A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance
Qingquan Kong, Xuguang An, Lin Huang, Xiaolian Wang, Wei Feng, Siyao Qiu, Qingyuan Wang, Chenghua Sun
A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance
Heterojunction structure has been extensively employed for the design of novel catalysts. In the present study, density functional theory was utilized to investigate the electronic structure and hydrogen evolution performance of Ti3C2O2 MXene quantum dots/graphene (QDs/G) heterostructure. Results show that a slight distortion can be observed in graphene after hybriding with QDs, due to which the electronic structure of QDs have been changed. Associated with such QDs-graphene interaction, the catalytic activity of Ti3C2O2 QDs has been optimized, leading to excellent HER catalytic performance.
MXenes / quantum dots / density functional theory (DFT) / hydrogen evolution reaction (HER)
[1] |
J. A. Turner, Sustainable hydrogen production, Science 305(5686), 972 (2004)
CrossRef
ADS
Google scholar
|
[2] |
S. Bhavsar, M. Najera, R. Solunke, and G. Veser, Chemical looping: To combustion and beyond, Catal. Today 228(0), 22896 (2014)
CrossRef
ADS
Google scholar
|
[3] |
P. Li, R. Zhao, H. Chen, H. Wang, P. Wei, H. Huang, Q. Liu, T. Li, X. Shi, Y. Zhang, M. Liu, and X. Sun, Recent advances in the development of water oxidation electrocatalysts at mild pH, Small 15(13), 1805103 (2019)
CrossRef
ADS
Google scholar
|
[4] |
D. Li, J. Shi, and C. Li, Transition-metal-based electrocatalysts as cocatalysts for photoelectrochemical water splitting: A mini review, Small 14(23), 1704179 (2018)
CrossRef
ADS
Google scholar
|
[5] |
S. Wang, P. Chen, Y. Bai, J. H. Yun, G. Liu, and L. Wang, New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting, Adv. Mater. 30(20), 1800486 (2018)
CrossRef
ADS
Google scholar
|
[6] |
Y. Zheng, Y. Jiao, M. Jaroniec, and S. Z. Qiao, Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory, Angew. Chem. Int. Ed. 54(1), 52 (2015)
CrossRef
ADS
Google scholar
|
[7] |
A. Eftekhari, Electrocatalysts for hydrogen evolution reaction, Int. J. Hydrogen Energy 42(16), 11053 (2017)
CrossRef
ADS
Google scholar
|
[8] |
Z. Tang, S. Shen, J. Zhuang, and X. Wang, Noble-metalpromoted three-dimensional macroassembly of singlelayered graphene oxide, Angew. Chem. Int. Ed. 49(27), 4603 (2010)
CrossRef
ADS
Google scholar
|
[9] |
M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, MXenes: A new family of two-dimensional materials, Adv. Mater. 26(7), 992 (2014)
CrossRef
ADS
Google scholar
|
[10] |
J. C. Lei, X. Zhang, and Z. Zhou, Recent advances in MXene: Preparation, properties, and applications, Front. Phys. 10(3), 276 (2015)
CrossRef
ADS
Google scholar
|
[11] |
Z. W. Seh, K. D. Fredrickson, B. Anasori, J. Kibsgaard, A. L. Strickler, M. R. Lukatskaya, Y. Gogotsi, T. F. Jaramillo, and A. Vojvodic, Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution, ACS Energy Lett. 1(3), 589 (2016)
CrossRef
ADS
Google scholar
|
[12] |
G. Gao, A. P. O’Mullane, and A. Du, 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction, ACS Catal. 7(1), 494 (2017)
CrossRef
ADS
Google scholar
|
[13] |
Y. Li, Z. Yin, G. Ji, Z. Liang, Ya. Xue, Y. Guo, J. Tian, X. Wang, and H. Cui, 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity, Appl. Catal. B 246(5), 12 (2019)
CrossRef
ADS
Google scholar
|
[14] |
Y. Li, L. Ding, S. Yin, Z. Liang, Y. Xue, X. Wang, H. Cui, and J. Tian, Photocatalytic H2 evolution on TiO2 assembled with Ti3C2 MXene and metallic 1T WS2 as Co catalysts, Nano-Micro Lett. 12(1), 6 (2020)
CrossRef
ADS
Google scholar
|
[15] |
Y. Li, L. Ding, Z. Liang, Y. Xue, H. Cui, and J. Tian, Synergetic effect of defects rich MoS2 and Ti3C2 MXene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2, Chem. Eng. J. 383(1), 123178 (2020)
CrossRef
ADS
Google scholar
|
[16] |
L. M. Azofra, N. Li, D. R. MacFarlane, and C. Sun, Promising prospects for 2D d2-d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia, Energy Environ. Sci. 9(8), 2545 (2016)
CrossRef
ADS
Google scholar
|
[17] |
N. Li, X. Chen, W. J. Ong, D. R. MacFarlane, X. Zhao, A. K. Cheetham, and C. Sun, Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes), ACS Nano 11(11), 10825 (2017)
CrossRef
ADS
Google scholar
|
[18] |
