A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance

Qingquan Kong, Xuguang An, Lin Huang, Xiaolian Wang, Wei Feng, Siyao Qiu, Qingyuan Wang, Chenghua Sun

PDF(1942 KB)
PDF(1942 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (5) : 53506. DOI: 10.1007/s11467-021-1066-9
RESEARCH ARTICLE
RESEARCH ARTICLE

A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance

Author information +
History +

Abstract

Heterojunction structure has been extensively employed for the design of novel catalysts. In the present study, density functional theory was utilized to investigate the electronic structure and hydrogen evolution performance of Ti3C2O2 MXene quantum dots/graphene (QDs/G) heterostructure. Results show that a slight distortion can be observed in graphene after hybriding with QDs, due to which the electronic structure of QDs have been changed. Associated with such QDs-graphene interaction, the catalytic activity of Ti3C2O2 QDs has been optimized, leading to excellent HER catalytic performance.

Graphical abstract

Keywords

MXenes / quantum dots / density functional theory (DFT) / hydrogen evolution reaction (HER)

Cite this article

Download citation ▾
Qingquan Kong, Xuguang An, Lin Huang, Xiaolian Wang, Wei Feng, Siyao Qiu, Qingyuan Wang, Chenghua Sun. A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance. Front. Phys., 2021, 16(5): 53506 https://doi.org/10.1007/s11467-021-1066-9

