Muon spinning its way to new physics

Kim Siang Khaw, Liang Li, Jing Shu

PDF(382 KB)
PDF(382 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (6) : 64602. DOI: 10.1007/s11467-021-1089-2
VIEW & PERSPECTIVE
VIEW & PERSPECTIVE

Muon spinning its way to new physics

Author information +
History +

Abstract

The first results from the Fermilab Muon g–2 Experiment shed lights on the mystery surrounding the magnetic anomaly of the muon. This could become a window into a new era of particle physics.

Cite this article

Download citation ▾
Kim Siang Khaw, Liang Li, Jing Shu. Muon spinning its way to new physics. Front. Phys., 2021, 16(6): 64602 https://doi.org/10.1007/s11467-021-1089-2

References

[1]
C. D. Anderson and S. H. Neddermeyer, Cloud chamber observations of cosmic rays at 4300 meters elevation and near sea-level, Phys. Rev. 50, 263 (1936)
CrossRef ADS Google scholar
[2]
G. W. Bennett, et al. [Muon g–2], Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73, 072003 (2006), arXiv: hep-ex/0602035 [hep-ex]
[3]
T. Aoyama, N. Asmussen, M. Benayoun, J. Bijnens, T. Blum, et al., The anomalous magnetic moment of the muon in the Standard Model, Phys. Rep. 887, 1 (2020), arXiv: 2006.04822 [hep-ph]
[4]
J. Grange, et al. [Muon g–2], Muon (g–2) technical design report, arXiv: 1501.06858 [physics.ins-det]
[5]
B. Abi, et al. [Muon g–2], Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126(14), 141801 (2021), arXiv: 2104.03281 [hepex]
[6]
P. Athron, C. Balázs, D. H. Jacob, W. Kotlarski, D. Stöckinger, and H. Stöckinger-Kim, New physics expla-nations of a in light of the FNAL muon g–2 measurement, arXiv: 2104.03691 [hep-ph]
[7]
M. Lindner, M. Platscher, and F. S. Queiroz, Phys. Rep. 731, 1 (2018), arXiv: 1610.06587 [hep-ph]
CrossRef ADS Google scholar
[8]
M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80, 095002 (2009), arXiv: 0811.1030 [hep-ph]
CrossRef ADS Google scholar
[9]
J. P. Leveille, The second-order weak correction to (g–2) of the muon in arbitrary gauge models, Nucl. Phys. B 137, 63 (1978)
CrossRef ADS Google scholar
[10]
B. Holdom, Two U(1)’s and ε charge shifts, Phys. Lett. B166, 196 (1986)
CrossRef ADS Google scholar
[11]
H. Davoudiasl, H. S. Lee, and W. J. Marciano, “Dark” Z implications for parity violation, rare meson decays, and Higgs physics, Phys. Rev. D 85, 115019 (2012), arXiv: 1203.2947 [hep-ph]
CrossRef ADS Google scholar
[12]
L. L. Everett, G. L. Kane, S. Rigolin, and L. T. Wang, Implications of muon g–2 for supersymmetry and for discovering superpartners directly, Phys. Rev. Lett. 86, 3484 (2001), arXiv: hep-ph/0102145
CrossRef ADS Google scholar
[13]
M. Ibe, T. T. Yanagida, and N. Yokozaki, Muon g–2 and 125 GeV Higgs in split-family supersymmetry, J. High Energy Phys. 2013, 67 (2013), arXiv: 1303.6995 [hep-ph]
CrossRef ADS Google scholar
[14]
M. Endo, K. Hamaguchi, S. Iwamoto, and N. Yokozaki, Higgs mass, muon g–2, and LHC prospects in gauge mediation models with vectorlike matters, Phys. Rev. D 85, 095012 (2012), arXiv: 1112.5653 [hep-ph]
CrossRef ADS Google scholar
[15]
R. Dermisek, K. Hermanek, and N. McGinnis, Highly enhanced contributions of heavy Higgs bosons and new leptons to muon g–2 and prospects at future colliders, Phys. Rev. Lett. 126 (19), 191801 (2021), arXiv: 2011.11812 [hepph]
CrossRef ADS Google scholar
[16]
X. Liu, L. Bian, X. Q. Li, and J. Shu, Type-III two Higgs doublet model plus a pseudoscalar confronted with h→ μτ, muon g–2 and dark matter, Nucl. Phys. B 909, 507 (2016), arXiv: 1508.05716 [hep-ph]
CrossRef ADS Google scholar
[17]