X. Chen, Z. Kong, N. Li, X. Zhao, and C. Sun, Proposing the prospects of Ti3CN transition metal carbides (MXenes) as anodes of Li-ion batteries: A DFT study, Phys. Chem. Chem. Phys. 18(48), 32937 (2016)
CrossRef
ADS
Google scholar
|
[19] |
C. Ling, L. Shi, Y. Ouyang, and J. Wang, Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor, Chem. Mater. 28(24), 9026 (2016)
CrossRef
ADS
Google scholar
|
[20] |
Z. Guo, Z. Jian, and Z. Sun, New two-dimensional transition metal borides for Li ion battery and electrocatalysis, J. Mater. Chem. A 5(45), 23530 (2017)
CrossRef
ADS
Google scholar
|
[21] |
M. Pandey and K. S. Thygesen, Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution: A computational screening study, J. Phys. Chem. C 121(25), 13593 (2017)
CrossRef
ADS
Google scholar
|
[22] |
Y. W. Cheng, J. H. Dai, Y. M. Zhang, and Y. Song, Twodimensional, ordered, double transition metal carbides (MXenes): A new family of promising catalysts for the hydrogen evolution reaction, J. Phys. Chem. C 122(49), 28113 (2018)
CrossRef
ADS
Google scholar
|
[23] |
B. Huang, N. Zhou, X. Chen, W. J. Ong, and N. Li, Insights into the electrocatalytic hydrogen evolution reaction mechanism on two-dimensional transition-metal carbonitrides (MXene), Chemistry 24(69), 18479 (2018)
CrossRef
ADS
Google scholar
|
[24] |
H. Zhang, L. Yu, T. Chen, W. Zhou, and X. W. D. Lou, Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution, Adv. Funct. Mater. 28(51), 1807086 (2018)
CrossRef
ADS
Google scholar
|
[25] |
Y. Cheng, L. Wang, Y. Song, and Y. Zhang, Deep insights into the exfoliation properties of MAX to MXenes and the hydrogen evolution performances of 2D MXenes, J. Mater. Chem. A 7(26), 15862 (2019)
CrossRef
ADS
Google scholar
|
[26] |
Y. Jiang, T. Sun, X. Xie, W. Jiang, J. Li, B. Tian, and C. Su, Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution, Chem- SusChem 12(7), 1368 (2019)
CrossRef
ADS
Google scholar
|
[27] |
Z. Zeng, Y. Yan, J. Chen, P. Zan, Q. Tian, and P. Chen, Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots, Adv. Funct. Mater. 29(2), 1806500 (2019)
CrossRef
ADS
Google scholar
|
[28] |
X. Yu, X. Cai, H. Cui, S. W. Lee, X. F. Yu, and B. Liu, Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy, Nanoscale 9(45), 17859 (2017)
CrossRef
ADS
Google scholar
|
[29] |
Z. Jin, C. Liu, Z. Liu, J. Han, Y. Fang, Y. Han, Y. Niu, Y. Wu, C. Sun, and Y. Xu, Rational design of hydroxylrich Ti3C2Tx MXene quantum dots for high-performance electrochemical N2 reduction, Adv. Energy Mater. 10(22), 2000797 (2020)
CrossRef
ADS
Google scholar
|
[30] |
C. Tsai, F. Abild-Pedersen, and J. K. Nørskov, Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions, Nano Lett. 14(3), 1381 (2014)
CrossRef
ADS
Google scholar
|
[31] |
Y. Li, L. Ding, Y. Guo, Z. Liang, H. Cui, and J. Tian, Boosting the photocatalytic ability of g-C3N4 for hydrogen production by Ti3C2 MXene quantum dots, Acs Appl. Mater. Inter. 11(44), 41440 (2019)
CrossRef
ADS
Google scholar
|
[32] |
F. He, B. Zhu, B. Cheng, J. Yu, W. Ho, W. Macyk, 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite Sscheme photocatalyst with enhanced CO2 reduction activity, Applied Catalysis B 272(0), 119006(2020)
CrossRef
ADS
Google scholar
|
[33] |
Z. Cui, W. Du, C. Xiao, Q. Li, R. Sa, C. Sun, and Z. Ma, Enhancing hydrogen evolution of MoS2 Basal planes by combining single-boron catalyst and compressive strain, Front. Phys. 15(6), 63502 (2020)
CrossRef
ADS
Google scholar
|
[34] |
Q. Yu, Y. Luo, S. Qiu, Q. Li, Z. Cai, Z. Zhang, J. Liu, C. Sun, and B. Liu, Tuning the hydrogen evolution performance of metallic 2D tantalum disulfide by interfacial engineering, ACS Nano 13(10), 11874 (2019)
CrossRef
ADS
Google scholar
|
[35] |
K. Chu, Y. Liu, Y. Li, H. Zhang, and Y. Tian, Efficient electrocatalytic N2 reduction on CoO quantum dots, J. Mater. Chem. A 7(9), 4389 (2019)
CrossRef
ADS
Google scholar
|
[36] |
H. Liu, X. Zhang, Y. Zhu, B. Cao, Q. Zhu, P. Zhang, B. Xu, F. Wu, and R. Chen, Electrostatic self-assembly of 0D–2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries, Nano-Micro Lett. 11(1), 65 (2019)
CrossRef
ADS
Google scholar
|
[37] |
X. Chen, X. Sun, W. Xu, G. Pan, D. Zhou, J. Zhu, H. Wang, X. Bai, B. Dong, and H. Song, Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor, Nanoscale 10(3), 1111 (2018)
