Emerging of two-dimensional materials in novel memristor
Zhican Zhou, Fengyou Yang, Shu Wang, Lei Wang, Xiaofeng Wang, Cong Wang, Yong Xie, Qian Liu
Emerging of two-dimensional materials in novel memristor
The rapid development of big-data analytics (BDA), internet of things (IoT) and artificial intelligent Technology (AI) demand outstanding electronic devices and systems with faster processing speed, lower power consumption, and smarter computer architecture. Memristor, as a promising Non-Volatile Memory (NVM) device, can effectively mimic biological synapse, and has been widely studied in recent years. The appearance and development of two-dimensional materials (2D material) accelerate and boost the progress of memristor systems owing to a bunch of the particularity of 2D material compared to conventional transition metal oxides (TMOs), therefore, 2D material-based memristors are called as new-generation intelligent memristors. In this review, the memristive (resistive switching) phenomena and the development of new-generation memristors are demonstrated involving grapheme (GR), transition-metal dichalcogenides (TMDs) and hexagonal boron nitride (h-BN) based memristors. Moreover, the related progress of memristive mechanisms is remarked.
memristor / resistive switching / 2D material / switching mechanism / conductive channel
[1] |
D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, The missing memristor found, Nature 453 (7191), 80 (2008)
|
[2] |
J. J. Yang, M. D. Pickett, X. Li, D. A. Ohlberg, D. R. Stewart, and R. S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices, Nat. Nanotechnol. 3(7), 429 (2008)
|
[3] |
L. Chua, Memristor-The missing circuit element, IEEE Trans. Circuit Theory 18(5), 507 (1971)
|
[4] |
Y. Yang and W. Lu, Nanoscale resistive switching devices: Mechanisms and modeling, Nanoscale 5(21), 10076 (2013)
|
[5] |
D. Ielmini, Resistive switching memories based on metal oxides: Mechanisms, reliability and scaling, Semicond. Sci. Technol. 31(6), 063002 (2016)
|
[6] |
F. Hui, E. Grustan-Gutierrez, S. Long, Q. Liu, A. K. Ott, A. C. Ferrari, and M. Lanza, Graphene and related materials for resistive random access memories, Adv. Electron. Mater. 3(8), 1600195 (2017)
|
[7] |
J. Lee and W. D. Lu, On-demand reconfiguration of nanomaterials: When electronics meets ionics, Adv. Mater. 30(1), 1702770 (2018)
|
[8] |
T. Zanotti, F. M. Puglisi, and P. Pavan, Smart logicin-memory architecture for low-power non-Von Neumann computing, IEEE J. Electron. Dev. Soc. 8, 757 (2020)
|
[9] |
P. M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, and W. D. Lu, Sparse coding with memristor networks, Nat.Nanotechnol. 12(8), 784 (2017)
|
[10] |
D. H. Lim, S. Wu, R. Zhao, J. H. Lee, H. Jeong, and L. Shi, Spontaneous sparse learning for PCM-based memristor neural networks, Nat. Commun. 12, 319 (2021)
|
[11] |
C. Du, F. Cai, M. A. Zidan, W. Ma, S. H. Lee, and W. D. Lu, Reservoir computing using dynamic memristors for temporal information processing, Nat. Commun. 8, 2204 (2017)
|
[12] |
J. H. Yoon, Z. Wang, K. M. Kim, H. Wu, V. Ravichandran, Q. Xia, C. S. Hwang, and J. J. Yang, An artificial nociceptor based on a diffusive memristor, Nat. Commun.9(1), 417 (2018)
|
[13] |
J. Kim, Y. V. Pershin, M. Yin, T. Datta, and M. Di Ventra, An experimental proof that resistance-switching memory cells are not memristors, Adv. Electron. Mater.6(7), 2000010 (2020)
