Vector valley Hall edge solitons in the photonic lattice with type-II Dirac cones
Yiqing Tian, Yiqi Zhang, Yongdong Li, R. Belić Milivoj
Vector valley Hall edge solitons in the photonic lattice with type-II Dirac cones
Topological edge solitons represent a significant research topic in the nonlinear topological photonics. They maintain their profiles during propagation, due to the joint action of lattice potential and nonlinearity, and at the same time are immune to defects or disorders, thanks to the topological protection. In the past few years topological edge solitons were reported in systems composed of helical waveguide arrays, in which the time-reversal symmetry is effectively broken. Very recently, topological valley Hall edge solitons have been demonstrated in straight waveguide arrays with the time-reversal symmetry preserved. However, these were scalar solitary structures. Here, for the first time, we report vector valley Hall edge solitons in straight waveguide arrays arranged according to the photonic lattice with innate type-II Dirac cones, which is different from the traditional photonic lattices with type-I Dirac cones such as honeycomb lattice. This comes about because the valley Hall edge state can possess both negative and positive dispersions, which allows the mixing of two different edge states into a vector soliton. Our results not only provide a novel avenue for manipulating topological edge states in the nonlinear regime, but also enlighten relevant research based on the lattices with type-II Dirac cones.
valley Hall effect / topological edge soliton / photonic topological insulator
[1] |
M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef
ADS
Google scholar
|
[2] |
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef
ADS
Google scholar
|
[3] |
R. Süsstrunk and S. D. Huber, Observation of phononic helical edge states in a mechanical topological insulator, Scienc. 349(6243), 47 (2015)
CrossRef
ADS
Google scholar
|
[4] |
S. D. Huber, Topological mechanics, Nat. Phys. 12(7), 621 (2016)
CrossRef
ADS
Google scholar
|
[5] |
C. He, X. Ni, H. Ge, X. C. Sun, Y. B. Chen, M. H. Lu, X. P. Liu, and Y. F. Chen, Acoustic topological insulator and robust one-way sound transport, Nat. Phys. 12(12), 1124 (2016)
CrossRef
ADS
Google scholar
|
[6] |
Y. G. Peng, C. Z. Qin, D. G. Zhao, Y. X. Shen, X. Y. Xu, M. Bao, H. Jia, and X. F. Zhu, Experimental demonstration of anomalous Floquet topological insulator for sound, Nat. Commun. 7(1), 13368 (2016)
CrossRef
ADS
Google scholar
|
[7] |
A. V. Nalitov, D. D. Solnyshkov, and G. Malpuech, Polariton Z topological insulator, Phys. Rev. Lett. 114(11), 116401 (2015)
CrossRef
ADS
Google scholar
|
[8] |
S. Klembt, T. H. Harder, O. A. Egorov, K. Winkler, R. Ge, M. A. Bandres, M. Emmerling, L. Worschech, T. C. H. Liew, M. Segev, C. Schneider, and S. Höfling, Exciton–polariton topological insulator, Naturee 562(7728), 552 (2018)
CrossRef
ADS
Google scholar
|
[9] |
G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Experimental realization of the topological Haldane model with ultracold fermions, Nature 515(7526), 237 (2014)
CrossRef
ADS
Google scholar
|
[10] |
