Novel two-dimensional PdSe phase: A puckered material with excellent electronic and optical properties

Mingyun Huang, Xingxing Jiang, Yueshao Zheng, Zhengwei Xu, Xiong-Xiong Xue, Keqiu Chen, Yexin Feng

PDF(1393 KB)
PDF(1393 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 53504. DOI: 10.1007/s11467-022-1154-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Novel two-dimensional PdSe phase: A puckered material with excellent electronic and optical properties

Author information +
History +

Abstract

By combining structural search and first-principles calculations, we predict a new stable two-dimensional PdSe monolayer, and systematically investigate its structural, electronic and optical properties. The calculated formation enthalpy, phonon spectra and molecular dynamic simulations confirm that PdSe monolayer possesses excellent thermodynamic and dynamic stability. PdSe monolayer is a semiconductor with an indirect band gap of ∼ 1.10 eV. The carrier transport of PdSe monolayer is dominated by hole and exhibits remarkable anisotropy due to the intrinsic structure anisotropy. The optical properties also show obvious anisotropic characteristic with considerable absorption coefficient and broad absorption from the visible to ultraviolet regions. Benefiting from these excellent physical properties, PdSe monolayer is expected to be a promising candidate as electronic and optoelectronic devices.

Graphical abstract

Keywords

first-principles calculation / two-dimensional (2D) / electronic structure / structural search / PdSe

Cite this article

Download citation ▾
Mingyun Huang, Xingxing Jiang, Yueshao Zheng, Zhengwei Xu, Xiong-Xiong Xue, Keqiu Chen, Yexin Feng. Novel two-dimensional PdSe phase: A puckered material with excellent electronic and optical properties. Front. Phys., 2022, 17(5): 53504 https://doi.org/10.1007/s11467-022-1154-5