|
[14] |
Y. V. Pershin and M. Di Ventra, A simple test for ideal memristors, J. Phys. D Appl. Phys.52(1), 01LT01 (2018)
|
[15] |
J. J. Yang, D. B. Strukov, and D. R. Stewart, Memristive devices for computing, Nat. Nanotechnol.8(1), 13 (2013)
|
[16] |
Z. Wang, M. Rao, R. Midya, S. Joshi, H. Jiang, P. Lin, W. Song, S. Asapu, Y. Zhuo, C. Li, H. Wu, Q. Xia, and J. J. Yang, Threshold switching of Ag or Cu in dielectrics: Materials, mechanism, and applications, Adv. Funct. Mater. 28(6), 1704862 (2018)
|
[17] |
M. A. Zidan, J. P. Strachan, and W. D. Lu, The future of electronics based on memristive systems, Nat. Electron. 1(1), 22 (2018)
|
[18] |
B. Govoreanu, G. Kar, Y. Chen, V. Paraschiv,
|
[19] |
A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S. Williams, Sub-nanosecond switching of a tantalum oxide memristor, Nanotechnology 22(48), 485203 (2011)
|
[20] |
S. Goswami, A. J. Matula, S. P. Rath, S. Hedström, S. Saha, M. Annamalai, D. Sengupta, A. Patra, S. Ghosh, H. Jani, S. Sarkar, M. R. Motapothula, C. A. Nijhuis, J. Martin, S. Goswami, V. S. Batista, and T. Venkatesan, Robust resistive memory devices using solution-processable metal-coordinated azo aromatics, Nat. Mater. 16(12), 1216 (2017)
|
[21] |
A. M. Mostafa and A. A. Menazea, Laser-assisted for preparation ZnO/CdO thin film prepared by pulsed laser deposition for catalytic degradation, Radiat. Phys. Chem. 176, 109020 (2020)
|
[22] |
K. H. Kim, S. Hyun Jo, S. Gaba, and W. Lu, Nanoscale resistive memory with intrinsic diode characteristics and long endurance, Appl. Phys. Lett. 96(5), 053106 (2010)
|
[23] |
X. Feng, Y. Li, L. Wang, S. Chen, Z. G. Yu, W. C. Tan, N. Macadam, G. Hu, L. Huang, L. Chen, X. Gong, D. Chi, T. Hasan, A. V. Y. Thean, Y. W. Zhang, and K. W. Ang, A fully printed flexible MoS2 memristive artificial synapse with femtojoule switching energy, Adv. Electron. Mater. 5(12), 1900740 (2019)
|
[24] |
X. Yan, Q. Zhao, A. P. Chen, J. Zhao, Z. Zhou, J. Wang, H. Wang, L. Zhang, X. Li, Z. Xiao, K. Wang, C. Qin, G. Wang, Y. Pei, H. Li, D. Ren, J. Chen, and Q. Liu, Vacancy-induced synaptic behavior in 2D WS2 nanosheet-based memristor for low-power neuromorphic computing, Small 15(24), 1901423 (2019)
|
[25] |
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)
|
[26] |
J. Jiang and Z. Ni, Defect engineering in two-dimensional materials, J. Semicond. 40(7), 070403 (2019)
|
[27] |
A. Sawa, Resistive switching in transition metal oxides, Mater. Today 11(6), 28 (2008)
|
[28] |
A. Wedig, M. Luebben, D. Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K. K. Adepalli, B. Yildiz, R. Waser, and I. Valov, Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems, Nat. Nanotechnol. 11(1), 67 (2016)
|
[29] |
S. Choi, S. H. Tan, Z. Li, Y. Kim, C. Choi, P. Y. Chen, H. Yeon, S. Yu, and J. Kim, SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations, Nat. Mater.17(4), 335 (2018)
|
[30] |
D. B. Strukov, Tightening grip, Nat. Mater. 17(4), 293 (2018)
|
[31] |
D. Ielmini, R. Bruchhaus, and R. Waser, Thermochemical resistive switching: Materials, mechanisms, and scaling projections, Phase Transit. 84(7), 570 (2011)
|
[32] |
Y. Zhang, X. Wang, and E. G. Friedman, Memristorbased circuit design for multilayer neural networks, IEEE Trans. Circuits Syst. I Regul. Pap.65(2), 677 (2017)