N. Goldman, J. Dalibard, A. Dauphin, F. Gerbier, M. Lewenstein, P. Zoller, and I. B. Spielman, Direct imaging of topological edge states in cold-atom systems, Proc. Natl. Acad. Sci. USA 110(17), 6736 (2013)
CrossRef
ADS
Google scholar
|
[11] |
F. D. M. Haldane and S. Raghu, Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry, Phys. Rev. Lett. 100(1), 013904 (2008)
CrossRef
ADS
Google scholar
|
[12] |
Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacic, Observation of unidirectional backscattering-immune topological electromagnetic states, Nature 461(7265), 772 (2009)
CrossRef
ADS
Google scholar
|
[13] |
M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, Robust optical delay lines with topological protection, Nat. Phys. 7(11), 907 (2011)
CrossRef
ADS
Google scholar
|
[14] |
A. B. Khanikaev, S. Hossein Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, Photonic topological insulators, Nat. Mater. 12(3), 233 (2013)
CrossRef
ADS
Google scholar
|
[15] |
N. H. Lindner, G. Refael, and V. Galitski, Floquet topological insulator in semiconductor quantum wells, Nat. Phys. 7(6), 490 (2011)
CrossRef
ADS
Google scholar
|
[16] |
M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, Photonic Floquet topological insulators, Nature 496(7444), 196 (2013)
CrossRef
ADS
Google scholar
|
[17] |
L. J. Maczewsky, J. M. Zeuner, S. Nolte, and A. Szameit, Observation of photonic anomalous Floquet topological insulators, Nat. Commun. 8(1), 13756 (2017)
CrossRef
ADS
Google scholar
|
[18] |
S. Mukherjee, A. Spracklen, M. Valiente, E. Andersson, P. Öhberg, N. Goldman, and R. R. Thomson, Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice, Nat. Commun. 8(1), 13918 (2017)
CrossRef
ADS
Google scholar
|
[19] |
L. Lu, J. D. Joannopoulos, and M. Soljačić, Topological photonics, Nat. Photonics 8(11), 821 (2014)
CrossRef
ADS
Google scholar
|
[20] |
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Topological photonics, Rev. Mod. Phys. 91(1), 015006 (2019)
CrossRef
ADS
Google scholar
|
[21] |
M. Kim, Z. Jacob, and J. Rho, Recent advances in 2D, 3D and higher-order topological photonics, Light Sci. Appl. 9(1), 130 (2020)
CrossRef
ADS
Google scholar
|
[22] |
M. Segev and M. A. Bandres, Topological photonics: Where do we go from here? Nanophoton. 10(1), 425 (2020)
CrossRef
ADS
Google scholar
|
[23] |
H. F. Wang, B. Y. Xie, P. Zhan, M. H. Lu, and Y. F. Chen, Research progress of topological photonics, Acta Phy. Sin. 68(22), 224206 (2019) (in Chinese)
CrossRef
ADS
Google scholar
|
[24] |
H. Wang, S. K. Gupta, B. Xie, and M. Lu, Topological photonic crystals: A review, Front. Optoelectron. 13(1), 50 (2020)
CrossRef
ADS
Google scholar
|
[25] |
H. Liu, B. Xie, H. Cheng, J. Tian, and S. Chen, Topological photonic states in artificial microstructures, Chin. Opt. Lett. 19(5), 052602 (2021)
CrossRef
ADS
Google scholar
|
[26] |
H. Liu, H. N. Wang, B. Y. Xie, H. Cheng, J. G. Tian, and S. Q. Chen, Progress of two-dimensional photonic topological insulators, Chin. Opt. 14(4), 935 (2021)
|
[27] |
D. J. Bisharat, R. J. Davis, Y. Zhou, P. R. Bandaru, and D. F. Sievenpiper, Photonic topological insulators: A beginner’s introduction, IEEE Antennas Propag. Mag. 63(3), 112 (2021)
CrossRef
ADS
Google scholar
