A driven three-dimensional electric lattice for polar molecules

Hengjiao Guo , Yabing Ji , Qing Liu , Tao Yang , Shunyong Hou , Jianping Yin

Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 52505

PDF (2676KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 52505 DOI: 10.1007/s11467-022-1174-1
RESEARCH ARTICLE

A driven three-dimensional electric lattice for polar molecules

Author information +
History +
PDF (2676KB)

Abstract

Three-dimensional (3D) driven optical lattices have attained great attention for their wide applications in the quest to engineer new and exotic quantum phases. Here we propose a 3D driven electric lattice (3D-DEL) for cold polar molecules as a natural extension. Our 3D electric lattice is composed of a series of thin metal plates in which two-dimensional square hole arrays are distributed. When suitable modulated voltages are applied to these metal plates, a 3D potential well array for polar molecules can be generated and can move smoothly back and forth in the lattice. Thus, it can drive cold polar molecules confined in the 3D electric lattice. Theoretical analyses and trajectory calculations using two types of molecules, ND3 and PbF, are performed to justify the possibility of our scheme. The 3D-DEL offers a platform for investigating cold molecules in periodic driven potentials, such as quantum computing science, quantum information processing, and some other possible applications amenable to the driven optical lattices.

Graphical abstract

Keywords

3D driven electric lattice / cold polar molecules

Cite this article

Download citation ▾
Hengjiao Guo, Yabing Ji, Qing Liu, Tao Yang, Shunyong Hou, Jianping Yin. A driven three-dimensional electric lattice for polar molecules. Front. Phys., 2022, 17(5): 52505 DOI:10.1007/s11467-022-1174-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Chu . Nobel Lecture: The manipulation of neutral particles. Rev. Mod. Phys., 1998, 70( 3): 685

[2]

C. N. Cohen-Tannoudji . Nobel Lecture: Manipulating atoms with photons. Rev. Mod. Phys., 1998, 70( 3): 707

[3]

W. D. Phillips . Nobel Lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys., 1998, 70( 3): 721

[4]

Q. Liang , T. Chen , W. H. Bu , Y. H. Zhang , B. Yan . Laser cooling with adiabatic passage for type-II transitions. Front. Phys., 2021, 16( 3): 32501

[5]

K. Yan , R. Gu , D. Wu , J. Wei , Y. Xia , J. Yin . Simulation of EOM-based frequency-chirped laser slowing of MgF radicals. Front. Phys., 2022, 17( 4): 42502

[6]

I. Bloch . Ultracold quantum gases in optical lattices. Nat. Phys., 2005, 1( 1): 23

[7]

I. Bloch , J. Dalibard , W. Zwerger . Many-body physics with ultracold gases. Rev. Mod. Phys., 2008, 80( 3): 885

[8]

W. S. Bakr J. I. Gillen A. Peng S . Fölling, and M. Greiner, A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice, Nature 462(7269), 74 ( 2009)

[9]

M. Takamoto , F. L. Hong , R. Higashi , H. Katori . An optical lattice clock. Nature, 2005, 435( 7040): 321

[10]

T. Calarco , E. A. Hinds , D. Jaksch , J. Schmiedmayer , J. I. Cirac , P. Zoller . Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps. Phys. Rev. A, 2000, 61( 2): 022304

[11]

C. Monroe . Quantum information processing with atoms and photons. Nature, 2002, 416( 6877): 238

[12]

M. S. Rudner , N. H. Lindner , E. Berg , M. Levin . Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X, 2013, 3( 3): 031005

[13]

V. Bastidas , C. Emary , B. Regler , T. Brandes . Nonequilibrium quantum phase transitions in the Dicke model. Phys. Rev. Lett., 2012, 108( 4): 043003

[14]

S. Choi , D. A. Abanin , M. D. Lukin . Dynamically induced many-body localization. Phys. Rev. B, 2018, 97( 10): 100301

[15]

D. S. Bhakuni , R. Nehra , A. Sharma . Drive-induced many-body localization and coherent destruction of Stark many-body localization. Phys. Rev. B, 2020, 102( 2): 024201

[16]

A. Eckardt . Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys., 2017, 89( 1): 011004

[17]

H. Lignier , C. Sias , D. Ciampini , Y. Singh , A. Zenesini , O. Morsch , E. Arimondo . Dynamical control of matter-wave tunneling in periodic potentials. Phys. Rev. Lett., 2007, 99( 22): 220403

[18]