|
[33] |
P. Wijesinghe, A. Ankit, A. Sengupta, and K. Roy, An all-memristor deep spiking neural computing system: A step toward realizing the low-power stochastic brain, IEEE Transactions on Emerging Topics in Computational Intelligence2(5), 345 (2018)
|
[34] |
T. Kim, S. Hu, J. Kim, J. Y. Kwak, J. Park, S. Lee, I. Kim, J. K. Park, and Y. J. Jeong, Spiking neural network (SNN) with memristor synapses having non-linear weight update, Front. Comput. Neurosci. 15, 22 (2021)
|
[35] |
A. S. Sokolov, H. Abbas, Y. Abbas, and C. Choi, Towards engineering in memristors for emerging memory and neuromorphic computing: A review, J. Semicond. 42(1), 013101 (2021)
|
[36] |
L. Xie, H. A. Du Nguyen, M. Taouil, S. Hamdioui,
|
[37] |
H. Tan, G. Liu, H. Yang, X. Yi, L. Pan, J. Shang, S. Long, M. Liu, Y. Wu, and R. W. Li, Light-gated memristor with integrated logic and memory functions, ACS Nano 11(11), 11298 (2017)
|
[38] |
L. Xu, R. Yuan, Z. Zhu, K. Liu, Z. Jing, Y. Cai, Y. Wang, Y. Yang, and R. Huang, Memristor-based efficient in-memory logic for cryptologic and arithmetic applications, Adv. Mater. Technol. 4(7), 1900212 (2019)
|
[39] |
S. Hussain, K. Xu, S. Ye, L. Lei, X. Liu, R. Xu, L. Xie, and Z. Cheng, Local electrical characterization of twodimensional materials with functional atomic force microscopy, Front. Phys. 14(3), 33401 (2019)
|
[40] |
L. Meng, Y. Ma, K. Si, S. Xu, J. Wang, and Y. Gong, Recent advances of phase engineering in group VI transition metal dichalcogenides, Tungsten 1(1), 46 (2019)
|
[41] |
J. Lee, C. Du, K. Sun, E. Kioupakis, and W. D. Lu, Tuning ionic transport in memristive devices by grapheme with engineered nanopores, ACS Nano 10(3), 3571 (2016)
|
[42] |
X. Zhao, J. Ma, X. Xiao, Q. Liu, L. Shao, D. Chen, S. Liu, J. Niu, X. Zhang, Y. Wang, R. Cao, W. Wang, Z. Di, H. Lv, S. Long, and M. Liu, Breaking the current-retention dilemma in cation-based resistive switching devices utilizing graphene with controlled defects, Adv. Mater. 30(14), 1705193 (2018)
|
[43] |
V. K. Sangwan, D. Jariwala, I. S. Kim, K. S. Chen, T. J. Marks, L. J. Lauhon, and M. C. Hersam, Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2, Nat. Nanotechnol. 10(5), 403 (2015)
|
[44] |
R. Ge, X. Wu, M. Kim, J. Shi, S. Sonde, L. Tao, Y. Zhang, J. C. Lee, and D. Akinwande, Atomristor: Nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides, Nano Lett. 18(1), 434 (2018)
|
[45] |
R. Ge, X. Wu, L. Liang, S. M. Hus, Y. Gu, E. Okogbue, H. Chou, J. Shi, Y. Zhang, S. K. Banerjee, Y. Jung, J. C. Lee, and D. Akinwande, A library of atomically thin 2D materials featuring the conductive-point resistive switching phenomenon, Adv. Mater. 33(7), e2007792 (2021)
|
[46] |
H. Zhao, Z. Dong, H. Tian, D. DiMarzi, M. G. Han, L. Zhang, X. Yan, F. Liu, L. Shen, S. J. Han, S. Cronin, W. Wu, J. Tice, J. Guo, and H. Wang, Atomically thin femtojoule memristive device, Adv. Mater. 29(47), 1703232 (2017)
|
[47] |
Q. Zhao, Z. Xie, Y. P. Peng, K. Wang, H. Wang, X. Li, H. Wang, J. Chen, H. Zhang, and X. Yan, Current status and prospects of memristors based on novel 2D materials, Mater. Horiz. 7(6), 1495 (2020)
|
[48] |
Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo- Herrero, Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature 556(7699), 80 (2018)
|
[49] |
