Generalized high-order twisted partially coherent beams and their propagation characteristics

Hai-Yun Wang, Zhao-Hui Yang, Kun Liu, Ya-Hong Chen, Lin Liu, Fei Wang, Yang-Jian Cai

PDF(16819 KB)
PDF(16819 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 52506. DOI: 10.1007/s11467-022-1196-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Generalized high-order twisted partially coherent beams and their propagation characteristics

Author information +
History +

Abstract

Twist phase is a nontrivial statistical phase that only exists in partially coherent fields, which makes the beam carry orbital angular momentum (OAM). In this paper, we introduce a new kind of partially coherent beams carrying high-order twist phase, named generalized high-order twisted partially coherent beams (GHTPCBs). The propagation dynamics such as the spectral density and OAM flux density propagating in free space are investigated numerically with the help of mode superposition and fast Fourier transform (FFT) algorithm. Our results show that the GHTPCBs are capable of self-focusing, and the beam spot during propagation exhibits teardrop-like or the diamond-like shape in some certain cases. Moreover, the influences of the twist order and the twist factor on the OAM flux density during propagation are also illustrated in detail. Finally, we experimentally synthesize the GHTPCBs with controllable twist phase by means of pseudo-mode superposition and measure their spectral density during propagation. The experimental results agree well with the theoretical predictions. Our studies may find applications in nonlinear optics and particle trapping.

Graphical abstract

Keywords

light manipulation / statistical optics / twist phase / coherence structure / orbital angular momentum

Cite this article

Download citation ▾
Hai-Yun Wang, Zhao-Hui Yang, Kun Liu, Ya-Hong Chen, Lin Liu, Fei Wang, Yang-Jian Cai. Generalized high-order twisted partially coherent beams and their propagation characteristics. Front. Phys., 2022, 17(5): 52506 https://doi.org/10.1007/s11467-022-1196-8

