Novel two-dimensional PdSe phase: A puckered material with excellent electronic and optical properties
Mingyun Huang, Xingxing Jiang, Yueshao Zheng, Zhengwei Xu, Xiong-Xiong Xue, Keqiu Chen, Yexin Feng
Novel two-dimensional PdSe phase: A puckered material with excellent electronic and optical properties
By combining structural search and first-principles calculations, we predict a new stable two-dimensional PdSe monolayer, and systematically investigate its structural, electronic and optical properties. The calculated formation enthalpy, phonon spectra and molecular dynamic simulations confirm that PdSe monolayer possesses excellent thermodynamic and dynamic stability. PdSe monolayer is a semiconductor with an indirect band gap of ∼ 1.10 eV. The carrier transport of PdSe monolayer is dominated by hole and exhibits remarkable anisotropy due to the intrinsic structure anisotropy. The optical properties also show obvious anisotropic characteristic with considerable absorption coefficient and broad absorption from the visible to ultraviolet regions. Benefiting from these excellent physical properties, PdSe monolayer is expected to be a promising candidate as electronic and optoelectronic devices.
first-principles calculation / two-dimensional (2D) / electronic structure / structural search / PdSe
[1] |
H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, From bulk to monolayer MoS2: Evolution of Raman scattering, Adv. Funct. Mater. 22(7), 1385 (2012)
CrossRef
ADS
Google scholar
|
[2] |
J. Sun, H. Shi, T. Siegrist, and D. J. Singh, Electronic, transport, and optical properties of bulk and mono-layer PdSe2, Appl. Phys. Lett. 107(15), 153902 (2015)
CrossRef
ADS
Google scholar
|
[3] |
X. X. Xue, S. Shen, X. Jiang, P. Sengdala, K. Chen, and Y. Feng, Tuning the catalytic property of phosphorene for oxygen evolution and reduction reactions by changing oxidation degree, J. Phys. Chem. Lett. 10(12), 3440 (2019)
CrossRef
ADS
Google scholar
|
[4] |
X. X. Xue, L. M. Tang, K. Chen, L. Zhang, E. G. Wang, and Y. Feng, Bifunctional mechanism of N, P co-doped graphene for catalyzing oxygen reduction and evolution reactions, J. Phys. Phys. 150(10), 104701 (2019)
CrossRef
ADS
Google scholar
|
[5] |
M. Qiao, J. Liu, Y. Wang, Y. Li, and Z. Chen, PdSeO3 monolayer: Promising inorganic 2D photocatalyst for direct overall water splitting without using sacrificial reagents and cocatalysts, J. Am. Chem. Soc. 140(38), 12256 (2018)
CrossRef
ADS
Google scholar
|
[6] |
K. S. Novoselov, V. I. Fal ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, A roadmap for graphene, Nature 490(7419), 192 (2012)
CrossRef
ADS
Google scholar
|
[7] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef
ADS
Google scholar
|
[8] |
K. S. Novoselov, D. V. Andreeva, W. C. Ren, and G. C. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)
CrossRef
ADS
Google scholar
|
[9] |
X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold, A. H. MacDonald, and D. K. Efetov, Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene, Nature 574(7780), 653 (2019)
CrossRef
ADS
Google scholar
|
[10] |
M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Tuning superconductivity in twisted bilayer graphene, Science 363(6431), 1059 (2019)
CrossRef
ADS
Google scholar
|
[11] |
Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional super-conductivity in magic-angle graphene superlattices, Nature 556(7699), 43 (2018)
CrossRef
ADS
Google scholar
|
[12] |
Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature 556(7699), 80 (2018)
CrossRef
ADS
Google scholar
|
[13] |
C. Zhi, Y. Bando, C. Tang, H. Kuwahara, and D. Golberg, Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties, Adv. Mater. 21(28), 2889 (2009)
CrossRef
ADS
Google scholar
|
[14] |
J. H. Warner, M. H. Rummeli, A. Bachmatiuk, and B. Buchner, Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation, ACS Nano 4(3), 1299 (2010)
CrossRef
ADS
Google scholar
|
[15] |
R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions, Adv. Mater. 23(34), 3944 (2011)
CrossRef
ADS
Google scholar
|
[16] |
J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of two-dimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)
CrossRef
ADS
Google scholar
|
[17] |