J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, Tunable phase boundaries and ultrastrong coupling superconductivity in mirror symmetric magic-angle trilayer graphene, arXiv: 2012.01434 (2020)
|
[50] |
J. W. Jiang, Graphene versus MoS2: A short review, Front. Phys. 10(3), 287 (2015)
|
[51] |
R. Wang, X. G. Ren, Z. Yan, L. J. Jiang, W. E. I. Sha, and G. C. Shan, Graphene based functional devices: A short review, Front. Phys. 14(1), 13603 (2019)
|
[52] |
X. M. Huang, L. Z. Liu, S. Zhou, and J. J. Zhao, Physical properties and device applications of graphene oxide, Front. Phys. 15(3), 33301 (2020)
|
[53] |
Q. A. Vu, H. Kim, V. L. Nguyen, U. Y. Won, S. Adhikari, K. Kim, Y. H. Lee, and W. J. Yu, A high-on/offratio floating-gate memristor array on a flexible substrate via CVD-grown large-area 2D layer stacking, Adv. Mater.29(44), 1703363 (2017)
|
[54] |
L. Pása, M. El Abbassi, P. Makk, B. Sánta, C. Nef, M. Csontos, M. Calame, and A. Halbritter, Multiple physical time scales and dead time rule in few-nanometers sized graphene–SiOx-graphene memristors, Nano Lett. 17(11), 6783 (2017)
|
[55] |
Y. Ji, S. A. Lee, A. N. Cha, M. Goh, S. Bae, S. Lee, D. I. Son, and T. W. Kim, Resistive switching characteristics of ZnO–graphene quantum dots and their use as an active component of an organic memory cell with one diode-one resistor architecture, Org. Electron. 18, 77 (2015)
|
[56] |
D. I. Son, T. W. Kim, J. H. Shim, J. H. Jung, D. U. Lee, J. M. Lee, W. I. Park, and W. K. Choi, Flexible organic bistable devices based on graphene embedded in an insulating poly(methyl methacrylate) polymer layer, Nano Lett. 10(7), 2441 (2010)
|
[57] |
Y. T. Chan, Y. Fu, L. Yu, F. Y. Wu, H. W. Wang, T. H. Lin, S. H. Chan, M. C. Wu, and J. C. Wang, Compacted self-assembly graphene with hydrogen plasma surface modification for robust artificial electronic synapses of gadolinium oxide memristors, Adv. Mater. Interfaces7(20), 2000860 (2020)
|
[58] |
T. Berzina, K. Gorshkov, V. Erokhin, V. Nevolin, and Y. A. Chaplygin, Investigation of electrical properties of organic memristors based on thin polyaniline-graphene films, Russ. Microelectron. 42(1), 27 (2013)
|
[59] |
H. He, J. Klinowski, M. Forster, and A. Lerf, A new structural model for graphite oxide, Chem. Phys. Lett.287(1-2), 53 (1998)
|
[60] |
S. Qin, J. Zhang, D. Fu, D. Xie, Y. Wang, H. Qian, L. Liu, and Z. Yu, A physics/circuit-based switching model for carbon-based resistive memory with sp2/sp3 cluster conversion, Nanoscale4(20), 6658 (2012)
|
[61] |
H. Y. Jeong, J. Y. Kim, J. W. Kim, J. O. Hwang, J. E.Kim, J. Y. Lee, T. H. Yoon, B. J. Cho, S. O. Kim, R. S. Ruoff, and S. Y. Choi, Graphene oxide thin films for flexible nonvolatile memory applications, Nano Lett.10(11), 4381 (2010)
|
[62] |
F. Zhao, L. Wang, Y. Zhao, L. Qu, and L. Dai, Graphene oxide nanoribbon assembly toward moisture-powered information storage, Adv. Mater. 29(3), 1604972 (2017)
|
[63] |
M. Lübben, S. Wiefels, R. Waser, and I. Valov, Processes and effects of oxygen and moisture in resistively switching TaOx and HfOx, Adv. Electron. Mater. 4(1), 1700458 (2018)
|
[64] |
F. Zhuge, B. Hu, C. He, X. Zhou, Z. Liu, and R. W. Li, Mechanism of nonvolatile resistive switching in grapheme oxide thin films, Carbon 49(12), 3796 (2011)
|
[65] |
D. P. Sahu, P. Jetty, and S. N. Jammalamadaka, Graphene oxide based synaptic memristor device for neuromorphic computing, Nanotechnology 32(15), 155701 (2021)