|
[28] |
D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar, Nonlinear topological photonics, Appl. Phys. Rev. 7(2), 021306 (2020)
CrossRef
ADS
Google scholar
|
[29] |
Y. Ota, K. Takata, T. Ozawa, A. Amo, Z. Jia, B. Kante, M. Notomi, Y. Arakawa, and S. Iwamoto, Active topological photonics, Nanophoton. 9(3), 547 (2020)
CrossRef
ADS
Google scholar
|
[30] |
M. Parto, Y. G. N. Liu, B. Bahari, M. Khajavikhan, and D. N. Christodoulides, Non-Hermitian and topological photonics: Optics at an exceptional point, Nanophoton. 10(1), 403 (2020)
CrossRef
ADS
Google scholar
|
[31] |
B. Bahari, A. Ndao, F. Vallini, A. El Amili, Y. Fainman, and B. Kanté, Nonreciprocal lasing in topological cavities of arbitrary geometries, Science 358(6363), 636 (2017)
CrossRef
ADS
Google scholar
|
[32] |
G. Harari, M. A. Bandres, Y. Lumer, M. C. Rechtsman, Y. D. Chong, M. Khajavikhan, D. N. Christodoulides, and M. Segev, Topological insulator laser: Theory, Science 359(6381), eaar4003 (2018)
CrossRef
ADS
Google scholar
|
[33] |
M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides, and M. Khajavikhan, Topological insulator laser: Experiments, Science 359(6381), eaar4005 (2018)
CrossRef
ADS
Google scholar
|
[34] |
Y. V. Kartashov and D. V. Skryabin, Two-dimensional topological polariton laser, Phys. Rev. Lett. 122(8), 083902 (2019)
CrossRef
ADS
Google scholar
|
[35] |
S. K. Ivanov, Y. Q. Zhang, Y. V. Kartashov, and D. V. Skryabin, Floquet topological insulator laser, APL Photonics 4(12), 126101 (2019)
CrossRef
ADS
Google scholar
|
[36] |
Y. Zeng, U. Chattopadhyay, B. Zhu, B. Qiang, J. Li, Y. Jin, L. Li, A. G. Davies, E. H. Linfield, B. Zhang, Y. Chong, and Q. J. Wang, Electrically pumped topological laser with valley edge modes, Nature 578(7794), 246 (2020)
CrossRef
ADS
Google scholar
|
[37] |
H. Zhong, Y. D. Li, D. H. Song, Y. V. Kartashov, Y. Q. Zhang, Y. P. Zhang, and Z. Chen, Topological valley Hall edge state lasing, Laser Photonics Rev. 14(7), 2000001 (2020)
CrossRef
ADS
Google scholar
|
[38] |
Y. Gong, S. Wong, A. J. Bennett, D. L. Huffaker, and S. S. Oh, Topological insulator laser using valley-Hall photonic crystals, ACS Photonics 7(8), 2089 (2020)
CrossRef
ADS
Google scholar
|
[39] |
D. Smirnova, A. Tripathi, S. Kruk, M. S. Hwang, H. R. Kim, H. G. Park, and Y. Kivshar, Room-temperature lasing from nanophotonic topological cavities, Light Sci. Appl. 9(1), 127 (2020)
CrossRef
ADS
Google scholar
|
[40] |
W. Noh, H. Nasari, H. M. Kim, Q. Le-Van, Z. Jia, C. H. Huang, and B. Kanté, Experimental demonstration of single-mode topological valley-Hall lasing at telecommunication wavelength controlled by the degree of asymmetry, Opt. Lett. 45(15), 4108 (2020)
CrossRef
ADS
Google scholar
|
[41] |
L. J. Maczewsky, M. Heinrich, M. Kremer, S. K. Ivanov, M. Ehrhardt, F. Martinez, Y. V. Kartashov, V. V. Konotop, L. Torner, D. Bauer, and A. Szameit, Nonlinearity-induced photonic topological insulator, Science 370(6517), 701 (2020)
CrossRef
ADS
Google scholar
|
[42] |
Y. V. Kartashov and D. V. Skryabin, Bistable topological insulator with exciton-polaritons, Phys. Rev. Lett. 119(25), 253904 (2017)
CrossRef
ADS
Google scholar
|
[43] |
