Vector valley Hall edge solitons in the photonic lattice with type-II Dirac cones

Yiqing Tian, Yiqi Zhang, Yongdong Li, R. Belić Milivoj

PDF(1048 KB)
PDF(1048 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 53503. DOI: 10.1007/s11467-021-1149-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Vector valley Hall edge solitons in the photonic lattice with type-II Dirac cones

Author information +
History +

Abstract

Topological edge solitons represent a significant research topic in the nonlinear topological photonics. They maintain their profiles during propagation, due to the joint action of lattice potential and nonlinearity, and at the same time are immune to defects or disorders, thanks to the topological protection. In the past few years topological edge solitons were reported in systems composed of helical waveguide arrays, in which the time-reversal symmetry is effectively broken. Very recently, topological valley Hall edge solitons have been demonstrated in straight waveguide arrays with the time-reversal symmetry preserved. However, these were scalar solitary structures. Here, for the first time, we report vector valley Hall edge solitons in straight waveguide arrays arranged according to the photonic lattice with innate type-II Dirac cones, which is different from the traditional photonic lattices with type-I Dirac cones such as honeycomb lattice. This comes about because the valley Hall edge state can possess both negative and positive dispersions, which allows the mixing of two different edge states into a vector soliton. Our results not only provide a novel avenue for manipulating topological edge states in the nonlinear regime, but also enlighten relevant research based on the lattices with type-II Dirac cones.

Graphical abstract

Keywords

valley Hall effect / topological edge soliton / photonic topological insulator

Cite this article

Download citation ▾
Yiqing Tian, Yiqi Zhang, Yongdong Li, R. Belić Milivoj. Vector valley Hall edge solitons in the photonic lattice with type-II Dirac cones. Front. Phys., 2022, 17(5): 53503 https://doi.org/10.1007/s11467-021-1149-7