|
[66] |
J. Liu, Z. Zeng, X. Cao, G. Lu, L. H. Wang, Q. L. Fan, W. Huang, and H. Zhang, Preparation of MoS2-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes, Small 8(22), 3517 (2012)
|
[67] |
C. Tan, X. Qi, Z. Liu, F. Zhao, H. Li, X. Huang, L. Shi, B. Zheng, X. Zhang, L. Xie, Z. Tang, W. Huang, and H. Zhang, Self-assembled chiral nanofibers from ultrathin low-dimensional nanomaterials, J. Am. Chem. Soc. 137(4), 1565 (2015)
|
[68] |
J. Yuan and J. Lou, Memristor goes two-dimensional, Nat. Nanotechnol. 10(5), 389 (2015)
|
[69] |
P. Cheng, K. Sun, and Y. H. Hu, Memristive behavior and ideal memristor of 1T phase MoS2 nanosheets, Nano Lett. 16(1), 572 (2016)
|
[70] |
M. Yoshida, R. Suzuki, Y. Zhang, M. Nakano, and Y. Iwasa, Memristive phase switching in two-dimensional 1T-TaS2 crystals, Sci. Adv. 1(9), e1500606 (2015)
|
[71] |
S. M. Hus, R. Ge, P. A. Chen, L. Liang, G. E. Donnelly, W. Ko, F. Huang, M. H. Chiang, A. P. Li, and D. Akinwande, Observation of single-defect memristor in an MoS2 atomic sheet, Nat. Nanotechnol. 16, 58 (2020)
|
[72] |
M. Wang, S. Cai, C. Pan, C. Wang, X. Lian, Y. Zhuo, K. Xu, T. Cao, X. Pan, B. Wang, S. J.Liang, J. J. Yang, P. Wang, and F. Miao, Robust memristors based on layered two-dimensional materials, Nat. Electron. 1(2), 130 (2018)
|
[73] |
H. K. He, R. Yang, W. Zhou, H. M. Huang, J. Xiong, L. Gan, T. Y. Zhai, and X. Guo, Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2, Small 14(15), 1800079 (2018)
|
[74] |
S. Chen, Z. Lou, D. Chen, and G. Shen, An artificial flexible visual memory system based on an UV-motivated memristor, Adv. Mater. 30(7), 1705400 (2018)
|
[75] |
G. U. Siddiqui, M. M. Rehman, Y. J. Yang, and K. H. Choi, A two-dimensional hexagonal boron nitride/ polymer nanocomposite for flexible resistive switching devices, J. Mater. Chem. C 5(4), 862 (2017)
|
[76] |
C. Pan, Y. Ji, N. Xiao, F. Hui, K. Tang, Y. Guo, X. Xie, F. M. Puglisi, L. Larcher, E. Miranda, L. Jiang, Y. Shi, I. Valov, P. C. McIntyre, R. Waser, and M. Lanza, Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride, Adv. Funct. Mater. 27(10), 1604811 (2017)
|
[77] |
X. Wu, R. Ge, P. A. Chen, H. Chou, Z. Zhang, Y. Zhang, S. Banerjee, M. H. Chiang, J. C. Lee, and D. Akinwande, Thinnest nonvolatile memory based on monolayer h-BN, Adv. Mater. 31(15), 1806790 (2019)
|
[78] |
S. Chen, M. R. Mahmoodi, Y. Shi, C. Mahata, B. Yuan, X. Liang, C. Wen, F. Hui, D. Akinwande, D. B. Strukov, and M. Lanza, Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks, Nat. Electron. 3(10), 638 (2020)
|
[79] |
W. Lv, H. Wang, L. Jia, X. Tang, C. Lin, L. Yuwen, L. Wang, W. Huang, and R. Chen, Tunable nonvolatile memory behaviors of PCBM-MoS2 2D nanocomposites through surface deposition ratio control, ACS Appl. Mater. Interfaces 10(7), 6552 (2018)
|
[80] |
J. C. Wang, Y. T. Chan, W. F. Chen, M. C. Wu, and C. S. Lai, Interface modification of bernal- and rhombohedral-stacked trilayer-graphene/metal electrode on resistive switching of silver electrochemical metallization cells, ACS Appl. Mater. Interfaces9(42), 37031 (2017)
|
[81] |
X. Zhao, Z. Wang, Y. Xie, H. Xu, J. Zhu, X. Zhang, W. Liu, G. Yang, J. Ma, and Y. Liu, Photocatalytic reduction of graphene oxide-TiO2 nanocomposites for improving resistive-switching memory behaviors, Small 14(29), 1801325 (2018)