References

[1]
H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, From bulk to monolayer MoS2: Evolution of Raman scattering, Adv. Funct. Mater. 22(7), 1385 (2012)
CrossRef ADS Google scholar
[2]
J. Sun, H. Shi, T. Siegrist, and D. J. Singh, Electronic, transport, and optical properties of bulk and mono-layer PdSe2, Appl. Phys. Lett. 107(15), 153902 (2015)
CrossRef ADS Google scholar
[3]
X. X. Xue, S. Shen, X. Jiang, P. Sengdala, K. Chen, and Y. Feng, Tuning the catalytic property of phosphorene for oxygen evolution and reduction reactions by changing oxidation degree, J. Phys. Chem. Lett. 10(12), 3440 (2019)
CrossRef ADS Google scholar
[4]
X. X. Xue, L. M. Tang, K. Chen, L. Zhang, E. G. Wang, and Y. Feng, Bifunctional mechanism of N, P co-doped graphene for catalyzing oxygen reduction and evolution reactions, J. Phys. Phys. 150(10), 104701 (2019)
CrossRef ADS Google scholar
[5]
M. Qiao, J. Liu, Y. Wang, Y. Li, and Z. Chen, PdSeO3 monolayer: Promising inorganic 2D photocatalyst for direct overall water splitting without using sacrificial reagents and cocatalysts, J. Am. Chem. Soc. 140(38), 12256 (2018)
CrossRef ADS Google scholar
[6]
K. S. Novoselov, V. I. Fal ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, A roadmap for graphene, Nature 490(7419), 192 (2012)
CrossRef ADS Google scholar
[7]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef ADS Google scholar
[8]
K. S. Novoselov, D. V. Andreeva, W. C. Ren, and G. C. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)
CrossRef ADS Google scholar
[9]
X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold, A. H. MacDonald, and D. K. Efetov, Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene, Nature 574(7780), 653 (2019)
CrossRef ADS Google scholar
[10]
M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Tuning superconductivity in twisted bilayer graphene, Science 363(6431), 1059 (2019)
CrossRef ADS Google scholar
[11]
Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional super-conductivity in magic-angle graphene superlattices, Nature 556(7699), 43 (2018)
CrossRef ADS Google scholar
[12]
Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature 556(7699), 80 (2018)
CrossRef ADS Google scholar
[13]
C. Zhi, Y. Bando, C. Tang, H. Kuwahara, and D. Golberg, Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties, Adv. Mater. 21(28), 2889 (2009)
CrossRef ADS Google scholar
[14]
J. H. Warner, M. H. Rummeli, A. Bachmatiuk, and B. Buchner, Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation, ACS Nano 4(3), 1299 (2010)
CrossRef ADS Google scholar
[15]
R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions, Adv. Mater. 23(34), 3944 (2011)
CrossRef ADS Google scholar
[16]
J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of two-dimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)
CrossRef ADS Google scholar
[17]
Y. Liu, Y. Zhou, H. Zhang, F. Ran, W. Zhao, L. Wang, C. Pei, J. Zhang, X. Huang, and H. Li, Probing interlayer interactions in WSe2-graphene heterostructures by ultralowfrequency Raman spectroscopy, Front. Phys. 14(1), 13607 (2019)
CrossRef ADS Google scholar
[18]
X. X. Xue, Y. Feng, K. Chen, and L. Zhang, The vertical growth of MoS2 layers at the initial stage of CVD from first-principles, J. Phys. Phys. 148(13), 134704 (2018)
CrossRef ADS Google scholar
[19]
J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, Highmobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun. 5(1), 4475 (2014)
CrossRef ADS Google scholar
[20]
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)
CrossRef ADS Google scholar
[21]
L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)
CrossRef ADS Google scholar
[22]
L. P. Tang, L. M. Tang, H. Geng, Y. P. Yi, Z. Wei, K. Q. Chen, and H. X. Deng, Tuning transport performance in two-dimensional metal-organic framework semiconductors: Role of the metal d band, Appl. Phys. Lett. 112(1), 012101 (2018)
CrossRef ADS Google scholar
[23]
S. L. James, Metal–organic frameworks, Chem. Soc. Rev. 32(5), 276 (2003)
CrossRef ADS Google scholar
[24]
L. Sun, M. G. Campbell, and M. Dinca, Electrically conductive porous metal-organic frameworks, Angew. Chem. Int. Ed. 55(11), 3566 (2016)
CrossRef ADS Google scholar
[25]
A. J. Mannix, X. F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam, and N. P. Guisinger, Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs, Science 350(6267), 1513 (2015)
CrossRef ADS Google scholar
[26]
Z. Zhang, Y. Yang, E. S. Penev, and B. I. Yakobson, Elasticity, flexibility, and ideal strength of borophenes, Adv. Funct. Mater. 27(9), 1605059 (2017)
CrossRef ADS Google scholar
[27]
B. K. Agrawal, P. S. Yadav, S. Kumar, and S. Agrawal, First-principles calculation of Ga-based semiconductors, Phys. Rev. B 52(7), 4896 (1995)
CrossRef ADS Google scholar
[28]
S. Massidda, A. Continenza, A. J. Freeman, T. M. de Pascale, F. Meloni, and M. Serra, Structural and electronic properties of narrow-band-gap semiconductors: InP, InAs, and InSb, Phys. Rev. B 41(17), 12079 (1990)
CrossRef ADS Google scholar
[29]
G. D. Nguyen, L. Liang, Q. Zou, M. Fu, A. D. Oyedele, B. G. Sumpter, Z. Liu, Z. Gai, K. Xiao, and A. P. Li, 3D imaging and manipulation of subsurface selenium vacancies in PdSe2, Phys. Rev. Lett. 121(8), 086101 (2018)
CrossRef ADS Google scholar
[30]
J. Lin, S. Zuluaga, P. Yu, Z. Liu, S. T. Pantelides, and K. Suenaga, Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2, Phys. Rev. Lett. 119(1), 016101 (2017)
CrossRef ADS Google scholar
[31]
X. Zhu, F. Li, Y. Wang, M. Qiao, and Y. Li, Pd2Se3 monolayer: A novel two-dimensional material with excellent electronic, transport, and optical properties, J. Mater. Chem. C 6(16), 4494 (2018)
