Generalized high-order twisted partially coherent beams and their propagation characteristics

Hai-Yun Wang , Zhao-Hui Yang , Kun Liu , Ya-Hong Chen , Lin Liu , Fei Wang , Yang-Jian Cai

Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 52506

PDF (16819KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 52506 DOI: 10.1007/s11467-022-1196-8
RESEARCH ARTICLE

Generalized high-order twisted partially coherent beams and their propagation characteristics

Author information +
History +
PDF (16819KB)

Abstract

Twist phase is a nontrivial statistical phase that only exists in partially coherent fields, which makes the beam carry orbital angular momentum (OAM). In this paper, we introduce a new kind of partially coherent beams carrying high-order twist phase, named generalized high-order twisted partially coherent beams (GHTPCBs). The propagation dynamics such as the spectral density and OAM flux density propagating in free space are investigated numerically with the help of mode superposition and fast Fourier transform (FFT) algorithm. Our results show that the GHTPCBs are capable of self-focusing, and the beam spot during propagation exhibits teardrop-like or the diamond-like shape in some certain cases. Moreover, the influences of the twist order and the twist factor on the OAM flux density during propagation are also illustrated in detail. Finally, we experimentally synthesize the GHTPCBs with controllable twist phase by means of pseudo-mode superposition and measure their spectral density during propagation. The experimental results agree well with the theoretical predictions. Our studies may find applications in nonlinear optics and particle trapping.

Graphical abstract

Keywords

light manipulation / statistical optics / twist phase / coherence structure / orbital angular momentum

Cite this article

Download citation ▾
Hai-Yun Wang, Zhao-Hui Yang, Kun Liu, Ya-Hong Chen, Lin Liu, Fei Wang, Yang-Jian Cai. Generalized high-order twisted partially coherent beams and their propagation characteristics. Front. Phys., 2022, 17(5): 52506 DOI:10.1007/s11467-022-1196-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. Simon , N. Mukunda . Twisted Gaussian Schell-model beams. J. Opt. Soc. Am. A, 1993, 10( 1): 95

[2]

A. T. Friberg , E. Tervonen , J. Turunen . Interpretation and experimental demonstration of twisted Gaussian Schell-model beams. J. Opt. Soc. Am. A, 1994, 11( 6): 1818

[3]

K. Sundar , N. Mukunda , R. Simon . Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams. J. Opt. Soc. Am. A, 1995, 12( 3): 560

[4]

D. Ambrosini , V. Bagini , F. Gori , M. Santarsiero . Twisted Gaussian Schell-model beams: A superposition model. J. Mod. Opt., 1994, 41( 7): 1391

[5]

M. Bastiaans . Wigner distribution function applied to twisted Gaussian light propagating in first-order optical systems. J. Opt. Soc. Am. A, 2000, 17( 12): 2475

[6]

Q. Lin , Y. Cai . Tensor ABCD law for partially coherent twisted anisotropic Gaussian−Schell model beams. Opt. Lett., 2002, 27( 4): 216

[7]

R. Borghi , F. Gori , G. Guattari , M. Santarsiero . Twisted Schell-model beams with axial symmetry. Opt. Lett., 2015, 40( 19): 4504

[8]

R. Borghi . Twisting partially coherent light. Opt. Lett., 2018, 43( 8): 1627

[9]

F. Gori , M. Santarsiero . Devising genuine spatial correlation functions. Opt. Lett., 2007, 32( 24): 3531

[10]

F. Gori , M. Santarsiero . Devising genuine twisted cross-spectral densities. Opt. Lett., 2018, 43( 3): 595

[11]

Z. Mei , O. Korotkova . Random sources for rotating spectral densities. Opt. Lett., 2017, 42( 2): 255

[12]

G. Wu . Propagation properties of a radially polarized partially coherent twisted beam in free space. J. Opt. Soc. Am. A Opt. Image Sci. Vis., 2016, 33( 3): 345

[13]

Y. Zhou , D. Zhao . Propagation properties of a twisted rectangular multi-Gaussian Schell-model beam in free space and oceanic turbulence. Appl. Opt., 2018, 57( 30): 8978

[14]

C. Zhang , Z. Zhou , H. Xu , Z. Zhou , Y. Han , Y. Yuan , J. Qu . Evolution properties of twisted Hermite Gaussian Schell-model beams in non-Kolmogorov turbulence. Opt. Express, 2022, 30( 3): 4071