|
[82] |
R. B. Jacobs-Gedrim, M. T. Murphy, F. Yang, N. Jain, M. Shanmugam, E. S. Song, Y. Kandel, P. Hesamaddin, H. Y. Yu, M. P. Anantram, D. B. Janes, and B. Yu, Reversible phase-change behavior in two-dimensional antimony telluride (Sb2Te3) nanosheets, Appl. Phys. Lett.112(13), 133101 (2018)
|
[83] |
P. Saini, M. Singh, J. Thakur, R. Patil, Y. R. Ma, R. P. Tandon, S. P. Singh, and A. K. Mahapatro, Probing the mechanism for bipolar resistive switching in annealed graphene oxide thin films, ACS Appl. Mater. Interfaces10(7), 6521 (2018)
|
[84] |
X. Sun, Z. Lu, Z. Chen, Y. Wang, J. Shi, M. Washington, and T. M. Lu, Single-crystal graphene-directed van der waals epitaxial resistive switching, ACS Appl. Mater. Interfaces 10(7), 6730 (2018)
|
[85] |
S. I. Oh, J. R. Rani, S. M. Hong, and J. H. Jang, Selfrectifying bipolar resistive switching memory based on an iron oxide and graphene oxide hybrid, Nanoscale 9(40), 15314 (2017)
|
[86] |
Y. Li, S. Long, Q. Liu, H. Lv, and M. Liu, Resistive switching performance improvement via modulating nanoscale conductive filament, involving the application of two-dimensional layered materials, Small 13(35), 1604306 (2017)
|
[87] |
X. Zhao, S. Liu, J. Niu, L. Liao, Q. Liu, X. Xiao, H. Lv, S. Long, W. Banerjee, W. Li, S. Si, and M. Liu, Confining cation injection to enhance CBRAM performance by nanopore graphene layer, Small 13(35), 1603948 (2017)
|
[88] |
R. Shi, X. Wang, Z. Wang, L. Cao, M. Song, X. Huang, J. Liu, and W. Huang, Fully solution-processed transparent nonvolatile and volatile multifunctional memory devices from conductive polymer and graphene oxide, Adv. Electron. Mater. 3(8), 1700135 (2017)
|
[89] |
C. Baeumer, R. Valenta, C. Schmitz, A. Locatelli, T. O. Menteş, S. P. Rogers, A. Sala, N. Raab, S. Nemsak, M. Shim, C. M. Schneider, S. Menzel, R. Waser, and R. Dittmann, Subfilamentary networks cause cycle-to-cycle variability in memristive devices, ACS Nano 11(7), 6921 (2017)
|
[90] |
C. Pan, E. Miranda, M. A. Villena, N. Xiao, X. Jing, X. Xie, T. Wu, F. Hui, Y. Shi,and M. Lanza, Model for multi-filamentary conduction in graphene/hexagonal- boron-nitride/graphene based resistive switching devices, 2D Mater.4 (2), 025099 (2017)
|
[91] |
G. Anoop, V. Panwar, T. Y. Kim, and J. Y. Jo, Resistive switching in ZnO nanorods/graphene oxide hybrid multilayer structures, Adv. Electron. Mater. 3(5), 1600418 (2017)
|
[92] |
P. Zhang, C. Gao, B. Xu, L. Qi, C. Jiang, M. Gao, and D. Xue, Structural phase transition effect on resistive switching behavior of MoS2-polyvinylpyrrolidone nanocomposites films for flexible memory devices, Small 12(15), 2077 (2016)
|
[93] |
V. K. Nagareddy, M. D. Barnes, F. Zipoli, K. T. Lai, A. M. Alexeev, M. F. Craciun, and C. D. Wright, Multilevel ultrafast flexible nanoscale nonvolatile hybrid grapheme oxide–titanium oxide memories, ACS Nano 11(3), 3010 (2017)
|
[94] |
F. Fan, B. Zhang, Y. Cao, and Y. Chen, Solutionprocessable poly(N-vinylcarbazole)-covalently grafted MoS2 nanosheets for nonvolatile rewritable memory devices, Nanoscale 9(7), 2449 (2017)
|
[95] |
T. Li, P. Sharma, A. Lipatov, H. Lee, J. W. Lee, M. Y. Zhuravlev, T. R. Paudel, Y. A. Genenko, C. B. Eom, E. Y. Tsymbal, A. Sinitskii, and A. Gruverman, Polarization-mediated modulation of electronic and transport properties of hybrid MoS2-BaTiO3-SrRuO3 tunnel junctions, Nano Lett. 17(2), 922 (2017)