References

[1]
M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef ADS Google scholar
[2]
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef ADS Google scholar
[3]
R. Süsstrunk and S. D. Huber, Observation of phononic helical edge states in a mechanical topological insulator, Scienc. 349(6243), 47 (2015)
CrossRef ADS Google scholar
[4]
S. D. Huber, Topological mechanics, Nat. Phys. 12(7), 621 (2016)
CrossRef ADS Google scholar
[5]
C. He, X. Ni, H. Ge, X. C. Sun, Y. B. Chen, M. H. Lu, X. P. Liu, and Y. F. Chen, Acoustic topological insulator and robust one-way sound transport, Nat. Phys. 12(12), 1124 (2016)
CrossRef ADS Google scholar
[6]
Y. G. Peng, C. Z. Qin, D. G. Zhao, Y. X. Shen, X. Y. Xu, M. Bao, H. Jia, and X. F. Zhu, Experimental demonstration of anomalous Floquet topological insulator for sound, Nat. Commun. 7(1), 13368 (2016)
CrossRef ADS Google scholar
[7]
A. V. Nalitov, D. D. Solnyshkov, and G. Malpuech, Polariton Z topological insulator, Phys. Rev. Lett. 114(11), 116401 (2015)
CrossRef ADS Google scholar
[8]
S. Klembt, T. H. Harder, O. A. Egorov, K. Winkler, R. Ge, M. A. Bandres, M. Emmerling, L. Worschech, T. C. H. Liew, M. Segev, C. Schneider, and S. Höfling, Exciton–polariton topological insulator, Naturee 562(7728), 552 (2018)
CrossRef ADS Google scholar
[9]
G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Experimental realization of the topological Haldane model with ultracold fermions, Nature 515(7526), 237 (2014)
CrossRef ADS Google scholar
[10]
N. Goldman, J. Dalibard, A. Dauphin, F. Gerbier, M. Lewenstein, P. Zoller, and I. B. Spielman, Direct imaging of topological edge states in cold-atom systems, Proc. Natl. Acad. Sci. USA 110(17), 6736 (2013)
CrossRef ADS Google scholar
[11]
F. D. M. Haldane and S. Raghu, Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry, Phys. Rev. Lett. 100(1), 013904 (2008)
CrossRef ADS Google scholar
[12]
Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacic, Observation of unidirectional backscattering-immune topological electromagnetic states, Nature 461(7265), 772 (2009)
CrossRef ADS Google scholar
[13]
M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, Robust optical delay lines with topological protection, Nat. Phys. 7(11), 907 (2011)
CrossRef ADS Google scholar
[14]
A. B. Khanikaev, S. Hossein Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, Photonic topological insulators, Nat. Mater. 12(3), 233 (2013)
CrossRef ADS Google scholar
[15]
N. H. Lindner, G. Refael, and V. Galitski, Floquet topological insulator in semiconductor quantum wells, Nat. Phys. 7(6), 490 (2011)
CrossRef ADS Google scholar
[16]
M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, Photonic Floquet topological insulators, Nature 496(7444), 196 (2013)
CrossRef ADS Google scholar
[17]
L. J. Maczewsky, J. M. Zeuner, S. Nolte, and A. Szameit, Observation of photonic anomalous Floquet topological insulators, Nat. Commun. 8(1), 13756 (2017)
CrossRef ADS Google scholar
[18]
S. Mukherjee, A. Spracklen, M. Valiente, E. Andersson, P. Öhberg, N. Goldman, and R. R. Thomson, Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice, Nat. Commun. 8(1), 13918 (2017)
CrossRef ADS Google scholar
[19]
L. Lu, J. D. Joannopoulos, and M. Soljačić, Topological photonics, Nat. Photonics 8(11), 821 (2014)
CrossRef ADS Google scholar
[20]
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Topological photonics, Rev. Mod. Phys. 91(1), 015006 (2019)
CrossRef ADS Google scholar
[21]
M. Kim, Z. Jacob, and J. Rho, Recent advances in 2D, 3D and higher-order topological photonics, Light Sci. Appl. 9(1), 130 (2020)