[15]

M. Santarsiero , F. Gori , M. Alonzo . Higher-order twisted/astigmatic Gaussian Schell-model cross-spectral densities and their separability features. Opt. Express, 2019, 27( 6): 8554

[16]

J. Zhang , J. Wang , H. Huang , H. Wang , S. Zhu , Z. Li , J. Lu . Propagation characteristics of a twisted cosine-Gaussian correlated radially polarized beam. Appl. Sci. (Basel), 2018, 8( 9): 1485

[17]

B. Zhang , H. Huang , C. Xie , S. Zhu , Z. Li . Twisted rectangular Laguerre–Gaussian correlated sources in anisotropic turbulent atmosphere. Opt. Commun., 2019, 459( 15): 125004

[18]

Y. Cai , Q. Lin , O. Korotkova . Ghost imaging with twisted Gaussian Schell-model beam. Opt. Express, 2009, 17( 4): 2453

[19]

S. A. Ponomarenko . Twisted Gaussian Schell-model solitons. Phys. Rev. E, 2001, 64( 3): 036618

[20]

L. Wang , J. Wang , C. Yuan , G. Zheng , Y. Chen . Beam wander of partially coherent twisted elliptical vortex beam in turbulence. Optik (Stuttg.), 2020, 218 : 165037

[21]

Z. Tong , O. Korotkova . Beyond the classical Rayleigh limit with twisted light. Opt. Lett., 2012, 37( 13): 2595

[22]

L. Hutter , G. Lima , S. P. Walborn . Boosting entanglement generation in down-conversion with incoherent illumination. Phys. Rev. Lett., 2020, 125( 19): 193602

[23]

G. H. dos Santos , A. G. de Oliveira , N. Rubiano da Silva , G. Cañas , E. S. Gómez , S. Joshi , Y. Ismail , P. H. Souto Ribeiro , S. P. Walborn . Phase conjugation of twisted Gaussian Schell model beams in stimulated down-conversion. Nanophotonics, 2022, 11( 4): 763

[24]

H. Wang , X. Peng , L. Liu , F. Wang , Y. Cai , S. A. Ponomarenko . Generating bona fide twisted Gaussian Schell-model beams. Opt. Lett., 2019, 44( 15): 3709

[25]

C. Tian , S. Zhu , H. Huang , Y. Cai , Z. Li . Customizing twisted Schell-model beams. Opt. Lett., 2020, 45( 20): 5880

[26]

H. Wang , X. Peng , H. Zhang , L. Liu , Y. Chen , F. Wang , Y. Cai . Experimental synthesis of partially coherent beam with controllable twist phase and measuring its orbital angular momentum. Nanophotonics, 2022, 11( 4): 689

[27]

J. Serna , J. M. Movilla . Orbital angular momentum of partially coherent beams. Opt. Lett., 2001, 26( 7): 405

[28]

S. M. Kim , G. Gbur . Angular momentum conservation in partially coherent wave fields. Phys. Rev. A, 2012, 86( 4): 043814

[29]

Y. Cai , S. Zhu . Orbital angular moment of a partially coherent beam propagating through an astigmatic ABCD optical system with loss or gain. Opt. Lett., 2014, 39( 7): 1968

[30]

L. Liu , Y. Huang , Y. Chen , L. Guo , Y. Cai . Orbital angular moment of an electromagnetic Gaussian Schell model beam with a twist phase. Opt. Express, 2015, 23( 23): 30283

[31]

L. Wan , D. Zhao . Generalized partially coherent beams with nonseparable phases. Opt. Lett., 2019, 44( 19): 4714

[32]

S. A. Collins . Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am., 1970, 60( 9): 1168

[33]

L. Mandel E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, 1995

[34]

R. Wang , S. Zhu , Y. Chen , H. Huang , Z. Li , Y. Cai . Experimental synthesis of partially coherent sources. Opt. Lett., 2020, 45( 7): 1874

[35]

V. Arrizón , U. Ruiz , R. Carrada , L. A. González . Pixelated phase computer holograms for the accurate encoding of scalar complex fields. J. Opt. Soc. Am. A, 2007, 24( 11): 3500

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (16819KB)

1499

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/