References

[1]
J. A. Turner, Sustainable hydrogen production, Science 305(5686), 972 (2004)
CrossRef ADS Google scholar
[2]
S. Bhavsar, M. Najera, R. Solunke, and G. Veser, Chemical looping: To combustion and beyond, Catal. Today 228(0), 22896 (2014)
CrossRef ADS Google scholar
[3]
P. Li, R. Zhao, H. Chen, H. Wang, P. Wei, H. Huang, Q. Liu, T. Li, X. Shi, Y. Zhang, M. Liu, and X. Sun, Recent advances in the development of water oxidation electrocatalysts at mild pH, Small 15(13), 1805103 (2019)
CrossRef ADS Google scholar
[4]
D. Li, J. Shi, and C. Li, Transition-metal-based electrocatalysts as cocatalysts for photoelectrochemical water splitting: A mini review, Small 14(23), 1704179 (2018)
CrossRef ADS Google scholar
[5]
S. Wang, P. Chen, Y. Bai, J. H. Yun, G. Liu, and L. Wang, New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting, Adv. Mater. 30(20), 1800486 (2018)
CrossRef ADS Google scholar
[6]
Y. Zheng, Y. Jiao, M. Jaroniec, and S. Z. Qiao, Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory, Angew. Chem. Int. Ed. 54(1), 52 (2015)
CrossRef ADS Google scholar
[7]
A. Eftekhari, Electrocatalysts for hydrogen evolution reaction, Int. J. Hydrogen Energy 42(16), 11053 (2017)
CrossRef ADS Google scholar
[8]
Z. Tang, S. Shen, J. Zhuang, and X. Wang, Noble-metalpromoted three-dimensional macroassembly of singlelayered graphene oxide, Angew. Chem. Int. Ed. 49(27), 4603 (2010)
CrossRef ADS Google scholar
[9]
M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, MXenes: A new family of two-dimensional materials, Adv. Mater. 26(7), 992 (2014)
CrossRef ADS Google scholar
[10]
J. C. Lei, X. Zhang, and Z. Zhou, Recent advances in MXene: Preparation, properties, and applications, Front. Phys. 10(3), 276 (2015)
CrossRef ADS Google scholar
[11]
Z. W. Seh, K. D. Fredrickson, B. Anasori, J. Kibsgaard, A. L. Strickler, M. R. Lukatskaya, Y. Gogotsi, T. F. Jaramillo, and A. Vojvodic, Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution, ACS Energy Lett. 1(3), 589 (2016)
CrossRef ADS Google scholar
[12]
G. Gao, A. P. O’Mullane, and A. Du, 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction, ACS Catal. 7(1), 494 (2017)
CrossRef ADS Google scholar
[13]
Y. Li, Z. Yin, G. Ji, Z. Liang, Ya. Xue, Y. Guo, J. Tian, X. Wang, and H. Cui, 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity, Appl. Catal. B 246(5), 12 (2019)
CrossRef ADS Google scholar
[14]
Y. Li, L. Ding, S. Yin, Z. Liang, Y. Xue, X. Wang, H. Cui, and J. Tian, Photocatalytic H2 evolution on TiO2 assembled with Ti3C2 MXene and metallic 1T WS2 as Co catalysts, Nano-Micro Lett. 12(1), 6 (2020)
CrossRef ADS Google scholar
[15]
Y. Li, L. Ding, Z. Liang, Y. Xue, H. Cui, and J. Tian, Synergetic effect of defects rich MoS2 and Ti3C2 MXene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2, Chem. Eng. J. 383(1), 123178 (2020)
CrossRef ADS Google scholar
[16]
L. M. Azofra, N. Li, D. R. MacFarlane, and C. Sun, Promising prospects for 2D d2-d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia, Energy Environ. Sci. 9(8), 2545 (2016)
CrossRef ADS Google scholar
[17]
N. Li, X. Chen, W. J. Ong, D. R. MacFarlane, X. Zhao, A. K. Cheetham, and C. Sun, Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes), ACS Nano 11(11), 10825 (2017)
CrossRef ADS Google scholar
[18]
X. Chen, Z. Kong, N. Li, X. Zhao, and C. Sun, Proposing the prospects of Ti3CN transition metal carbides (MXenes) as anodes of Li-ion batteries: A DFT study, Phys. Chem. Chem. Phys. 18(48), 32937 (2016)
CrossRef ADS Google scholar
[19]
C. Ling, L. Shi, Y. Ouyang, and J. Wang, Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor, Chem. Mater. 28(24), 9026 (2016)
CrossRef ADS Google scholar
[20]
Z. Guo, Z. Jian, and Z. Sun, New two-dimensional transition metal borides for Li ion battery and electrocatalysis, J. Mater. Chem. A 5(45), 23530 (2017)
CrossRef ADS Google scholar
[21]
M. Pandey and K. S. Thygesen, Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution: A computational screening study, J. Phys. Chem. C 121(25), 13593 (2017)
CrossRef ADS Google scholar
[22]
Y. W. Cheng, J. H. Dai, Y. M. Zhang, and Y. Song, Twodimensional, ordered, double transition metal carbides (MXenes): A new family of promising catalysts for the hydrogen evolution reaction, J. Phys. Chem. C 122(49), 28113 (2018)
CrossRef ADS Google scholar
[23]
B. Huang, N. Zhou, X. Chen, W. J. Ong, and N. Li, Insights into the electrocatalytic hydrogen evolution reaction mechanism on two-dimensional transition-metal carbonitrides (MXene), Chemistry 24(69), 18479 (2018)
CrossRef ADS Google scholar
[24]
H. Zhang, L. Yu, T. Chen, W. Zhou, and X. W. D. Lou, Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution, Adv. Funct. Mater. 28(51), 1807086 (2018)
CrossRef ADS Google scholar
[25]
Y. Cheng, L. Wang, Y. Song, and Y. Zhang, Deep insights into the exfoliation properties of MAX to MXenes and the hydrogen evolution performances of 2D MXenes, J. Mater. Chem. A 7(26), 15862 (2019)
CrossRef ADS Google scholar
[26]
Y. Jiang, T. Sun, X. Xie, W. Jiang, J. Li, B. Tian, and C. Su, Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution, Chem- SusChem 12(7), 1368 (2019)
CrossRef ADS Google scholar
[27]
Z. Zeng, Y. Yan, J. Chen, P. Zan, Q. Tian, and P. Chen, Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots, Adv. Funct. Mater. 29(2), 1806500 (2019)
CrossRef ADS Google scholar
[28]
X. Yu, X. Cai, H. Cui, S. W. Lee, X. F. Yu, and B. Liu, Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy, Nanoscale 9(45), 17859 (2017)
CrossRef ADS Google scholar
[29]
Z. Jin, C. Liu, Z. Liu, J. Han, Y. Fang, Y. Han, Y. Niu, Y. Wu, C. Sun, and Y. Xu, Rational design of hydroxylrich Ti3C2Tx MXene quantum dots for high-performance electrochemical N2 reduction, Adv. Energy Mater. 10(22), 2000797 (2020)
CrossRef ADS Google scholar
[30]