P. M. Ferreira, B. L. Gonçalves, F. R. Joaquim, and M. Sher, (g–2)μ in the 2HDM and slightly beyond — an updated view, arXiv: 2104.03367 [hep-ph]
[18]
S. Borsanyi, et al., Leading hadronic contribution to the muon magnetic moment from lattice QCD, Nature 593, 51 (2021), arXiv: 2002.12347 [hep-lat]
CrossRef ADS Google scholar
[19]
A. Keshavarzi, W. J. Marciano, M. Passera, and A. Sirlin, Muon g–2 and Δα connection, Phys. Rev. D 102(3), 033002 (2020), arXiv: 2006.12666 [hep-ph]
CrossRef ADS Google scholar
[20]
A. Crivellin, M. Hoferichter, C. A. Manzari, and M. Montull, Hadronic vacuum polarization: (g–2)μ versus global electroweak fits, Phys. Rev. Lett. 125(9), 091801 (2020), arXiv: 2003.04886 [hep-ph]
CrossRef ADS Google scholar
[21]
P. A. M. Dirac, The quantum theory of electron (part II), Proc. Roy. Soc. Lond. A 118, 351 (1928)
CrossRef ADS Google scholar
[22]
J. S. Schwinger, On Quantum electrodynamics and the magnetic moment of the electron, Phys. Rev. 73, 416 (1948)
CrossRef ADS Google scholar
[23]
P. Kusch and H. M. Foley, The magnetic moment of the electron, Phys. Rev. 74(3), 250 (1948)
CrossRef ADS Google scholar
[24]
T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Complete tenth-order QED contribution to the muon g–2, Phys. Rev. Lett. 109, 111808 (2012), arXiv: 1205.5370 [hep-ph]
CrossRef ADS Google scholar
[25]
C. Gnendiger, D. Stöckinger, and H. Stöckinger-Kim, The electroweak contributions to (g–2)μ after the Higgs boson mass measurement, Phys. Rev. D 88, 053005 (2013), arXiv: 1306.5546 [hep-ph]
CrossRef ADS Google scholar
[26]
M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, A new evaluation of the hadronic vacuum polarization contributions to the muon anomalous magnetic moment and to α(M2Z), Eur. Phys. J. C 80(3), 241 (2020) [erratum: Eur. Phys. J. C 80(5), 410 (2020)], arXiv: 1908.00921 [hep-ph]
CrossRef ADS Google scholar
[27]
A. Keshavarzi, D. Nomura, and T. Teubner, g–2 of charged leptons, α(M2Z), and the hyperfine splitting of muonium, Phys. Rev. D 101(1), 014029 (2020), arXiv: 1911.00367 [hep-ph]
CrossRef ADS Google scholar
[28]
R. L. Garwin, L. M. Lederman, and M. Weinrich, Observations of the failure of conservation of parity and charge conjugation in meson decays: The magnetic moment of the free muon, Phys. Rev. 105, 1415 (1957)
CrossRef ADS Google scholar
[29]
J. Bailey, et al. [CERN-Mainz-Daresbury], Final report on the CERN muon storage ring including the anomalous magnetic moment and the electric dipole moment of the muon, and a direct test of relativistic time dilation, Nucl. Phys. B 150, 1 (1979)
CrossRef ADS Google scholar
[30]
M. Abe, S. Bae, G. Beer, G. Bunce, H. Choi, et al., A new approach for measuring the muon anomalous magnetic moment and electric dipole moment, Prog. Theor. Exp. Phys. 2019(5), 053C02 (2019), arXiv: 1901.03047 [physics.insdet]
[31]
R. Chislett [Muon g–2], The muon EDM in the g–2 experiment at Fermilab, EP J Web Conf. 118, 01005 (2016)
CrossRef ADS Google scholar
[32]
G. W. Bennett, et al. [Muon (g–2)], An improved limit on the muon electric dipole moment, Phys. Rev. D 80, 052008 (2009), arXiv: 0811.1207 [hep-ex]
[33]
A. H. Gomes, A. Kostelecký, and A. J. Vargas, Laboratory tests of Lorentz and CPT symmetry with muons, Phys. Rev. D 90(7), 076009 (2014), arXiv: 1407.7748 [hep-ph]
CrossRef ADS Google scholar
[34]
B. Quinn [Muon g–2], CPT- and Lorentz-violation tests with muon g–2, arXiv: 1907.00162 [hep-ex]

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(382 KB)

Accesses

Citations

Detail

Sections
Recommended

/