A. Eckardt , M. Holthaus , H. Lignier , A. Zenesini , D. Ciampini , O. Morsch , E. Arimondo . Exploring dynamic localization with a Bose−Einstein condensate. Phys. Rev. A, 2009, 79( 1): 013611

[19]

C. E. Creffield , F. Sols , D. Ciampini , O. Morsch , E. Arimondo . Expansion of matter waves in static and driven periodic potentials. Phys. Rev. A, 2010, 82( 3): 035601

[20]

L. W. Clark , L. Feng , C. Chin . Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition. Science, 2016, 354( 6312): 606

[21]

L. Feng , L. W. Clark , A. Gaj , C. Chin . Coherent inflationary dynamics for Bose–Einstein condensates crossing a quantum critical point. Nat. Phys., 2018, 14( 3): 269

[22]

A. V. Gorshkov , S. R. Manmana , G. Chen , E. Demler , M. D. Lukin , A. M. Rey . Quantum magnetism with polar alkali-metal dimers. Phys. Rev. A, 2011, 84( 3): 033619

[23]

J. Levinsen , N. R. Cooper , G. V. Shlyapnikov . Topological px+ ipy superfluid phase of fermionic polar molecules. Phys. Rev. A, 2011, 84( 1): 013603

[24]

M. A. Baranov , M. Dalmonte , G. Pupillo , P. Zoller . Condensed matter theory of dipolar quantum gases. Chem. Rev., 2012, 112( 9): 5012

[25]

M. Wall K. Hazzard A. M. Rey, Quantum magnetism with ultracold molecules, in: From Atomic to Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities, World Scientific, 2015, page 3

[26]

N. Y. Yao M. P. Zaletel D. M. Stamper-Kurn A . Vishwanath, A quantum dipolar spin liquid, Nat. Phys. 14(4), 405 ( 2018)

[27]

I. Kozyryev , N. R. Hutzler . Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules. Phys. Rev. Lett., 2017, 119( 13): 133002

[28]

S. Kondov , C. H. Lee , K. Leung , C. Liedl , I. Majewska , R. Moszynski , T. Zelevinsky . Molecular lattice clock with long vibrational coherence. Nat. Phys., 2019, 15( 11): 1118

[29]

J. Lim , J. Almond , M. Trigatzis , J. Devlin , N. Fitch , B. Sauer , M. Tarbutt , E. Hinds . Laser cooled YbF molecules for measuring the electron’s electric dipole moment. Phys. Rev. Lett., 2018, 120( 12): 123201

[30]

S. Ospelkaus , K. K. Ni , D. Wang , M. De Miranda , B. Neyenhuis , G. Quéméner , P. Julienne , J. Bohn , D. Jin , J. Ye . Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science, 2010, 327( 5967): 853

[31]

A. Klein , Y. Shagam , W. Skomorowski , P. S. Żuchowski , M. Pawlak , L. Janssen , N. Moiseyev , S. Y. van de Meerakker , A. van der Avoird , C. P. Koch , E. Narevicius . Directly probing anisotropy in atom–molecule collisions through quantum scattering resonances. Nat. Phys., 2017, 13( 1): 35

[32]

M. G. Hu , Y. Liu , D. D. Grimes , Y. W. Lin , A. H. Gheorghe , R. Vexiau , N. Bouloufa-Maafa , O. Dulieu , T. Rosenband , K. K. Ni . Direct observation of bimolecular reactions of ultracold KRb molecules. Science, 2019, 366( 6469): 1111

[33]

Y. Liu , L. Luo . Molecular collisions: From near-cold to ultra-cold. Front. Phys., 2021, 16( 4): 42300

[34]

D. DeMille . Quantum computation with trapped polar molecules. Phys. Rev. Lett., 2002, 88( 6): 067901

[35]

K. K. Ni , T. Rosenband , D. D. Grimes . Dipolar exchange quantum logic gate with polar molecules. Chem. Sci., 2018, 9( 33): 6830

[36]

E. R. Hudson , W. C. Campbell . Dipolar quantum logic for freely rotating trapped molecular ions. Phys. Rev. A, 2018, 98( 4): 040302

[37]

V. V. Albert , J. P. Covey , J. Preskill . Robust encoding of a qubit in a molecule. Phys. Rev. X, 2020, 10( 3): 031050

[38]

A. Osterwalder , S. A. Meek , G. Hammer , H. Haak , G. Meijer . Deceleration of neutral molecules in macroscopic traveling traps. Phys. Rev. A, 2010, 81( 5): 051401

[39]