W. Zhang, X. Chen, Y. V. Kartashov, D. V. Skryabin, and F. Ye, Finite-dimensional bistable topological insulators: From small to large, Laser Photonics Rev. 13(11), 1900198 (2019)
CrossRef
ADS
Google scholar
|
[44] |
Y. Lumer, Y. Plotnik, M. C. Rechtsman, and M. Segev, Self-localized states in photonic topological insulators, Phys. Rev. Lett. 111(24), 243905 (2013)
CrossRef
ADS
Google scholar
|
[45] |
S. Mukherjee and M. C. Rechtsman, Observation of Floquet solitons in a topological bandgap, Science 368(6493), 856 (2020)
CrossRef
ADS
Google scholar
|
[46] |
M. J. Ablowitz, C. W. Curtis, and Y. P. Ma, Linear and nonlinear traveling edge waves in optical honeycomb lattices, Phys. Rev. A 90(2), 023813 (2014)
CrossRef
ADS
Google scholar
|
[47] |
M. J. Ablowitz and J. T. Cole, Tight-binding methods for general longitudinally driven photonic lattices: Edge states and solitons, Phys. Rev. A 96(4), 043868 (2017)
CrossRef
ADS
Google scholar
|
[48] |
M. J. Ablowitz and Y. P. Ma, Strong transmission and reflection of edge modes in bounded photonic graphene, Opt. Lett. 40(20), 4635 (2015)
CrossRef
ADS
Google scholar
|
[49] |
D. Leykam and Y. D. Chong, Edge solitons in nonlinear photonic topological insulators, Phys. Rev. Lett. 117(14), 143901 (2016)
CrossRef
ADS
Google scholar
|
[50] |
S. K. Ivanov, Y. V. Kartashov, L. J. Maczewsky, A. Szameit, and V. V. Konotop, Edge solitons in Lieb topological Floquet insulator, Opt. Lett. 45(6), 1459 (2020)
CrossRef
ADS
Google scholar
|
[51] |
S. K. Ivanov, Y. V. Kartashov, L. J. Maczewsky, A. Szameit, and V. V. Konotop, Bragg solitons in topological Floquet insulators, Opt. Lett. 45(8), 2271 (2020)
CrossRef
ADS
Google scholar
|
[52] |
S. K. Ivanov, Y. V. Kartashov, A. Szameit, L. Torner, and V. V. Konotop, Vector topological edge solitons in Floquet insulators, ACS Photonics 7(3), 735 (2020)
CrossRef
ADS
Google scholar
|
[53] |
S. K. Ivanov, Y. V. Kartashov, M. Heinrich, A. Szameit, L. Torner, and V. V. Konotop, Topological dipole Floquet solitons, Phys. Rev. A 103(5), 053507 (2021)
CrossRef
ADS
Google scholar
|
[54] |
S. K. Ivanov, Y. V. Kartashov, and V. V. Konotop, Four-wave mixing Floquet topological solitons, Opt. Lett. 46(19), 4710 (2021)
CrossRef
ADS
Google scholar
|
[55] |
S. K. Ivanov, Y. V. Kartashov, and V. V. Konotop, Floquet defect solitons, Opt. Lett. 46(21), 5364 (2021)
CrossRef
ADS
Google scholar
|
[56] |
Y. V. Kartashov and D. V. Skryabin, Modulational instability and solitary waves in polariton topological insulators, Optica 3(11), 1228 (2016)
CrossRef
ADS
Google scholar
|
[57] |
D. R. Gulevich, D. Yudin, D. V. Skryabin, I. V. Iorsh, and I. A. Shelykh, Exploring nonlinear topological states of matter with exciton-polaritons: Edge solitons in kagome lattice, Sci. Rep. 7(1), 1780 (2017)
CrossRef
ADS
Google scholar
|
[58] |
C. Li, F. Ye, X. Chen, Y. V. Kartashov, A. Ferrando, L. Torner, and D. V. Skryabin, Lieb polariton topological insulators, Phys. Rev. B 97(8), 081103 (2018)
CrossRef
ADS
Google scholar
|
[59] |
Y. Q. Zhang, Y. V. Kartashov, and A. Ferrando, Interface states in polariton topological insulators, Phys. Rev. A 99(5), 053836 (2019)
CrossRef
ADS
Google scholar
|
[60] |