|
[96] |
C. H. Bok, C. Wu, and T. W. Kim, Operating mechanisms of highly-reproducible write-once-read-many-times memory devices based on graphene quantum dot: poly(methyl silsesquioxane) nanocomposites, Appl. Phys. Lett. 110(1), 013301 (2017)
|
[97] |
A. Rani, D. B. Velusamy, R. H. Kim, K. Chung, F. M. Mota, C. Park, and D. H. Kim, Non-volatile ReRAM devices based on self-assembled multilayers of modified graphene oxide 2D nanosheets, Small 12(44), 6167 (2016)
|
[98] |
G. H. Shin, C.-K. Kim, G. S. Bang, J. Y. Kim, B. C. Jang, B. J. Koo, M. H. Woo, Y. K. Choi, and S. Y. Choi, Multilevel resistive switching nonvolatile memory based on MoS2 nanosheet-embedded graphene oxide, 2D Mater. 3(3), 034002 (2016)
|
[99] |
K. Qian, R. Y. Tay, V. C. Nguyen, J. Wang, G. Cai, T. Chen, E. H. T. Teo, and P. S. Lee, Hexagonal boron nitride thin film for flexible resistive memory applications, Adv. Funct. Mater.26(13), 2176 (2016)
|
[100] |
C. Hao, F. Wen, J. Xiang, S. Yuan, B. Yang, L. Li, W. Wang, Z. Zeng, L. Wang, Z. Liu, and Y. Tian, Liquid-exfoliated black phosphorous nanosheet thin films for flexible resistive random access memory applications, Adv. Funct. Mater. 26(12), 2016 (2016)
|
[101] |
H. Tian, H. Zhao, X. F. Wang, Q. Y. Xie, H. Y. Chen, M. A. Mohammad, C. Li, W. T. Mi, Z. Bie, C. H. Yeh, Y. Yang, H. S. P. Wong, P. W. Chiu, and T. L. Ren, In situ tuning of switching window in a gate-controlled bilayer graphene-electrode resistive memory device, Adv. Mater.27(47), 7767 (2015)
|
[102] |
G. Khurana, P. Misra, N. Kumar, and R. S. Katiyar, Tunable power switching in nonvolatile flexible memory devices based on graphene oxide embedded with ZnO nanorods, J. Phys. Chem. C118(37), 21357 (2014)
|
[103] |
Y. J. Huang and S. C. Lee, Graphene/h-BN heterostructures for vertical architecture of RRAM design, Sci. Rep.7, 9679(2017)
|
[104] |
Y. T. Lee, J. Lee, H. Ju, J. A. Lim, Y. Yi, W. K. Choi, D. K. Hwang, and S. Im, Nonvolatile charge injection memory based on black phosphorous 2D nanosheets for charge trapping and active channel layers, Adv. Funct. Mater.26(31), 5701 (2016)
|
[105] |
C. Yeon, S. J. Yun, J. Yang, D. H. Youn, and J. W. Lim, Na-cation-assisted exfoliation of MX2 (M= Mo, W; X= S, Se) nanosheets in an aqueous medium with the aid of a polymeric surfactant for flexible polymer-nanocomposite memory applications, Small14(2), 1702747 (2018)
|
[106] |
I. Valov and G. Staikov, Nucleation and growth phenomena in nanosized electrochemical systems for resistive switching memories, J. Solid State Electrochem. 17(2), 365 (2013)
|
[107] |
A. Tsurumaki-Fukuchi, R. Nakagawa, M. Arita, and Y. Takahashi, Smooth interfacial scavenging for resistive switching oxide via the formation of highly uniform layers of amorphous TaOx, ACS Appl. Mater. Interfaces 10(6), 5609 (2018)
|
[108] |
B. Li, Y. Liu, C. Wan, Z. Liu, M. Wang, D. Qi, J. Yu, P. Cai, M. Xiao, Y. Zeng, and X. Chen, Mediating short-term plasticity in an artificial memristive synapse by the orientation of silica mesopores, Adv. Mater. 30(16), 1706395 (2018)
|
[109] |
Q. Wu, H. Wang, Q. Luo, W. Banerjee, J. Cao, X. Zhang, F. Wu, Q. Liu, L. Li, and M. Liu, Full imitation of synaptic metaplasticity based on memristor devices, Nanoscale 10(13), 5875 (2018)
|
/
〈 | 〉 |