CrossRef
ADS
Google scholar
|
[38] |
Y. Qin, Z. Wang, N. Liu, Y. Sun, D. Han, Y. Liu, L. Niu, and Z. Kang, High-yield fabrication of Ti3C2Tx MXene quantum dots and their electrochemiluminescence behavior, Nanoscale 10(29), 14000 (2018)
CrossRef
ADS
Google scholar
|
[39] |
Q. Xu, L. Ding, Y. Wen, W. Yang, H. Zhou, X. Chen, J. Street, A. Zhou, W. J. Ong, and N. Li, High photoluminescence quantum yield of 18.7% by using nitrogen-doped Ti3C2 MXene quantum dots, J. Mater. Chem. C 6(24), 6360 (2018)
CrossRef
ADS
Google scholar
|
[40] |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef
ADS
Google scholar
|
[41] |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef
ADS
Google scholar
|
[42] |
J. P. Perdew, K. Burke, and Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B 54(23), 16533 (1996)
CrossRef
ADS
Google scholar
|
[43] |
S. Grimme, Accurate description of van der Waals complexes by density functional theory including empirical corrections, J. Comput. Chem. 25(12), 1463 (2004)
CrossRef
ADS
Google scholar
|
[44] |
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)
CrossRef
ADS
Google scholar
|
[45] |
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
CrossRef
ADS
Google scholar
|
[46] |
V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets, J. Phys. Chem. A 115(21), 5461 (2011)
CrossRef
ADS
Google scholar
|
[47] |
S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, LOBSTER: A tool to extract chemical bonding from plane-wave based DFT, J. Comput. Chem. 37(11), 1030 (2016)
CrossRef
ADS
Google scholar
|
[48] |
J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, and U. Stimming, Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc. 152(3), J23 (2005)
CrossRef
ADS
Google scholar
|
[49] |
Z. Shen, X. Fan, S. Ma, Y. An, D. Yang, N. Guo, Z. Luo, and Y. Hu, 3d transitional-metal single atom catalysis toward hydrogen evolution reaction on MXenes supports, Int. J. Hydrogen Energy 45(28), 14396 (2020)
CrossRef
ADS
Google scholar
|
[50] |
L. Dong, R. R. S. Gari, Z. Li, M. M. Craig, and S. Hou, Graphene-supported platinum and platinum– ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation, Carbon 48(3), 781 (2010)
CrossRef
ADS
Google scholar
|
[51] |
Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, and H. Dai, MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction, J. Am. Chem. Soc. 133(19), 7296 (2011)
CrossRef
ADS
Google scholar
|
[52] |
K. Chu, Y. Liu, J. Wang, and H. Zhang, NiO nanodots on graphene for efficient electrochemical N2 reduction to NH3,ACS Appl. Energy Mater. 2(3), 2288 (2019)
CrossRef
ADS
Google scholar
|
[53] |
X. Zhang, Q. Liu, X. Shi, A. M. Asiri, Y. Luo, X. Sun, and T. Li, TiO2 nanoparticles–reduced graphene oxide hybrid: An efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions, J. Mater. Chem. A 6(36), 17303 (2018)
CrossRef
ADS
Google scholar
|
[54] |
L. B. Drissi, E. H. Saidi, M. Bousmina, and O. Fassi- Fehri, DFT investigations of the hydrogenation effect on silicene/graphene hybrids, J. Phys.: Condens. Matter 24(48), 485502 (2012)
CrossRef
ADS
Google scholar
|
[55] |
Y. Xie and P. Kent, Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X=C, N) monolayers, Phys. Rev. B 87(23), (2013)
CrossRef
ADS
Google scholar
|
[56] |
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23(37), 4248 (2011)
CrossRef
ADS
Google scholar
|
[57] |
S. Steinberg and R. Dronskowski, The crystal orbital Hamilton population (COHP) method as a tool to visualize and analyze chemical bonding in intermetallic compounds, Crystals (Basel) 8(5), 225 (2018)
CrossRef
ADS
Google scholar
|
[58] |
J. Ran, G. Gao, F. T. Li, T. Y. Ma, A. Du, and S. Z. Qiao, Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production, Nat. Commun. 8(1), 13907 (2017)
CrossRef
ADS
Google scholar
|
[59] |
Q. Liu, H. Zhao, M. Jiang, Q. Kang, W. Zhou, P. Wang, and F. Zhou, Boron enhances oxygen evolution reaction activity over Ni foam-supported iron boride nanowires, J. Mater. Chem. A 8(27), 13638 (2020)
CrossRef
ADS
Google scholar
|
[60] |
X. Luo, Q. Shao, Y. Pi, and X. Huang, Trimetallic molybdate nanobelts as active and stable electrocatalysts for the oxygen evolution reaction, ACS Catal. 9(2), 1013 (2019)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |