inorg. Chem., 2021, 60(8): 6073
CrossRef ADS Google scholar
[109]
J. Zhang, L. Yu, Y. Chen, X. F. Lu, S. Gao, X. W. D. Lou. Designed formation of double-shelled Ni–Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction. Adv. Mater., 2020, 32(16): 1906432
CrossRef ADS Google scholar
[110]
K. R. Park, J. Jeon, H. Choi, J. Lee, D. H. Lim, N. Oh, H. Han, C. Ahn, B. Kim, S. Mhin. NiFe layered double hydroxide electrocatalysts for an efficient oxygen evolution reaction. ACS Appl. Energy Mater., 2022, 5(7): 8592
CrossRef ADS Google scholar
[111]
J. N. Hausmann, P. W. Menezes. Effect of surface-adsorbed and intercalated (Oxy)anions on the oxygen evolution reaction. Angew. Chem. Int. Ed., 2022, 61(38): e202207279
CrossRef ADS Google scholar
[112]
S.LiZ.Li R.MaC.Gao L.LiuL. HuJ.ZhuT.SunY.Tang D.LiuJ. Wang, A glass-ceramic with accelerated surface reconstruction toward the efficient oxygen evolution reaction, Angew. Chem. Int. Ed. 60, 3773 (2021)
[113]
C. Wei, Z. Feng, G. G. Scherer, J. Barber, Y. Shao-Horn, Z. J. Xu. Cations in octahedral sites: A descriptor for oxygen electrocatalysis on transition-metal spinels. Adv. Mater., 2017, 29(23): 1606800
CrossRef ADS Google scholar
[114]
S. Liu, R. Wan, Z. Lin, Z. Liu, Y. Liu, Y. Tian, D. D. Qin, Z. Tang. Probing the Co role in promoting the OER and Zn–air battery performance of NiFe-LDH: A combined experimental and theoretical study. J. Mater. Chem. A, 2022, 10(10): 5244
CrossRef ADS Google scholar
[115]
L. Yan, Z. Xu, X. Liu, S. Mahmood, J. Shen, J. Ning, S. Li, Y. Zhong, Y. Hu. Integrating trifunctional Co@NC-CNTs@NiFe-LDH electrocatalysts with arrays of porous triangle carbon plates for high-power-density rechargeable Zn−air batteries and self-powered water splitting. Chem. Eng. J., 2022, 446: 137049
CrossRef ADS Google scholar
[116]
X. Feng, Q. Jiao, W. Chen, Y. Dang, Z. Dai, S. L. Suib, J. Zhang, Y. Zhao, H. Li, C. Feng. Cactus-like NiCo2S4@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution. Appl. Catal. B, 2021, 286: 119869
CrossRef ADS Google scholar
[117]
Z. Kong, J. Chen, X. Wang, X. Long, X. She, D. Li, D. Yang. Cation vacancy driven efficient CoFe-LDH-based electrocatalysts for water splitting and Zn–air batteries. Adv. Mater., 2021, 2(24): 7932
CrossRef ADS Google scholar
[118]
D. S. Hall, D. J. Lockwood, C. Bock, B. R. MacDougall. Nickel hydroxides and related materials: A review of their structures, synthesis and properties. Proc. Math. Phys. Eng. Sci., 2015, 471: 20140792
CrossRef ADS Google scholar
[119]
T. Wang, J. Wu, Y. Liu, X. Cui, P. Ding, J. Deng, C. Zha, E. Coy, Y. Li. Scalable preparation and stabilization of atomic-thick CoNi layered double hydroxide nanosheets for bifunctional oxygen electrocatalysis and rechargeable zinc−air batteries. Energy Storage Mater., 2019, 16: 24
CrossRef ADS Google scholar
[120]
D. Wu, X. Hu, Z. Yang, T. Yang, J. Wen, G. Lu, Q. Zhao, Z. Li, X. Jiang, C. Xu. NiFe LDH anchoring on Fe/N-doped carbon nanofibers as a bifunctional electrocatalyst for rechargeable zinc–air batteries. Ind. Eng. Chem. Res., 2022, 61(22): 7523
CrossRef ADS Google scholar
[121]
D. Zhou, Z. Cai, Y. Jia, X. Xiong, Q. Xie, S. Wang, Y. Zhang, W. Liu, H. Duan, X. Sun. Activating basal plane in NiFe layered double hydroxide by Mn2+ doping for efficient and durable oxygen evolution reaction. Nanoscale Horiz., 2018, 3(5): 532
CrossRef ADS Google scholar
[122]
J. Ge, J. Y. Zheng, J. Zhang, S. Jiang, L. Zhang, H. Wan, L. Wang, W. Ma, Z. Zhou, R. Ma. Controllable atomic defect engineering in layered NixFe1−x(OH)2 nanosheets for electrochemical overall water splitting. J. Mater. Chem. A, 2021, 9(25): 14432
CrossRef ADS Google scholar
[123]
N. Thakur, M. Kumar, D. Mandal, T. C. Nagaiah. Nickel iron phosphide/phosphate as an oxygen bifunctional electrocatalyst for high-power-density rechargeable Zn–air batteries. ACS Appl. Mater. Interfaces, 2021, 13(44): 52487
CrossRef ADS Google scholar
[124]