References

[1]
R. Simon , N. Mukunda . Twisted Gaussian Schell-model beams. J. Opt. Soc. Am. A, 1993, 10( 1): 95
CrossRef ADS Google scholar
[2]
A. T. Friberg , E. Tervonen , J. Turunen . Interpretation and experimental demonstration of twisted Gaussian Schell-model beams. J. Opt. Soc. Am. A, 1994, 11( 6): 1818
CrossRef ADS Google scholar
[3]
K. Sundar , N. Mukunda , R. Simon . Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams. J. Opt. Soc. Am. A, 1995, 12( 3): 560
CrossRef ADS Google scholar
[4]
D. Ambrosini , V. Bagini , F. Gori , M. Santarsiero . Twisted Gaussian Schell-model beams: A superposition model. J. Mod. Opt., 1994, 41( 7): 1391
CrossRef ADS Google scholar
[5]
M. Bastiaans . Wigner distribution function applied to twisted Gaussian light propagating in first-order optical systems. J. Opt. Soc. Am. A, 2000, 17( 12): 2475
CrossRef ADS Google scholar
[6]
Q. Lin , Y. Cai . Tensor ABCD law for partially coherent twisted anisotropic Gaussian−Schell model beams. Opt. Lett., 2002, 27( 4): 216
CrossRef ADS Google scholar
[7]
R. Borghi , F. Gori , G. Guattari , M. Santarsiero . Twisted Schell-model beams with axial symmetry. Opt. Lett., 2015, 40( 19): 4504
CrossRef ADS Google scholar
[8]
R. Borghi . Twisting partially coherent light. Opt. Lett., 2018, 43( 8): 1627
CrossRef ADS Google scholar
[9]
F. Gori , M. Santarsiero . Devising genuine spatial correlation functions. Opt. Lett., 2007, 32( 24): 3531
CrossRef ADS Google scholar
[10]
F. Gori , M. Santarsiero . Devising genuine twisted cross-spectral densities. Opt. Lett., 2018, 43( 3): 595
CrossRef ADS Google scholar
[11]
Z. Mei , O. Korotkova . Random sources for rotating spectral densities. Opt. Lett., 2017, 42( 2): 255
CrossRef ADS Google scholar
[12]
G. Wu . Propagation properties of a radially polarized partially coherent twisted beam in free space. J. Opt. Soc. Am. A Opt. Image Sci. Vis., 2016, 33( 3): 345
CrossRef ADS Google scholar
[13]
Y. Zhou , D. Zhao . Propagation properties of a twisted rectangular multi-Gaussian Schell-model beam in free space and oceanic turbulence. Appl. Opt., 2018, 57( 30): 8978
[14]
C. Zhang , Z. Zhou , H. Xu , Z. Zhou , Y. Han , Y. Yuan , J. Qu . Evolution properties of twisted Hermite Gaussian Schell-model beams in non-Kolmogorov turbulence. Opt. Express, 2022, 30( 3): 4071
CrossRef ADS Google scholar
[15]
M. Santarsiero , F. Gori , M. Alonzo . Higher-order twisted/astigmatic Gaussian Schell-model cross-spectral densities and their separability features. Opt. Express, 2019, 27( 6): 8554
CrossRef ADS Google scholar
[16]
J. Zhang , J. Wang , H. Huang , H. Wang , S. Zhu , Z. Li , J. Lu . Propagation characteristics of a twisted cosine-Gaussian correlated radially polarized beam. Appl. Sci. (Basel), 2018, 8( 9): 1485
CrossRef ADS Google scholar
[17]
B. Zhang , H. Huang , C. Xie , S. Zhu , Z. Li . Twisted rectangular Laguerre–Gaussian correlated sources in anisotropic turbulent atmosphere. Opt. Commun., 2019, 459( 15): 125004
[18]
Y. Cai , Q. Lin , O. Korotkova . Ghost imaging with twisted Gaussian Schell-model beam. Opt. Express, 2009, 17( 4): 2453
CrossRef ADS Google scholar
[19]
S. A. Ponomarenko . Twisted Gaussian Schell-model solitons. Phys. Rev. E, 2001, 64( 3): 036618
CrossRef ADS Google scholar
[20]
L. Wang , J. Wang , C. Yuan , G. Zheng , Y. Chen . Beam wander of partially coherent twisted elliptical vortex beam in turbulence. Optik (Stuttg.), 2020, 218 : 165037
CrossRef ADS Google scholar
[21]
Z. Tong , O. Korotkova . Beyond the classical Rayleigh limit with twisted light. Opt. Lett., 2012, 37( 13): 2595
CrossRef ADS Google scholar
[22]
L. Hutter , G. Lima , S. P. Walborn . Boosting entanglement generation in down-conversion with incoherent illumination. Phys. Rev. Lett., 2020, 125( 19): 193602
CrossRef ADS Google scholar
[23]
G. H. dos Santos , A. G. de Oliveira , N. Rubiano da Silva , G. Cañas , E. S. Gómez , S. Joshi , Y. Ismail , P. H. Souto Ribeiro , S. P. Walborn . Phase conjugation of twisted Gaussian Schell model beams in stimulated down-conversion. Nanophotonics, 2022, 11( 4): 763
CrossRef ADS Google scholar
[24]
H. Wang , X. Peng , L. Liu , F. Wang , Y. Cai , S. A. Ponomarenko . Generating bona fide twisted Gaussian Schell-model beams. Opt. Lett., 2019, 44( 15): 3709
CrossRef ADS Google scholar
[25]
C. Tian , S. Zhu , H. Huang , Y. Cai , Z. Li . Customizing twisted Schell-model beams. Opt. Lett., 2020, 45( 20): 5880
CrossRef ADS Google scholar
[26]
H. Wang , X. Peng , H. Zhang , L. Liu , Y. Chen , F. Wang , Y. Cai . Experimental synthesis of partially coherent beam with controllable twist phase and measuring its orbital angular momentum. Nanophotonics, 2022, 11( 4): 689
CrossRef ADS Google scholar
[27]
J. Serna , J. M. Movilla . Orbital angular momentum of partially coherent beams. Opt. Lett., 2001, 26( 7): 405
CrossRef ADS Google scholar
[28]
S. M. Kim , G. Gbur . Angular momentum conservation in partially coherent wave fields. Phys. Rev. A, 2012, 86( 4): 043814
CrossRef ADS Google scholar
[29]
Y. Cai , S. Zhu . Orbital angular moment of a partially coherent beam propagating through an astigmatic ABCD optical system with loss or gain. Opt. Lett., 2014, 39( 7): 1968
CrossRef ADS Google scholar
[30]
L. Liu , Y. Huang , Y. Chen , L. Guo , Y. Cai . Orbital angular moment of an electromagnetic Gaussian Schell model beam with a twist phase. Opt. Express, 2015, 23( 23): 30283
CrossRef ADS Google scholar
[31]
L. Wan , D. Zhao . Generalized partially coherent beams with nonseparable phases. Opt. Lett., 2019, 44( 19): 4714
CrossRef ADS Google scholar
[32]
S. A. Collins . Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am., 1970, 60( 9): 1168
CrossRef ADS Google scholar
[33]
L. Mandel E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, 1995
[34]
R. Wang , S. Zhu , Y. Chen , H. Huang , Z. Li , Y. Cai . Experimental synthesis of partially coherent sources. Opt. Lett., 2020, 45( 7): 1874
CrossRef ADS Google scholar
[35]
V. Arrizón , U. Ruiz , R. Carrada , L. A. González . Pixelated phase computer holograms for the accurate encoding of scalar complex fields. J. Opt. Soc. Am. A, 2007, 24( 11): 3500
CrossRef ADS Google scholar

Electronic supplementary materials

are available in the online version of this article at https://doi.org/10.1007/s11467-022-1196-8 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1196-8 and are accessible for authorized users.

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2019YFA0705000); National Natural Science Foundation of China (Grant Nos. 11874046, 11974218, 11904247, 12104263, 12174279, and 12192254); Innovation Group of Jinan (No. 2018GXRC010); Local Science and Technology Development Project of the Central Government (No. YDZX20203700001766).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(16819 KB)

Accesses

Citations

Detail

Sections
Recommended

/