A driven three-dimensional electric lattice for polar molecules

Hengjiao Guo, Yabing Ji, Qing Liu, Tao Yang, Shunyong Hou, Jianping Yin

PDF(2676 KB)
PDF(2676 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 52505. DOI: 10.1007/s11467-022-1174-1
RESEARCH ARTICLE
RESEARCH ARTICLE

A driven three-dimensional electric lattice for polar molecules

Author information +
History +

Abstract

Three-dimensional (3D) driven optical lattices have attained great attention for their wide applications in the quest to engineer new and exotic quantum phases. Here we propose a 3D driven electric lattice (3D-DEL) for cold polar molecules as a natural extension. Our 3D electric lattice is composed of a series of thin metal plates in which two-dimensional square hole arrays are distributed. When suitable modulated voltages are applied to these metal plates, a 3D potential well array for polar molecules can be generated and can move smoothly back and forth in the lattice. Thus, it can drive cold polar molecules confined in the 3D electric lattice. Theoretical analyses and trajectory calculations using two types of molecules, ND3 and PbF, are performed to justify the possibility of our scheme. The 3D-DEL offers a platform for investigating cold molecules in periodic driven potentials, such as quantum computing science, quantum information processing, and some other possible applications amenable to the driven optical lattices.

Graphical abstract

Keywords

3D driven electric lattice / cold polar molecules

Cite this article

Download citation ▾
Hengjiao Guo, Yabing Ji, Qing Liu, Tao Yang, Shunyong Hou, Jianping Yin. A driven three-dimensional electric lattice for polar molecules. Front. Phys., 2022, 17(5): 52505 https://doi.org/10.1007/s11467-022-1174-1