C. Tsai, F. Abild-Pedersen, and J. K. Nørskov, Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions, Nano Lett. 14(3), 1381 (2014)
CrossRef ADS Google scholar
[31]
Y. Li, L. Ding, Y. Guo, Z. Liang, H. Cui, and J. Tian, Boosting the photocatalytic ability of g-C3N4 for hydrogen production by Ti3C2 MXene quantum dots, Acs Appl. Mater. Inter. 11(44), 41440 (2019)
CrossRef ADS Google scholar
[32]
F. He, B. Zhu, B. Cheng, J. Yu, W. Ho, W. Macyk, 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite Sscheme photocatalyst with enhanced CO2 reduction activity, Applied Catalysis B 272(0), 119006(2020)
CrossRef ADS Google scholar
[33]
Z. Cui, W. Du, C. Xiao, Q. Li, R. Sa, C. Sun, and Z. Ma, Enhancing hydrogen evolution of MoS2 Basal planes by combining single-boron catalyst and compressive strain, Front. Phys. 15(6), 63502 (2020)
CrossRef ADS Google scholar
[34]
Q. Yu, Y. Luo, S. Qiu, Q. Li, Z. Cai, Z. Zhang, J. Liu, C. Sun, and B. Liu, Tuning the hydrogen evolution performance of metallic 2D tantalum disulfide by interfacial engineering, ACS Nano 13(10), 11874 (2019)
CrossRef ADS Google scholar
[35]
K. Chu, Y. Liu, Y. Li, H. Zhang, and Y. Tian, Efficient electrocatalytic N2 reduction on CoO quantum dots, J. Mater. Chem. A 7(9), 4389 (2019)
CrossRef ADS Google scholar
[36]
H. Liu, X. Zhang, Y. Zhu, B. Cao, Q. Zhu, P. Zhang, B. Xu, F. Wu, and R. Chen, Electrostatic self-assembly of 0D–2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries, Nano-Micro Lett. 11(1), 65 (2019)
CrossRef ADS Google scholar
[37]
X. Chen, X. Sun, W. Xu, G. Pan, D. Zhou, J. Zhu, H. Wang, X. Bai, B. Dong, and H. Song, Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor, Nanoscale 10(3), 1111 (2018)
CrossRef ADS Google scholar
[38]
Y. Qin, Z. Wang, N. Liu, Y. Sun, D. Han, Y. Liu, L. Niu, and Z. Kang, High-yield fabrication of Ti3C2Tx MXene quantum dots and their electrochemiluminescence behavior, Nanoscale 10(29), 14000 (2018)
CrossRef ADS Google scholar
[39]
Q. Xu, L. Ding, Y. Wen, W. Yang, H. Zhou, X. Chen, J. Street, A. Zhou, W. J. Ong, and N. Li, High photoluminescence quantum yield of 18.7% by using nitrogen-doped Ti3C2 MXene quantum dots, J. Mater. Chem. C 6(24), 6360 (2018)
CrossRef ADS Google scholar
[40]
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[41]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef ADS Google scholar
[42]
J. P. Perdew, K. Burke, and Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B 54(23), 16533 (1996)
CrossRef ADS Google scholar
[43]
S. Grimme, Accurate description of van der Waals complexes by density functional theory including empirical corrections, J. Comput. Chem. 25(12), 1463 (2004)
CrossRef ADS Google scholar
[44]
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)
CrossRef ADS Google scholar
[45]
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
CrossRef ADS Google scholar
[46]
V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets, J. Phys. Chem. A 115(21), 5461 (2011)
CrossRef ADS Google scholar
[47]
S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, LOBSTER: A tool to extract chemical bonding from plane-wave based DFT, J. Comput. Chem. 37(11), 1030 (2016)
CrossRef ADS Google scholar
[48]
J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, and U. Stimming, Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc. 152(3), J23 (2005)
CrossRef ADS Google scholar
[49]
Z. Shen, X. Fan, S. Ma, Y. An, D. Yang, N. Guo, Z. Luo, and Y. Hu, 3d transitional-metal single atom catalysis toward hydrogen evolution reaction on MXenes supports, Int. J. Hydrogen Energy 45(28), 14396 (2020)
CrossRef ADS Google scholar
[50]
L. Dong, R. R. S. Gari, Z. Li, M. M. Craig, and S. Hou, Graphene-supported platinum and platinum– ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation, Carbon 48(3), 781 (2010)
CrossRef ADS Google scholar
[51]
Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, and H. Dai, MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction, J. Am. Chem. Soc. 133(19), 7296 (2011)
CrossRef ADS Google scholar
[52]
K. Chu, Y. Liu, J. Wang, and H. Zhang, NiO nanodots on graphene for efficient electrochemical N2 reduction to NH3,ACS Appl. Energy Mater. 2(3), 2288 (2019)
CrossRef ADS Google scholar
[53]
X. Zhang, Q. Liu, X. Shi, A. M. Asiri, Y. Luo, X. Sun, and T. Li, TiO2 nanoparticles–reduced graphene oxide hybrid: An efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions, J. Mater. Chem. A 6(36), 17303 (2018)
CrossRef ADS Google scholar
[54]
L. B. Drissi, E. H. Saidi, M. Bousmina, and O. Fassi- Fehri, DFT investigations of the hydrogenation effect on silicene/graphene hybrids, J. Phys.: Condens. Matter 24(48), 485502 (2012)
CrossRef ADS Google scholar
[55]
Y. Xie and P. Kent, Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X=C, N) monolayers, Phys. Rev. B 87(23), (2013)
CrossRef ADS Google scholar
[56]
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23(37), 4248 (2011)
CrossRef ADS Google scholar
[57]
S. Steinberg and R. Dronskowski, The crystal orbital Hamilton population (COHP) method as a tool to visualize and analyze chemical bonding in intermetallic compounds, Crystals (Basel) 8(5), 225 (2018)
CrossRef ADS Google scholar
[58]
J. Ran, G. Gao, F. T. Li, T. Y. Ma, A. Du, and S. Z. Qiao, Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production, Nat. Commun. 8(1), 13907 (2017)
CrossRef ADS Google scholar
[59]
Q. Liu, H. Zhao, M. Jiang, Q. Kang, W. Zhou, P. Wang, and F. Zhou, Boron enhances oxygen evolution reaction activity over Ni foam-supported iron boride nanowires, J. Mater. Chem. A 8(27), 13638 (2020)
CrossRef ADS Google scholar
[60]
X. Luo, Q. Shao, Y. Pi, and X. Huang, Trimetallic molybdate nanobelts as active and stable electrocatalysts for the oxygen evolution reaction, ACS Catal. 9(2), 1013 (2019)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1942 KB)

Accesses

Citations

Detail

Sections
Recommended

/