M.ZhangJ. ZhangS.RanL.QiuW.Sun Y.YuJ.Chen Z.Zhu, A robust bifunctional catalyst for rechargeable Zn−air batteries: Ultrathin NiFe-LDH nanowalls vertically anchored on soybean-derived Fe-N-C matrix, Nano Res. 14(4), 1175 (2021)
[125]
Q. Wang, L. Shang, R. Shi, X. Zhang, Y. Zhao, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, T. Zhang. NiFe layered double hydroxide nanoparticles on Co, N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc−air batteries. Adv. Energy Mater., 2017, 7(21): 1700467
CrossRef ADS Google scholar
[126]
Y. Lin, H. Wang, C. K. Peng, L. Bu, K. Tian, Y. Zhao, J. Zhao, Y. G. Lin, J. M. Lee, L. Gao. Co-induced electronic optimization of hierarchical NiFe LDH for oxygen evolution. Small, 2020, 16(38): 2002426
CrossRef ADS Google scholar
[127]
W. Wang, Y. Liu, J. Li, J. Luo, L. Fu, S. Chen. NiFe LDH nanodots anchored on 3D macro/mesoporous carbon as a high-performance ORR/OER bifunctional electrocatalyst. J. Mater. Chem. A, 2018, 6(29): 14299
CrossRef ADS Google scholar
[128]
X. Cai, T. Jiang, M. Wu. Confined growth of NiFe LDH with hierarchical structures on copper nanowires for long-term stable rechargeable Zn−air batteries. Appl. Surf. Sci., 2022, 577: 151911
CrossRef ADS Google scholar
[129]
C.X. ZhaoJ. N. LiuJ.WangD.RenJ.Yu X.ChenB. Q. LiQ.Zhang, A ΔE = 0.63 V bifunctional oxygen electrocatalyst enables high-rate and long-cycling zinc–air batteries, Adv. Mater. 33(15), 2008606 (2021)
[130]
L. Wan, Z. Zhao, X. Chen, P. Liu, P. Wang, Z. Xu, Y. Lin, B. Wang. Controlled synthesis of bifunctional NiCo2O4 @FeNi LDH core–shell nanoarray air electrodes for rechargeable zinc–air batteries. ACS Sustain. Chem. & Eng., 2020, 8(30): 11079
CrossRef ADS Google scholar
[131]
E. Meza, R. E. Diaz, C. W. Li. Solution-phase activation and functionalization of colloidal WS2 nanosheets with ni single atoms. ACS Nano, 2020, 14(2): 2238
CrossRef ADS Google scholar
[132]
S. Tian, Q. Tang. Activating transition metal dichalcogenide monolayers as efficient electrocatalysts for the oxygen reduction reaction via single atom doping. J. Mater. Chem. C, 2021, 9(18): 6040
CrossRef ADS Google scholar
[133]
Z. Qin, Z. Wang, J. Zhao. Computational screening of single-atom catalysts supported by VS2 monolayers for electrocatalytic oxygen reduction/evolution reactions. Nanoscale, 2022, 14(18): 6902
CrossRef ADS Google scholar
[134]
Q. Qi, J. Hu, Y. Zhang, W. Li, B. Huang, C. Zhang. Two-dimensional metal–organic framework-based electrocatalysts for oxygen evolution and oxygen reduction reactions. Adv. Energy Sustain. Res., 2021, 2(3): 2000067
CrossRef ADS Google scholar
[135]
S. Zhao, Y. Wang, J. Dong, C. T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao, Z. Tang. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy, 2016, 1(12): 16184
CrossRef ADS Google scholar
[136]
J. Huang, Y. Li, R. K. Huang, C. T. He, L. Gong, Q. Hu, L. Wang, Y. T. Xu, X. Y. Tian, S. Y. Liu, Z. M. Ye, F. Wang, D. D. Zhou, W. X. Zhang, J. P. Zhang. Electrochemical exfoliation of pillared-layer metal–organic framework to boost the oxygen evolution reaction. Angew. Chem. Int. Ed., 2018, 57(17): 4632
CrossRef ADS Google scholar
[137]
H. Li, M. Zhang, W. Zhou, J. Duan, W. Jin. Ultrathin 2D catalysts with N-coordinated single Co atom outside Co cluster for highly efficient Zn-air battery. Chem. Eng. J., 2021, 421: 129719
CrossRef ADS Google scholar
[138]
H. Jing, P. Zhu, X. Zheng, Z. Zhang, D. Wang, Y. Li. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater., 2022, 1(1): 100013
CrossRef ADS Google scholar
[139]
R. Wang, L. R. Parent, S. Gopalan, Y. Zhong. Experimental and computational investigations on the SO2 poisoning of (La0.8Sr0.2)0.95MnO3 cathode materials. Adv. Powder Mater., 2023, 2(1): 100062
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the Fundamental Research Funds for Central Universities and the National Key R&D Program of China (Grant No. 2016YFC1402504), and also partially supported by grants from the National Natural Science Foundation of China (No. 52172058).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(9734 KB)

Accesses

Citations

Detail

Sections
Recommended

/