D. A. Smirnova, L. A. Smirnov, D. Leykam, and Y. S. Kivshar, Topological edge states and gap solitons in the nonlinear Dirac model, Laser Photonics Rev. 13(12), 1900223 (2019)
CrossRef
ADS
Google scholar
|
[61] |
W. Zhang, X. Chen, Y. V. Kartashov, V. V. Konotop, and F. Ye, Coupling of edge states and topological Bragg solitons, Phys. Rev. Lett. 123(25), 254103 (2019)
CrossRef
ADS
Google scholar
|
[62] |
H. Zhong, S. Xia, Y. Zhang, Y. Li, D. Song, C. Liu, and Z. Chen, Nonlinear topological valley Hall edge states arising from type-II Dirac cones, Adv. Photonics 3(05), 056001 (2021)
CrossRef
ADS
Google scholar
|
[63] |
Q. Tang, B. Ren, V. O. Kompanets, Y. V. Kartashov, Y. Li, and Y. Zhang, Valley Hall edge solitons in a photonic graphene, Opt. Express 29(24), 39755 (2021)
CrossRef
ADS
Google scholar
|
[64] |
B. Ren, H. Wang, V. O. Kompanets, Y. V. Kartashov, Y. Li, and Y. Zhang, Dark topological valley Hall edge solitons, Nanophoton. 10(13), 3559 (2021)
CrossRef
ADS
Google scholar
|
[65] |
Z. Y. Zhang, R. Wang, Y. Q. Zhang, Y. V. Kartashov, F. Li, H. Zhong, H. Guan, K. Gao, F. L. Li, Y. P. Zhang, and M. Xiao, Observation of edge solitons in photonic graphene, Nat. Commun. 11(1), 1902 (2020)
CrossRef
ADS
Google scholar
|
[66] |
J. W. Liu, F. L. Shi, X. T. He, G. J. Tang, W. J. Chen, X. D. Chen, and J. W. Dong, Valley photonic crystals, Adv. Phys. X 6(1), 1905546 (2021)
CrossRef
ADS
Google scholar
|
[67] |
K. C. Jin, H. Zhong, Y. D. Li, F. W. Ye, Y. P. Zhang, F. L. Li, C. L. Liu, and Y. Q. Zhang, Parametric type-II Dirac photonic lattices, Adv. Quantum Technol. 3(7), 2000015 (2020)
CrossRef
ADS
Google scholar
|
[68] |
K. T. Wang, F. Xu, B. Wang, Y. Yu, and Y. Wei, Transport features of topological corner states in honeycomb lattice with multihollow structure, Front. Phys. (Beijing.) 17(4), 43501 (2021)
CrossRef
ADS
Google scholar
|
[69] |
S. Li, Z. M. Yu, Y. Yao, and S. A. Yang, Type-II topological metals, Front. Phys. (Beijing.) 15(4), 43201 (2020)
CrossRef
ADS
Google scholar
|
[70] |
S. Stützer, Y. Plotnik, Y. Lumer, P. Titum, N. H. Lindner, M. Segev, M. C. Rechtsman, and A. Szameit, Photonic topological Anderson insulators, Nature 560(7719), 461 (2018)
CrossRef
ADS
Google scholar
|
[71] |
M. S. Kirsch, Y. Zhang, M. Kremer, L. J. Maczewsky, S. K. Ivanov, Y. V. Kartashov, L. Torner, D. Bauer, A. Szameit, and M. Heinrich, Nonlinear second-order photonic topological insulators, Nat. Phys. 17(9), 995 (2021)
CrossRef
ADS
Google scholar
|
[72] |
D. Tan, Z. Wang, B. Xu, and J. Qiu, Photonic circuits written by femtosecond laser in glass: Improved fabrication and recent progress in photonic devices, Adv. Photonics 3(02), 024002 (2021)
CrossRef
ADS
Google scholar
|
[73] |
Y. V. Kartashov, G. E. Astrakharchik, B. A. Malomed, and L. Torner, Frontiers in multidimensional self-trapping of nonlinear fields and matter, Nat. Rev. Phys. 1(3), 185 (2019)
CrossRef
ADS
Google scholar
|
[74] |
B. A. Malomed and D. Mihalache, Nonlinear waves in optical and matter-wave media: A topical survey of recent theoretical and experimental results, Rom. J. Phys. 64, 106 (2019)
|
[75] |
D. Mihalache, Localized structures in optical and matter-wave media: A selection of recent studies, Rom. Rep. Phys. 73, 403 (2021)
|
/
〈 | 〉 |