CrossRef ADS Google scholar
[22]
M. Segev and M. A. Bandres, Topological photonics: Where do we go from here? Nanophoton. 10(1), 425 (2020)
CrossRef ADS Google scholar
[23]
H. F. Wang, B. Y. Xie, P. Zhan, M. H. Lu, and Y. F. Chen, Research progress of topological photonics, Acta Phy. Sin. 68(22), 224206 (2019) (in Chinese)
CrossRef ADS Google scholar
[24]
H. Wang, S. K. Gupta, B. Xie, and M. Lu, Topological photonic crystals: A review, Front. Optoelectron. 13(1), 50 (2020)
CrossRef ADS Google scholar
[25]
H. Liu, B. Xie, H. Cheng, J. Tian, and S. Chen, Topological photonic states in artificial microstructures, Chin. Opt. Lett. 19(5), 052602 (2021)
CrossRef ADS Google scholar
[26]
H. Liu, H. N. Wang, B. Y. Xie, H. Cheng, J. G. Tian, and S. Q. Chen, Progress of two-dimensional photonic topological insulators, Chin. Opt. 14(4), 935 (2021)
[27]
D. J. Bisharat, R. J. Davis, Y. Zhou, P. R. Bandaru, and D. F. Sievenpiper, Photonic topological insulators: A beginner’s introduction, IEEE Antennas Propag. Mag. 63(3), 112 (2021)
CrossRef ADS Google scholar
[28]
D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar, Nonlinear topological photonics, Appl. Phys. Rev. 7(2), 021306 (2020)
CrossRef ADS Google scholar
[29]
Y. Ota, K. Takata, T. Ozawa, A. Amo, Z. Jia, B. Kante, M. Notomi, Y. Arakawa, and S. Iwamoto, Active topological photonics, Nanophoton. 9(3), 547 (2020)
CrossRef ADS Google scholar
[30]
M. Parto, Y. G. N. Liu, B. Bahari, M. Khajavikhan, and D. N. Christodoulides, Non-Hermitian and topological photonics: Optics at an exceptional point, Nanophoton. 10(1), 403 (2020)
CrossRef ADS Google scholar
[31]
B. Bahari, A. Ndao, F. Vallini, A. El Amili, Y. Fainman, and B. Kanté, Nonreciprocal lasing in topological cavities of arbitrary geometries, Science 358(6363), 636 (2017)
CrossRef ADS Google scholar
[32]
G. Harari, M. A. Bandres, Y. Lumer, M. C. Rechtsman, Y. D. Chong, M. Khajavikhan, D. N. Christodoulides, and M. Segev, Topological insulator laser: Theory, Science 359(6381), eaar4003 (2018)
CrossRef ADS Google scholar
[33]
M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides, and M. Khajavikhan, Topological insulator laser: Experiments, Science 359(6381), eaar4005 (2018)
CrossRef ADS Google scholar
[34]
Y. V. Kartashov and D. V. Skryabin, Two-dimensional topological polariton laser, Phys. Rev. Lett. 122(8), 083902 (2019)
CrossRef ADS Google scholar
[35]
S. K. Ivanov, Y. Q. Zhang, Y. V. Kartashov, and D. V. Skryabin, Floquet topological insulator laser, APL Photonics 4(12), 126101 (2019)
CrossRef ADS Google scholar
[36]
Y. Zeng, U. Chattopadhyay, B. Zhu, B. Qiang, J. Li, Y. Jin, L. Li, A. G. Davies, E. H. Linfield, B. Zhang, Y. Chong, and Q. J. Wang, Electrically pumped topological laser with valley edge modes, Nature 578(7794), 246 (2020)
CrossRef ADS Google scholar
[37]
H. Zhong, Y. D. Li, D. H. Song, Y. V. Kartashov, Y. Q. Zhang, Y. P. Zhang, and Z. Chen, Topological valley Hall edge state lasing, Laser Photonics Rev. 14(7), 2000001 (2020)
CrossRef ADS Google scholar
[38]
Y. Gong, S. Wong, A. J. Bennett, D. L. Huffaker, and S. S. Oh, Topological insulator laser using valley-Hall photonic crystals, ACS Photonics 7(8), 2089 (2020)
CrossRef ADS Google scholar
[39]
D. Smirnova, A. Tripathi, S. Kruk, M. S. Hwang, H. R. Kim, H. G. Park, and Y. Kivshar, Room-temperature lasing from nanophotonic topological cavities, Light Sci. Appl. 9(1), 127 (2020)
CrossRef ADS Google scholar
[40]