References

[1]
S. Chu . Nobel Lecture: The manipulation of neutral particles. Rev. Mod. Phys., 1998, 70( 3): 685
CrossRef ADS Google scholar
[2]
C. N. Cohen-Tannoudji . Nobel Lecture: Manipulating atoms with photons. Rev. Mod. Phys., 1998, 70( 3): 707
CrossRef ADS Google scholar
[3]
W. D. Phillips . Nobel Lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys., 1998, 70( 3): 721
CrossRef ADS Google scholar
[4]
Q. Liang , T. Chen , W. H. Bu , Y. H. Zhang , B. Yan . Laser cooling with adiabatic passage for type-II transitions. Front. Phys., 2021, 16( 3): 32501
CrossRef ADS Google scholar
[5]
K. Yan , R. Gu , D. Wu , J. Wei , Y. Xia , J. Yin . Simulation of EOM-based frequency-chirped laser slowing of MgF radicals. Front. Phys., 2022, 17( 4): 42502
CrossRef ADS Google scholar
[6]
I. Bloch . Ultracold quantum gases in optical lattices. Nat. Phys., 2005, 1( 1): 23
CrossRef ADS Google scholar
[7]
I. Bloch , J. Dalibard , W. Zwerger . Many-body physics with ultracold gases. Rev. Mod. Phys., 2008, 80( 3): 885
CrossRef ADS Google scholar
[8]
W. S. Bakr J. I. Gillen A. Peng S . Fölling, and M. Greiner, A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice, Nature 462(7269), 74 ( 2009)
[9]
M. Takamoto , F. L. Hong , R. Higashi , H. Katori . An optical lattice clock. Nature, 2005, 435( 7040): 321
CrossRef ADS Google scholar
[10]
T. Calarco , E. A. Hinds , D. Jaksch , J. Schmiedmayer , J. I. Cirac , P. Zoller . Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps. Phys. Rev. A, 2000, 61( 2): 022304
CrossRef ADS Google scholar
[11]
C. Monroe . Quantum information processing with atoms and photons. Nature, 2002, 416( 6877): 238
CrossRef ADS Google scholar
[12]
M. S. Rudner , N. H. Lindner , E. Berg , M. Levin . Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X, 2013, 3( 3): 031005
CrossRef ADS Google scholar
[13]
V. Bastidas , C. Emary , B. Regler , T. Brandes . Nonequilibrium quantum phase transitions in the Dicke model. Phys. Rev. Lett., 2012, 108( 4): 043003
CrossRef ADS Google scholar
[14]
S. Choi , D. A. Abanin , M. D. Lukin . Dynamically induced many-body localization. Phys. Rev. B, 2018, 97( 10): 100301
CrossRef ADS Google scholar
[15]
D. S. Bhakuni , R. Nehra , A. Sharma . Drive-induced many-body localization and coherent destruction of Stark many-body localization. Phys. Rev. B, 2020, 102( 2): 024201
CrossRef ADS Google scholar
[16]
A. Eckardt . Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys., 2017, 89( 1): 011004
CrossRef ADS Google scholar
[17]
H. Lignier , C. Sias , D. Ciampini , Y. Singh , A. Zenesini , O. Morsch , E. Arimondo . Dynamical control of matter-wave tunneling in periodic potentials. Phys. Rev. Lett., 2007, 99( 22): 220403
CrossRef ADS Google scholar
[18]
A. Eckardt , M. Holthaus , H. Lignier , A. Zenesini , D. Ciampini , O. Morsch , E. Arimondo . Exploring dynamic localization with a Bose−Einstein condensate. Phys. Rev. A, 2009, 79( 1): 013611
CrossRef ADS Google scholar
[19]
C. E. Creffield , F. Sols , D. Ciampini , O. Morsch , E. Arimondo . Expansion of matter waves in static and driven periodic potentials. Phys. Rev. A, 2010, 82( 3): 035601
CrossRef ADS Google scholar
[20]
L. W. Clark , L. Feng , C. Chin . Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition. Science, 2016, 354( 6312): 606
CrossRef ADS Google scholar
[21]
L. Feng , L. W. Clark , A. Gaj , C. Chin . Coherent inflationary dynamics for Bose–Einstein condensates crossing a quantum critical point. Nat. Phys., 2018, 14( 3): 269
CrossRef ADS Google scholar
[22]
A. V. Gorshkov , S. R. Manmana , G. Chen , E. Demler , M. D. Lukin , A. M. Rey . Quantum magnetism with polar alkali-metal dimers. Phys. Rev. A, 2011, 84( 3): 033619