Y. Liu, Y. Zhou, H. Zhang, F. Ran, W. Zhao, L. Wang, C. Pei, J. Zhang, X. Huang, and H. Li, Probing interlayer interactions in WSe2-graphene heterostructures by ultralowfrequency Raman spectroscopy, Front. Phys. 14(1), 13607 (2019)
CrossRef
ADS
Google scholar
|
[18] |
X. X. Xue, Y. Feng, K. Chen, and L. Zhang, The vertical growth of MoS2 layers at the initial stage of CVD from first-principles, J. Phys. Phys. 148(13), 134704 (2018)
CrossRef
ADS
Google scholar
|
[19] |
J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, Highmobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun. 5(1), 4475 (2014)
CrossRef
ADS
Google scholar
|
[20] |
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)
CrossRef
ADS
Google scholar
|
[21] |
L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)
CrossRef
ADS
Google scholar
|
[22] |
L. P. Tang, L. M. Tang, H. Geng, Y. P. Yi, Z. Wei, K. Q. Chen, and H. X. Deng, Tuning transport performance in two-dimensional metal-organic framework semiconductors: Role of the metal d band, Appl. Phys. Lett. 112(1), 012101 (2018)
CrossRef
ADS
Google scholar
|
[23] |
S. L. James, Metal–organic frameworks, Chem. Soc. Rev. 32(5), 276 (2003)
CrossRef
ADS
Google scholar
|
[24] |
L. Sun, M. G. Campbell, and M. Dinca, Electrically conductive porous metal-organic frameworks, Angew. Chem. Int. Ed. 55(11), 3566 (2016)
CrossRef
ADS
Google scholar
|
[25] |
A. J. Mannix, X. F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam, and N. P. Guisinger, Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs, Science 350(6267), 1513 (2015)
CrossRef
ADS
Google scholar
|
[26] |
Z. Zhang, Y. Yang, E. S. Penev, and B. I. Yakobson, Elasticity, flexibility, and ideal strength of borophenes, Adv. Funct. Mater. 27(9), 1605059 (2017)
CrossRef
ADS
Google scholar
|
[27] |
B. K. Agrawal, P. S. Yadav, S. Kumar, and S. Agrawal, First-principles calculation of Ga-based semiconductors, Phys. Rev. B 52(7), 4896 (1995)
CrossRef
ADS
Google scholar
|
[28] |
S. Massidda, A. Continenza, A. J. Freeman, T. M. de Pascale, F. Meloni, and M. Serra, Structural and electronic properties of narrow-band-gap semiconductors: InP, InAs, and InSb, Phys. Rev. B 41(17), 12079 (1990)
CrossRef
ADS
Google scholar
|
[29] |
G. D. Nguyen, L. Liang, Q. Zou, M. Fu, A. D. Oyedele, B. G. Sumpter, Z. Liu, Z. Gai, K. Xiao, and A. P. Li, 3D imaging and manipulation of subsurface selenium vacancies in PdSe2, Phys. Rev. Lett. 121(8), 086101 (2018)
CrossRef
ADS
Google scholar
|
[30] |
J. Lin, S. Zuluaga, P. Yu, Z. Liu, S. T. Pantelides, and K. Suenaga, Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2, Phys. Rev. Lett. 119(1), 016101 (2017)
CrossRef
ADS
Google scholar
|
[31] |
X. Zhu, F. Li, Y. Wang, M. Qiao, and Y. Li, Pd2Se3 monolayer: A novel two-dimensional material with excellent electronic, transport, and optical properties, J. Mater. Chem. C 6(16), 4494 (2018)
CrossRef
ADS
Google scholar
|
[32] |
Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82(9), 094116 (2010)
CrossRef
ADS
Google scholar
|
[33] |
Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, J. Mater. Chem. C 183(10), 2063 (2012)
CrossRef
ADS
Google scholar
|
[34] |
Y. Wang, M. Miao, J. Lv, L. Zhu, K. Yin, H. Liu, and Y. Ma, An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm, J. Phys. Phys. 137(22), 224108 (2012)
CrossRef
ADS
Google scholar
|
[35] |
J. Lv, Y. Wang, L. Zhu, and Y. Ma, Particle-swarm structure prediction on clusters, J. Phys. Phys. 137(8), 084104 (2012)
CrossRef
ADS
Google scholar
|
[36] |
X. Jiang, Y. Zheng, X. X. Xue, J. Dai, and Y. Feng, Ab initio study of the miscibility for solid hydrogen-helium mixtures at high pressure, J. Phys. Phys. 152(7), 074701 (2020)
CrossRef
ADS
Google scholar
|
[37] |
K. Hu, J. Lian, L. Zhu, Q. Chen, and S. Y. Xie, Prediction of Fe2P-type TiTe2 under pressure, Phys. Rev. B 101(13), 134109 (2020)
|
[38] |
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef
ADS
Google scholar
|
[39] |
G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
CrossRef
ADS
Google scholar
|
[40] |
G. Kresse, J. Furthmuller, and J. Hafner, Theory of the crystal structures of selenium and tellurium: The effect of generalized-gradient corrections to the local-density approximation, Phys. Rev. B 50(18), 13181 (1994)
CrossRef
ADS