W. Noh, H. Nasari, H. M. Kim, Q. Le-Van, Z. Jia, C. H. Huang, and B. Kanté, Experimental demonstration of single-mode topological valley-Hall lasing at telecommunication wavelength controlled by the degree of asymmetry, Opt. Lett. 45(15), 4108 (2020)
CrossRef ADS Google scholar
[41]
L. J. Maczewsky, M. Heinrich, M. Kremer, S. K. Ivanov, M. Ehrhardt, F. Martinez, Y. V. Kartashov, V. V. Konotop, L. Torner, D. Bauer, and A. Szameit, Nonlinearity-induced photonic topological insulator, Science 370(6517), 701 (2020)
CrossRef ADS Google scholar
[42]
Y. V. Kartashov and D. V. Skryabin, Bistable topological insulator with exciton-polaritons, Phys. Rev. Lett. 119(25), 253904 (2017)
CrossRef ADS Google scholar
[43]
W. Zhang, X. Chen, Y. V. Kartashov, D. V. Skryabin, and F. Ye, Finite-dimensional bistable topological insulators: From small to large, Laser Photonics Rev. 13(11), 1900198 (2019)
CrossRef ADS Google scholar
[44]
Y. Lumer, Y. Plotnik, M. C. Rechtsman, and M. Segev, Self-localized states in photonic topological insulators, Phys. Rev. Lett. 111(24), 243905 (2013)
CrossRef ADS Google scholar
[45]
S. Mukherjee and M. C. Rechtsman, Observation of Floquet solitons in a topological bandgap, Science 368(6493), 856 (2020)
CrossRef ADS Google scholar
[46]
M. J. Ablowitz, C. W. Curtis, and Y. P. Ma, Linear and nonlinear traveling edge waves in optical honeycomb lattices, Phys. Rev. A 90(2), 023813 (2014)
CrossRef ADS Google scholar
[47]
M. J. Ablowitz and J. T. Cole, Tight-binding methods for general longitudinally driven photonic lattices: Edge states and solitons, Phys. Rev. A 96(4), 043868 (2017)
CrossRef ADS Google scholar
[48]
M. J. Ablowitz and Y. P. Ma, Strong transmission and reflection of edge modes in bounded photonic graphene, Opt. Lett. 40(20), 4635 (2015)
CrossRef ADS Google scholar
[49]
D. Leykam and Y. D. Chong, Edge solitons in nonlinear photonic topological insulators, Phys. Rev. Lett. 117(14), 143901 (2016)
CrossRef ADS Google scholar
[50]
S. K. Ivanov, Y. V. Kartashov, L. J. Maczewsky, A. Szameit, and V. V. Konotop, Edge solitons in Lieb topological Floquet insulator, Opt. Lett. 45(6), 1459 (2020)
CrossRef ADS Google scholar
[51]
S. K. Ivanov, Y. V. Kartashov, L. J. Maczewsky, A. Szameit, and V. V. Konotop, Bragg solitons in topological Floquet insulators, Opt. Lett. 45(8), 2271 (2020)
CrossRef ADS Google scholar
[52]
S. K. Ivanov, Y. V. Kartashov, A. Szameit, L. Torner, and V. V. Konotop, Vector topological edge solitons in Floquet insulators, ACS Photonics 7(3), 735 (2020)
CrossRef ADS Google scholar
[53]
S. K. Ivanov, Y. V. Kartashov, M. Heinrich, A. Szameit, L. Torner, and V. V. Konotop, Topological dipole Floquet solitons, Phys. Rev. A 103(5), 053507 (2021)
CrossRef ADS Google scholar
[54]
S. K. Ivanov, Y. V. Kartashov, and V. V. Konotop, Four-wave mixing Floquet topological solitons, Opt. Lett. 46(19), 4710 (2021)
CrossRef ADS Google scholar
[55]
S. K. Ivanov, Y. V. Kartashov, and V. V. Konotop, Floquet defect solitons, Opt. Lett. 46(21), 5364 (2021)
CrossRef ADS Google scholar
[56]
Y. V. Kartashov and D. V. Skryabin, Modulational instability and solitary waves in polariton topological insulators, Optica 3(11), 1228 (2016)
CrossRef ADS Google scholar
[57]
D. R. Gulevich, D. Yudin, D. V. Skryabin, I. V. Iorsh, and I. A. Shelykh, Exploring nonlinear topological states of matter with exciton-polaritons: Edge solitons in kagome lattice, Sci. Rep. 7(1), 1780 (2017)
CrossRef ADS Google scholar
[58]
C. Li, F. Ye, X. Chen, Y. V. Kartashov, A. Ferrando, L. Torner, and D. V. Skryabin, Lieb polariton topological insulators, Phys. Rev. B 97(8), 081103 (2018)
CrossRef ADS Google scholar
[59]
Y. Q. Zhang, Y. V. Kartashov, and A. Ferrando, Interface states in polariton topological insulators, Phys. Rev. A 99(5), 053836 (2019)
CrossRef ADS Google scholar
[60]
D. A. Smirnova, L. A. Smirnov, D. Leykam, and Y. S. Kivshar, Topological edge states and gap solitons in the nonlinear Dirac model, Laser Photonics Rev. 13(12), 1900223 (2019)
CrossRef ADS Google scholar
[61]
W. Zhang, X. Chen, Y. V. Kartashov, V. V. Konotop, and F. Ye, Coupling of edge states and topological Bragg solitons, Phys. Rev. Lett. 123(25), 254103 (2019)
CrossRef ADS Google scholar
[62]
H. Zhong, S. Xia, Y. Zhang, Y. Li, D. Song, C. Liu, and Z. Chen, Nonlinear topological valley Hall edge states arising from type-II Dirac cones, Adv. Photonics 3(05), 056001 (2021)
CrossRef ADS Google scholar
[63]
Q. Tang, B. Ren, V. O. Kompanets, Y. V. Kartashov, Y. Li, and Y. Zhang, Valley Hall edge solitons in a photonic graphene, Opt. Express 29(24), 39755 (2021)
CrossRef ADS Google scholar
[64]
B. Ren, H. Wang, V. O. Kompanets, Y. V. Kartashov, Y. Li, and Y. Zhang, Dark topological valley Hall edge solitons, Nanophoton. 10(13), 3559 (2021)
CrossRef ADS Google scholar
[65]
Z. Y. Zhang, R. Wang, Y. Q. Zhang, Y. V. Kartashov, F. Li, H. Zhong, H. Guan, K. Gao, F. L. Li, Y. P. Zhang, and M. Xiao, Observation of edge solitons in photonic graphene, Nat. Commun. 11(1), 1902 (2020)
CrossRef ADS Google scholar
[66]
J. W. Liu, F. L. Shi, X. T. He, G. J. Tang, W. J. Chen, X. D. Chen, and J. W. Dong, Valley photonic crystals, Adv. Phys. X 6(1), 1905546 (2021)
CrossRef ADS Google scholar
[67]
K. C. Jin, H. Zhong, Y. D. Li, F. W. Ye, Y. P. Zhang, F. L. Li, C. L. Liu, and Y. Q. Zhang, Parametric type-II Dirac photonic lattices, Adv. Quantum Technol. 3(7), 2000015 (2020)
CrossRef ADS Google scholar
[68]
K. T. Wang, F. Xu, B. Wang, Y. Yu, and Y. Wei, Transport features of topological corner states in honeycomb lattice with multihollow structure, Front. Phys. (Beijing.) 17(4), 43501 (2021)
CrossRef ADS Google scholar
[69]
S. Li, Z. M. Yu, Y. Yao, and S. A. Yang, Type-II topological metals, Front. Phys. (Beijing.) 15(4), 43201 (2020)
CrossRef ADS Google scholar
[70]
S. Stützer, Y. Plotnik, Y. Lumer, P. Titum, N. H. Lindner, M. Segev, M. C. Rechtsman, and A. Szameit, Photonic topological Anderson insulators, Nature 560(7719), 461 (2018)
CrossRef ADS Google scholar
[71]
M. S. Kirsch, Y. Zhang, M. Kremer, L. J. Maczewsky, S. K. Ivanov, Y. V. Kartashov, L. Torner, D. Bauer, A. Szameit, and M. Heinrich, Nonlinear second-order photonic topological insulators, Nat. Phys. 17(9), 995 (2021)
CrossRef ADS Google scholar
[72]
D. Tan, Z. Wang, B. Xu, and J. Qiu, Photonic circuits written by femtosecond laser in glass: Improved fabrication and recent progress in photonic devices, Adv. Photonics 3(02), 024002 (2021)
CrossRef ADS Google scholar
[73]
Y. V. Kartashov, G. E. Astrakharchik, B. A. Malomed, and L. Torner, Frontiers in multidimensional self-trapping of nonlinear fields and matter, Nat. Rev. Phys. 1(3), 185 (2019)
CrossRef ADS Google scholar
[74]
B. A. Malomed and D. Mihalache, Nonlinear waves in optical and matter-wave media: A topical survey of recent theoretical and experimental results, Rom. J. Phys. 64, 106 (2019)
[75]
D. Mihalache, Localized structures in optical and matter-wave media: A selection of recent studies, Rom. Rep. Phys. 73, 403 (2021)

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1048 KB)

Accesses

Citations

Detail

Sections
Recommended

/