CrossRef ADS Google scholar
[23]
J. Levinsen , N. R. Cooper , G. V. Shlyapnikov . Topological px+ ipy superfluid phase of fermionic polar molecules. Phys. Rev. A, 2011, 84( 1): 013603
CrossRef ADS Google scholar
[24]
M. A. Baranov , M. Dalmonte , G. Pupillo , P. Zoller . Condensed matter theory of dipolar quantum gases. Chem. Rev., 2012, 112( 9): 5012
CrossRef ADS Google scholar
[25]
M. Wall K. Hazzard A. M. Rey, Quantum magnetism with ultracold molecules, in: From Atomic to Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities, World Scientific, 2015, page 3
[26]
N. Y. Yao M. P. Zaletel D. M. Stamper-Kurn A . Vishwanath, A quantum dipolar spin liquid, Nat. Phys. 14(4), 405 ( 2018)
[27]
I. Kozyryev , N. R. Hutzler . Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules. Phys. Rev. Lett., 2017, 119( 13): 133002
CrossRef ADS Google scholar
[28]
S. Kondov , C. H. Lee , K. Leung , C. Liedl , I. Majewska , R. Moszynski , T. Zelevinsky . Molecular lattice clock with long vibrational coherence. Nat. Phys., 2019, 15( 11): 1118
CrossRef ADS Google scholar
[29]
J. Lim , J. Almond , M. Trigatzis , J. Devlin , N. Fitch , B. Sauer , M. Tarbutt , E. Hinds . Laser cooled YbF molecules for measuring the electron’s electric dipole moment. Phys. Rev. Lett., 2018, 120( 12): 123201
CrossRef ADS Google scholar
[30]
S. Ospelkaus , K. K. Ni , D. Wang , M. De Miranda , B. Neyenhuis , G. Quéméner , P. Julienne , J. Bohn , D. Jin , J. Ye . Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science, 2010, 327( 5967): 853
CrossRef ADS Google scholar
[31]
A. Klein , Y. Shagam , W. Skomorowski , P. S. Żuchowski , M. Pawlak , L. Janssen , N. Moiseyev , S. Y. van de Meerakker , A. van der Avoird , C. P. Koch , E. Narevicius . Directly probing anisotropy in atom–molecule collisions through quantum scattering resonances. Nat. Phys., 2017, 13( 1): 35
CrossRef ADS Google scholar
[32]
M. G. Hu , Y. Liu , D. D. Grimes , Y. W. Lin , A. H. Gheorghe , R. Vexiau , N. Bouloufa-Maafa , O. Dulieu , T. Rosenband , K. K. Ni . Direct observation of bimolecular reactions of ultracold KRb molecules. Science, 2019, 366( 6469): 1111
CrossRef ADS Google scholar
[33]
Y. Liu , L. Luo . Molecular collisions: From near-cold to ultra-cold. Front. Phys., 2021, 16( 4): 42300
CrossRef ADS Google scholar
[34]
D. DeMille . Quantum computation with trapped polar molecules. Phys. Rev. Lett., 2002, 88( 6): 067901
CrossRef ADS Google scholar
[35]
K. K. Ni , T. Rosenband , D. D. Grimes . Dipolar exchange quantum logic gate with polar molecules. Chem. Sci., 2018, 9( 33): 6830
CrossRef ADS Google scholar
[36]
E. R. Hudson , W. C. Campbell . Dipolar quantum logic for freely rotating trapped molecular ions. Phys. Rev. A, 2018, 98( 4): 040302
CrossRef ADS Google scholar
[37]
V. V. Albert , J. P. Covey , J. Preskill . Robust encoding of a qubit in a molecule. Phys. Rev. X, 2020, 10( 3): 031050
CrossRef ADS Google scholar
[38]
A. Osterwalder , S. A. Meek , G. Hammer , H. Haak , G. Meijer . Deceleration of neutral molecules in macroscopic traveling traps. Phys. Rev. A, 2010, 81( 5): 051401
CrossRef ADS Google scholar
[39]
S. A. Meek, S. A. Meek, Ph. D. thesis, Freie Universität, 2010
[40]
S. Y. van de Meerakker , H. L. Bethlem , N. Vanhaecke , G. Meijer . Manipulation and control of molecular beams. Chem. Rev., 2012, 112( 9): 4828
CrossRef ADS Google scholar
[41]
H. L. Bethlem , F. M. Crompvoets , R. T. Jongma , S. Y. van de Meerakker , G. Meijer . Deceleration and trapping of ammonia using time-varying electric fields. Phys. Rev. A, 2002, 65( 5): 053416
CrossRef ADS Google scholar
[42]
S. Y. Buhmann , M. Tarbutt , S. Scheel , E. Hinds . Surface-induced heating of cold polar molecules. Phys. Rev. A, 2008, 78( 5): 052901
CrossRef ADS Google scholar
[43]
S. A. Meek , G. Santambrogio , B. G. Sartakov , H. Conrad , G. Meijer . Suppression of nonadiabatic losses of molecules from chip-based microtraps. Phys. Rev. A, 2011, 83( 3): 033413
CrossRef ADS Google scholar
[44]
F. M. H. Crompvoets , R. T. Jongma , H. L. Bethlem , A. J. A. van Roij , G. Meijer . Longitudinal focusing and cooling of a molecular beam. Phys. Rev. Lett., 2002, 89( 9): 093004
CrossRef ADS Google scholar
[45]
J. J. Hudson , D. M. Kara , I. Smallman , B. E. Sauer , M. R. Tarbutt , E. A. Hinds . Improved measurement of the shape of the electron. Nature, 2011, 473( 7348): 493
CrossRef ADS Google scholar
[46]
D. DeMille , S. B. Cahn , D. Murphree , D. A. Rahmlow , M. G. Kozlov . Using molecules to measure nuclear spin-dependent parity violation. Phys. Rev. Lett., 2008, 100( 2): 023003
CrossRef ADS Google scholar
[47]
B. Darquié , C. Stoeffler , A. Shelkovnikov , C. Daussy , A. Amy‐Klein , C. Chardonnet , S. Zrig , L. Guy , J. Crassous , P. Soulard , P. Asselin , T. R. Huet , P. Schwerdtfeger , R. Bast , T. Saue . Progress toward the first observation of parity violation in chiral molecules by high‐resolution laser spectroscopy. Chirality, 2010, 22( 10): 870
CrossRef ADS Google scholar
[48]
K. Baklanov , A. Petrov , A. Titov , M. Kozlov . Progress toward the electron electric-dipole-moment search: Theoretical study of the PbF molecule. Phys. Rev. A, 2010, 82( 6): 060501
CrossRef ADS Google scholar
[49]
P. Aggarwal , Y. Yin , K. Esajas , H. Bethlem , A. Boeschoten , A. Borschevsky , S. Hoekstra , K. Jungmann , V. Marshall , T. Meijknecht , M. C. Mooij , R. G. E. Timmermans , A. Touwen , W. Ubachs , L. Willmann . Deceleration and trapping of SrF molecules. Phys. Rev. Lett., 2021, 127( 17): 173201
CrossRef ADS Google scholar
[50]
J. Struck , C. Ölschläger , M. Weinberg , P. Hauke , J. Simonet , A. Eckardt , M. Lewenstein , K. Sengstock , P. Windpassinger . Tunable gauge potential for neutral and spinless particles in driven optical lattices. Phys. Rev. Lett., 2012, 108( 22): 225304
CrossRef ADS Google scholar
[51]
A. Soba , P. Tierno , T. M. Fischer , F. Saguès . Dynamics of a paramagnetic colloidal particle driven on a magnetic-bubble lattice. Phys. Rev. E, 2008, 77( 6): 060401
CrossRef ADS Google scholar
[52]
B. G. Englert , M. Mielenz , C. Sommer , J. Bayerl , M. Motsch , P. W. Pinkse , G. Rempe , M. Zeppenfeld . Storage and adiabatic cooling of polar molecules in a microstructured trap. Phys. Rev. Lett., 2011, 107( 26): 263003
CrossRef ADS Google scholar
[53]
M. Zeppenfeld , B. G. Englert , R. Glöckner , A. Prehn , M. Mielenz , C. Sommer , L. D. van Buuren , M. Motsch , G. Rempe . Sisyphus cooling of electrically trapped polyatomic molecules. Nature, 2012, 491( 7425): 570
CrossRef ADS Google scholar
[54]
J. Märkle , A. Allen , P. Federsel , B. Jetter , A. Günther , J. Fortágh , N. Proukakis , T. Judd . Evaporative cooling of cold atoms at surfaces. Phys. Rev. A, 2014, 90( 2): 023614
CrossRef ADS Google scholar
[55]
F. Schäfer , T. Fukuhara , S. Sugawa , Y. Takasu , Y. Takahashi . Tools for quantum simulation with ultracold atoms in optical lattices. Nat. Rev. Phys., 2020, 2( 8): 411
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11834003, 91536218, and 11874151), the Fundamental Research Funds for the Central Universities, the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and the Young Top-Notch Talent Support Program of Shanghai.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(2676 KB)

Accesses

Citations

Detail

Sections
Recommended

/