Google scholar
|
[41] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[42] |
Y. Zheng, X. Jiang, X. Xue, J. Dai, and Y. Feng, Ab initio study of pressure-driven phase transition in FePS3 and FePSe2, Phys. Rev. B 100(17), 174102 (2019)
CrossRef
ADS
Google scholar
|
[43] |
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmente d-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef
ADS
Google scholar
|
[44] |
P. E. Blöchl, Projector augmente d-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef
ADS
Google scholar
|
[45] |
H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
CrossRef
ADS
Google scholar
|
[46] |
A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008)
CrossRef
ADS
Google scholar
|
[47] |
G. J. Martyna, M. L. Klein, and M. Tuckerman, Nosé–Hoover chains: The canonical ensemble via continuous dynamics, J. Phys. Phys. 97(4), 2635 (1992)
CrossRef
ADS
Google scholar
|
[48] |
Y. Feng, F. Li, Z. Hu, X. Luo, L. Zhang, X. F. Zhou, H. T. Wang, J. J. Xu, and E. G. Wang, Tuning the catalytic property of nitrogen-doped graphene for cathode oxygen reduction reaction, Phys. Rev. B 85(15), 155454 (2012)
CrossRef
ADS
Google scholar
|
[49] |
W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, Intrinsic structural defects in monolayer molybdenum disulfide, Nano Lett. 13(6), 2615 (2013)
CrossRef
ADS
Google scholar
|
[50] |
Y. Feng, K. Chen, X. Z. Li, E. Wang, and L. Zhang, Hydrogen induced contrasting modes of initial nucleations of graphene on transition metal surfaces, J. Phys. Phys. 146(3), 034704 (2017)
CrossRef
ADS
Google scholar
|
[51] |
J. Tan, K. Chen, and L. M. Tang, Out-of-plane spontaneous polarization and superior photoelectricity in two-dimensional SiSn, J. Phys.: Condens. Matter 32(6), 065003 (2020)
CrossRef
ADS
Google scholar
|
[52] |
J. Bardeen and W. Shockley, Deformation potentials and mobilities in non-polar crystals, Phys. Rev. 80(1), 72 (1950)
CrossRef
ADS
Google scholar
|
[53] |
A. Franceschetti, S. H. Wei, and A. Zunger, Effects of ordering on the electron effective mass and strain deformation potential in GaInP2: Deficiencies of the k.p model, Phys. Rev. B 52(19), 13992 (1995)
CrossRef
ADS
Google scholar
|
[54] |
S. Saha, T. P. Sinha, and A. Mookerjee, Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3, Phys. Rev. B 62(13), 8828 (2000)
CrossRef
ADS
Google scholar
|
[55] |
N. Miao, B. Xu, N. C. Bristowe, J. Zhou, and Z. Sun, Tunable magnetism and extraordinary sunlight absorbance in indium triphosphide monolayer, J. Am. Chem. Soc. 139(32), 11125 (2017)
CrossRef
ADS
Google scholar
|
[56] |
Y. F. Ding, Q. Q. Zhao, Z. L. Yu, Y. Q. Zhao, B. Liu, P. B. He, H. Zhou, K. Li, S. F. Yin, and M. Q. Cai, Strong thickness-dependent quantum confinement in all-inorganic perovskite Cs2PbI4 with a Ruddlesden–Popper structure, J. Mater. Chem. C 7(24), 7433 (2019)
CrossRef
ADS
Google scholar
|
[57] |
A. D. Becke, Perspective: Fifty years of density-functional theory in chemical physics, J. Phys. Phys. 140(18), 18A301 (2014)
CrossRef
ADS
Google scholar
|
[58] |
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
CrossRef
ADS
Google scholar
|
[59] |
S. Lebègue and O. Eriksson, Electronic structure of two-dimensional crystals from ab initio theory, Phys. Rev. B 79(11), 115409 (2009)
CrossRef
ADS
Google scholar
|
[60] |
C. Ataca and S. Ciraci, Functionalization of single-layer MoS2 honeycomb structures, J. Mater. Chem. C 115(27), 13303 (2011)
CrossRef
ADS
Google scholar
|
[61] |
A. D. Oyedele, S. Yang, L. Liang, A. A. Puretzky, K. Wang, J. Zhang, P. Yu, P. R. Pudasaini, A. W. Ghosh, Z. Liu, C. M. Rouleau, B. G. Sumpter, M. F. Chisholm, W. Zhou, P. D. Rack, D. B. Geohegan, and K. Xiao, PdSe2: Pentagonal two-dimensional layers with high air stability for electronics, J. Am. Chem. Soc. 139(40), 14090 (2017)
CrossRef
ADS
Google scholar
|
[62] |
B. Chakraborty, H. S. S. R. Matte, A. K. Sood, and C. N. R. Rao, Layer-dependent resonant Raman scattering of a few layer MoS2, J. Raman Spectrosc. 44(1), 92 (2013)
CrossRef
ADS
Google scholar
|
[63] |
W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and Osgood, Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy, Phys. Rev. Lett. 111(10), 106801 (2013)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |