Wide and fast-frequency tuning for a stabilized diode laser

Yunfei Wang , Yuqing Li , Jizhou Wu , Wenliang Liu , Peng Li , Yongming Fu , Jie Ma , Liantuan Xiao , Suotang Jia

Front. Phys. ›› 2022, Vol. 17 ›› Issue (2) : 22505

PDF (1244KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (2) : 22505 DOI: 10.1007/s11467-021-1117-2
RESEARCH ARTICLE

Wide and fast-frequency tuning for a stabilized diode laser

Author information +
History +
PDF (1244KB)

Abstract

External-cavity diode laser (ECDL) has important applications in many fundamental and applied researches. Here we report a method to fast and widely tune the frequency of a stabilized ECDL. The beat frequency between the ECDL and a frequency-locked reference laser is identified by the voltage-controlled oscillator contained in a phase detector, whose output voltage is subtracted from the flexibly controlled PC signal to generate an error signal for stabilizing the ECDL. The output frequency of the stabilized ECDL can be shifted at a short characteristic time of ~ 150 μs within a range of ~ 620 MHz. The wide and fast-frequency tuning achieved by our method is compared with other previous works. We demonstrated the performance of our method by the efficient sub-Doppler cooling of Cs atoms with the temperature as low as 6 μK.

Graphical abstract

Keywords

external-cavity diode laser / frequency stabilization / laser cooling / interaction of laser with atoms

Cite this article

Download citation ▾
Yunfei Wang, Yuqing Li, Jizhou Wu, Wenliang Liu, Peng Li, Yongming Fu, Jie Ma, Liantuan Xiao, Suotang Jia. Wide and fast-frequency tuning for a stabilized diode laser. Front. Phys., 2022, 17(2): 22505 DOI:10.1007/s11467-021-1117-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

I.Bloch, Quantum coherence and entanglement with ultracold atoms in optical lattices, Nature453(7198), 1016 (2008)

[2]

W. L.Chen, K. M.Beck, R.Bücker, M.Gullans, M. D.Lukin, H.Tanji-Suzuki, and V.Vuletić, All-optical switch and transistor gated by one stored photon, Science341(6147), 768 (2013)

[3]

H. N.Dai, B.Yang, A.Reingruber, X. F.Xu, X.Jiang, Y. A.Chen, Z. S. Yuan, and J. W.Pan, Generation and detection of atomic spin entanglement in optical lattices, Nat. Phys.12(8), 783 (2016)

[4]

X. Y.Luo, Y. Q.Zou, L. N.Wu, Q. Liu, M. F.Han, M. K.Tey, and L.You, Deterministic entanglement generation from driving through quantum phase transitions, Science355(6325), 620 (2017)

[5]

K. B.MacAdam, A.Steinbach, and C.Wieman, A narrowband tunable diode laser system with grating feedback and a saturated absorption spectrometer for Cs and Rb, Am. J. Phys.60(12), 1098 (1992)

[6]

J.Ma, L. R.Wang, Y. T.Zhao, L. T. Xiao, and S.Jia, Absolute frequency stabilization of a diode laser to cesium atom–molecular hyperfine transitions via modulating molecules, Appl. Phys. Lett.91(16), 161101 (2007)

[7]

E. D.Black, An introduction to Pound–Drever–Hall laser frequency stabilization, Am. J. Phys.69, 69 (2000)

[8]

J. I.Thorpe, K.Numata, and J.Livas, Laser frequency stabilization and control through offset sideband locking to optical cavities, Opt. Express16(20), 15980 (2008)

[9]

B. L.Fan, W.Xiong, S. G.Wang, and L. J. Wang, A stabilized laser continuously tunable over a range of 1.5 GHz, Rev. Sci. Instrum.87(11), 113101 (2016)

[10]

D. J.Jones, K. W.Holman, M.Notcutt, J.Ye, J.Chandalia, L. A.Jiang, E. P.Ippen, and H.Yokoyama, Ultralow-jitter, 1550-nm mode-locked semiconductor laser synchronized to a visible optical frequency standard, Opt. Lett.28(10), 813 (2003)

[11]

H. Y.Ryu, S. H.Lee, and H. S.Suh, Widely tunable external cavity laser diode injection locked to an optical frequency comb, IE EE Photonics Technol. Lett.22(14), 1066 (2010)

[12]

G.Santarelli, A.Clairon, S. N.Lea, and G. M.Tino, Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz, Opt. Commun.104(4–6), 339 (1994)

[13]

L.Ricci, M.Weidemüller, T.Esslinger, A.Hemmerich, C.Zimmermann, V.Vuletic, W.König, and T. W. Hänsch, A compact grating-stabilized diode laser system for atomic physics, Opt. Commun.117(5–6), 541 (1995)

[14]

G.Ritt, G.Cennini, C.Geckeler, and M.Weitz, Laser frequency offset locking using a side of filter technique, Appl. Phys. B79(3), 363 (2004)

[15]

D. L.Jenkin, D. J.Mc Carron, M. P.Köppinger, H. W.Cho, S. A.Hopkins, and S. L.Cornish, Bose–Einstein condensation of 87Rb in a levitated crossed dipole trap, Eur. Phys. J. D65(1–2), 11 (2011)

[16]

E. A.Donley, T. P.Heavner, F.Levi,, M. O.Tataw, and S. R. Jefferts, Double-pass acousto–optic modulator system, Rev. Sci. Instrum.76(6), 063112 (2005)

[17]

D. M. S.Johnson, J. M. Hogan, S. W.Chiow, and M. A.Kasevich, Broadband optical serrodyne frequency shifting, Opt. Lett.35(5), 745 (2010)

[18]

R.Kohlhaas, T.Vanderbruggen, S.Bernon, A.Bertoldi, A.Landragin, and P.Bouyer, Robust laser frequency stabilization by serrodyne modulation, Opt. Lett.37(6), 1005 (2012)

[19]

C. P.Pearman, C. S.Adams, S. G.Cox, P. F. Griffin, D. A.Smith, and I. G.Hughes, Polarization spectroscopy of a closed atomic transition: Applications to laser frequency locking, J. Phys. At. Mol. Opt. Phys.35(24), 5141 (2002)

[20]

S.Grego, M.Colla, A.Fioretti, J. H. Müller, P.Verkerk, and E.Arimondo, Acesium magneto–optical trap for cold collisions studies, Opt. Commun.132(5–6), 519 (1996)

[21]

Y. Q.Li, G. S.Feng, R. D.Xu, X. F. Wang, J. Z.Wu, G.Chen, X. C.Dai, J.Ma, L. T.Xiao, and S. T.Jia, Magnetic levitation for effective loading of cold cesium atoms in a crossed dipole trap, Phys. Rev. A91(5), 053604 (2015)

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1244KB)

956

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/