CrossRef ADS Google scholar
[32]
Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82(9), 094116 (2010)
CrossRef ADS Google scholar
[33]
Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, J. Mater. Chem. C 183(10), 2063 (2012)
CrossRef ADS Google scholar
[34]
Y. Wang, M. Miao, J. Lv, L. Zhu, K. Yin, H. Liu, and Y. Ma, An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm, J. Phys. Phys. 137(22), 224108 (2012)
CrossRef ADS Google scholar
[35]
J. Lv, Y. Wang, L. Zhu, and Y. Ma, Particle-swarm structure prediction on clusters, J. Phys. Phys. 137(8), 084104 (2012)
CrossRef ADS Google scholar
[36]
X. Jiang, Y. Zheng, X. X. Xue, J. Dai, and Y. Feng, Ab initio study of the miscibility for solid hydrogen-helium mixtures at high pressure, J. Phys. Phys. 152(7), 074701 (2020)
CrossRef ADS Google scholar
[37]
K. Hu, J. Lian, L. Zhu, Q. Chen, and S. Y. Xie, Prediction of Fe2P-type TiTe2 under pressure, Phys. Rev. B 101(13), 134109 (2020)
[38]
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[39]
G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
CrossRef ADS Google scholar
[40]
G. Kresse, J. Furthmuller, and J. Hafner, Theory of the crystal structures of selenium and tellurium: The effect of generalized-gradient corrections to the local-density approximation, Phys. Rev. B 50(18), 13181 (1994)
CrossRef ADS Google scholar
[41]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[42]
Y. Zheng, X. Jiang, X. Xue, J. Dai, and Y. Feng, Ab initio study of pressure-driven phase transition in FePS3 and FePSe2, Phys. Rev. B 100(17), 174102 (2019)
CrossRef ADS Google scholar
[43]
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmente d-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef ADS Google scholar
[44]
P. E. Blöchl, Projector augmente d-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef ADS Google scholar
[45]
H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
CrossRef ADS Google scholar
[46]
A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008)
CrossRef ADS Google scholar
[47]
G. J. Martyna, M. L. Klein, and M. Tuckerman, Nosé–Hoover chains: The canonical ensemble via continuous dynamics, J. Phys. Phys. 97(4), 2635 (1992)
CrossRef ADS Google scholar
[48]
Y. Feng, F. Li, Z. Hu, X. Luo, L. Zhang, X. F. Zhou, H. T. Wang, J. J. Xu, and E. G. Wang, Tuning the catalytic property of nitrogen-doped graphene for cathode oxygen reduction reaction, Phys. Rev. B 85(15), 155454 (2012)
CrossRef ADS Google scholar
[49]
W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, Intrinsic structural defects in monolayer molybdenum disulfide, Nano Lett. 13(6), 2615 (2013)
CrossRef ADS Google scholar
[50]
Y. Feng, K. Chen, X. Z. Li, E. Wang, and L. Zhang, Hydrogen induced contrasting modes of initial nucleations of graphene on transition metal surfaces, J. Phys. Phys. 146(3), 034704 (2017)
CrossRef ADS Google scholar
[51]
J. Tan, K. Chen, and L. M. Tang, Out-of-plane spontaneous polarization and superior photoelectricity in two-dimensional SiSn, J. Phys.: Condens. Matter 32(6), 065003 (2020)
CrossRef ADS Google scholar
[52]
J. Bardeen and W. Shockley, Deformation potentials and mobilities in non-polar crystals, Phys. Rev. 80(1), 72 (1950)
CrossRef ADS Google scholar
[53]
A. Franceschetti, S. H. Wei, and A. Zunger, Effects of ordering on the electron effective mass and strain deformation potential in GaInP2: Deficiencies of the k.p model, Phys. Rev. B 52(19), 13992 (1995)
CrossRef ADS Google scholar
[54]
S. Saha, T. P. Sinha, and A. Mookerjee, Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3, Phys. Rev. B 62(13), 8828 (2000)
CrossRef ADS Google scholar
[55]
N. Miao, B. Xu, N. C. Bristowe, J. Zhou, and Z. Sun, Tunable magnetism and extraordinary sunlight absorbance in indium triphosphide monolayer, J. Am. Chem. Soc. 139(32), 11125 (2017)
CrossRef ADS Google scholar
[56]
Y. F. Ding, Q. Q. Zhao, Z. L. Yu, Y. Q. Zhao, B. Liu, P. B. He, H. Zhou, K. Li, S. F. Yin, and M. Q. Cai, Strong thickness-dependent quantum confinement in all-inorganic perovskite Cs2PbI4 with a Ruddlesden–Popper structure, J. Mater. Chem. C 7(24), 7433 (2019)
CrossRef ADS Google scholar
[57]
A. D. Becke, Perspective: Fifty years of density-functional theory in chemical physics, J. Phys. Phys. 140(18), 18A301 (2014)
CrossRef ADS Google scholar
[58]
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
CrossRef ADS Google scholar
[59]
S. Lebègue and O. Eriksson, Electronic structure of two-dimensional crystals from ab initio theory, Phys. Rev. B 79(11), 115409 (2009)
CrossRef ADS Google scholar
[60]
C. Ataca and S. Ciraci, Functionalization of single-layer MoS2 honeycomb structures, J. Mater. Chem. C 115(27), 13303 (2011)
CrossRef ADS Google scholar
[61]
A. D. Oyedele, S. Yang, L. Liang, A. A. Puretzky, K. Wang, J. Zhang, P. Yu, P. R. Pudasaini, A. W. Ghosh, Z. Liu, C. M. Rouleau, B. G. Sumpter, M. F. Chisholm, W. Zhou, P. D. Rack, D. B. Geohegan, and K. Xiao, PdSe2: Pentagonal two-dimensional layers with high air stability for electronics, J. Am. Chem. Soc. 139(40), 14090 (2017)
CrossRef ADS Google scholar
[62]
B. Chakraborty, H. S. S. R. Matte, A. K. Sood, and C. N. R. Rao, Layer-dependent resonant Raman scattering of a few layer MoS2, J. Raman Spectrosc. 44(1), 92 (2013)
CrossRef ADS Google scholar
[63]
W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, P. Sutter, J. Hone, and Osgood, Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy, Phys. Rev. Lett. 111(10), 106801 (2013)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1393 KB)

Accesses

Citations

Detail

Sections
Recommended

/