S. A. Meek, S. A. Meek, Ph. D. thesis, Freie Universität, 2010

[40]

S. Y. van de Meerakker , H. L. Bethlem , N. Vanhaecke , G. Meijer . Manipulation and control of molecular beams. Chem. Rev., 2012, 112( 9): 4828

[41]

H. L. Bethlem , F. M. Crompvoets , R. T. Jongma , S. Y. van de Meerakker , G. Meijer . Deceleration and trapping of ammonia using time-varying electric fields. Phys. Rev. A, 2002, 65( 5): 053416

[42]

S. Y. Buhmann , M. Tarbutt , S. Scheel , E. Hinds . Surface-induced heating of cold polar molecules. Phys. Rev. A, 2008, 78( 5): 052901

[43]

S. A. Meek , G. Santambrogio , B. G. Sartakov , H. Conrad , G. Meijer . Suppression of nonadiabatic losses of molecules from chip-based microtraps. Phys. Rev. A, 2011, 83( 3): 033413

[44]

F. M. H. Crompvoets , R. T. Jongma , H. L. Bethlem , A. J. A. van Roij , G. Meijer . Longitudinal focusing and cooling of a molecular beam. Phys. Rev. Lett., 2002, 89( 9): 093004

[45]

J. J. Hudson , D. M. Kara , I. Smallman , B. E. Sauer , M. R. Tarbutt , E. A. Hinds . Improved measurement of the shape of the electron. Nature, 2011, 473( 7348): 493

[46]

D. DeMille , S. B. Cahn , D. Murphree , D. A. Rahmlow , M. G. Kozlov . Using molecules to measure nuclear spin-dependent parity violation. Phys. Rev. Lett., 2008, 100( 2): 023003

[47]

B. Darquié , C. Stoeffler , A. Shelkovnikov , C. Daussy , A. Amy‐Klein , C. Chardonnet , S. Zrig , L. Guy , J. Crassous , P. Soulard , P. Asselin , T. R. Huet , P. Schwerdtfeger , R. Bast , T. Saue . Progress toward the first observation of parity violation in chiral molecules by high‐resolution laser spectroscopy. Chirality, 2010, 22( 10): 870

[48]

K. Baklanov , A. Petrov , A. Titov , M. Kozlov . Progress toward the electron electric-dipole-moment search: Theoretical study of the PbF molecule. Phys. Rev. A, 2010, 82( 6): 060501

[49]

P. Aggarwal , Y. Yin , K. Esajas , H. Bethlem , A. Boeschoten , A. Borschevsky , S. Hoekstra , K. Jungmann , V. Marshall , T. Meijknecht , M. C. Mooij , R. G. E. Timmermans , A. Touwen , W. Ubachs , L. Willmann . Deceleration and trapping of SrF molecules. Phys. Rev. Lett., 2021, 127( 17): 173201

[50]

J. Struck , C. Ölschläger , M. Weinberg , P. Hauke , J. Simonet , A. Eckardt , M. Lewenstein , K. Sengstock , P. Windpassinger . Tunable gauge potential for neutral and spinless particles in driven optical lattices. Phys. Rev. Lett., 2012, 108( 22): 225304

[51]

A. Soba , P. Tierno , T. M. Fischer , F. Saguès . Dynamics of a paramagnetic colloidal particle driven on a magnetic-bubble lattice. Phys. Rev. E, 2008, 77( 6): 060401

[52]

B. G. Englert , M. Mielenz , C. Sommer , J. Bayerl , M. Motsch , P. W. Pinkse , G. Rempe , M. Zeppenfeld . Storage and adiabatic cooling of polar molecules in a microstructured trap. Phys. Rev. Lett., 2011, 107( 26): 263003

[53]

M. Zeppenfeld , B. G. Englert , R. Glöckner , A. Prehn , M. Mielenz , C. Sommer , L. D. van Buuren , M. Motsch , G. Rempe . Sisyphus cooling of electrically trapped polyatomic molecules. Nature, 2012, 491( 7425): 570

[54]

J. Märkle , A. Allen , P. Federsel , B. Jetter , A. Günther , J. Fortágh , N. Proukakis , T. Judd . Evaporative cooling of cold atoms at surfaces. Phys. Rev. A, 2014, 90( 2): 023614

[55]

F. Schäfer , T. Fukuhara , S. Sugawa , Y. Takasu , Y. Takahashi . Tools for quantum simulation with ultracold atoms in optical lattices. Nat. Rev. Phys., 2020, 2( 8): 411

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2676KB)

627

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/