Impurity effect as a probe for the pairing symmetry of graphene-based superconductors

Yuan-Qiao Li, Tao Zhou

PDF(1209 KB)
PDF(1209 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (4) : 43502. DOI: 10.1007/s11467-021-1056-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Impurity effect as a probe for the pairing symmetry of graphene-based superconductors

Author information +
History +

Abstract

We study theoretically the single impurity effect on graphene-based superconductors. Four different pairing symmetries are discussed. Sharp in-gap resonant peaks are found near the impurity site for the d+id pairing symmetry and the p+ip pairing symmetry when the chemical potential is large. As the chemical potential decreases, the in-gap states are robust for the d + id pairing symmetry while they disappear for the p + ip pairing symmetry. Such in-gap peaks are absent for the fully gapped extended s-wave pairing symmetry and the nodal f-wave pairing symmetry. The existence of the ingap resonant peaks can be explained well based on the sign-reversal of the superconducting gap along different Fermi pockets and by analyzing the denominator of the T-matrix. All of the features may be checked by the experiments, providing a useful probe for the pairing symmetry of graphene-based superconductors.

Keywords

impurity effect / graphene / superconductivity

Cite this article

Download citation ▾
Yuan-Qiao Li, Tao Zhou. Impurity effect as a probe for the pairing symmetry of graphene-based superconductors. Front. Phys., 2021, 16(4): 43502 https://doi.org/10.1007/s11467-021-1056-y

References

[1]
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
CrossRef ADS Google scholar
[2]
K. S. Novoselov, D. V. Andreeva, W. Ren, and G. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)
CrossRef ADS Google scholar
[3]
C. Tonnoir, A. Kimouche, J. Coraux, L. Magaud, B. Delsol, B. Gilles, and C. Chapelier, Induced superconductivity in graphene grown on rhenium, Phys. Rev. Lett. 111(24), 246805 (2013)
CrossRef ADS Google scholar
[4]
S. Ichinokura, K. Sugawara, A. Takayama, T. Takahashi, and S. Hasegawa, Superconducting calcium-intercalated bilayer graphene, ACS Nano 10(2), 2761 (2016)
CrossRef ADS Google scholar
[5]
J. Chapman, Y. Su, C. A. Howard, Dmytro Kundys, A. N. Grigorenko, F. Guinea, A. K. Geim, I. V. Grigorieva, and R. R. Nair, Superconductivity in Ca-doped graphene laminates, Sci. Rep. 6(1), 23254 (2016)
CrossRef ADS Google scholar
[6]
B. M. Ludbrook, G. Levy, P. Nigge, M. Zonno, M. Schneider, D. J. Dvorak, C. N. Veenstra, S. Zhdanovich, D. Wong, P. Dosanjh, C. Straßer, A. Stohr, S. Forti, C. R. Ast, U. Starke, and A. Damascelli, Evidence for superconductivity in Li-decorated monolayer graphene, Proc. Natl. Acad. Sci. USA 112(38), 11795 (2015)
CrossRef ADS Google scholar
[7]
A. Di Bernardo, O. Millo, M. Barbone, H. Alpern, Y. Kalcheim, U. Sassi, A. K. Ott, D. De Fazio, D. Yoon, M. Amado, A. C. Ferrari, J. Linder, and J. W. A. Robinson, p-wave triggered superconductivity in singlelayer graphene on an electron-doped oxide superconductor, Nat. Commun. 8(1), 14024 (2017)
CrossRef ADS Google scholar
[8]
Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature 556(7699), 43 (2018)
CrossRef ADS Google scholar
[9]
B. Uchoa and A. H. Castro Neto, Superconducting states of pure and doped graphene, Phys. Rev. Lett. 98(14), 146801 (2007)
CrossRef ADS Google scholar
[10]
N. B. Kopnin and E. B. Sonin, BCS superconductivity of Dirac electrons in graphene layers, Phys. Rev. Lett. 100(24), 246808 (2008)
CrossRef ADS Google scholar
[11]
J. Linder, A. M. Black-Schaffer, T. Yokoyama, S. Doniach, and A. Sudbø, Josephson current in graphene: Role of unconventional pairing symmetries, Phys. Rev. B 80(9), 094522 (2009)
CrossRef ADS Google scholar
[12]
A. M. Black-Schaffer and S. Doniach, Possibility of measuring intrinsic electronic correlations in graphene using a d-wave contact Josephson junction, Phys. Rev. B 81(1), 014517 (2010)
CrossRef ADS Google scholar
[13]
T. Ma, F. Yang, H. Yao, and H. Q. Lin, Possible triplet p+ ip superconductivity in graphene at low filling, Phys. Rev. B 90(24), 245114 (2014)
CrossRef ADS Google scholar
[14]
J. P. L. Faye, P. Sahebsara, and D. Senechal, Chiral triplet superconductivity on the graphene lattice, Phys. Rev. B 92(8), 085121 (2015)
CrossRef ADS Google scholar
[15]
T. Ma, Z. Huang, F. Hu, and H. Q. Lin, Pairing in graphene: A quantum Monte Carlo study, Phys. Rev. B 84(12), 121410 (2011)
CrossRef ADS Google scholar
[16]
R. Nandkishore, L. S. Levitov, and A. V. Chubukov, Chiral superconductivity from repulsive interactions in doped grapheme, Nat. Phys. 8(2), 158 (2012)
CrossRef ADS Google scholar
[17]
M. L. Kiesel, C. Platt, W. Hanke, D. A. Abanin, and R. Thomale, Competing many-body instabilities and unconventional superconductivity in grapheme, Phys. Rev. B 86(2), R020507 (2012)
CrossRef ADS Google scholar
[18]
R. Nandkishore, R. Thomale, and A. V. Chubukov, Superconductivity from weak repulsion in hexagonal lattice systems, Phys. Rev. B 89(14), 144501 (2014)
CrossRef ADS Google scholar
[19]
L. Y. Xiao, S. L. Yu, W. Wang, Z. J. Yao, and J. X. Li, Possible singlet and triplet superconductivity on honeycomb lattice, Europhys. Lett. 115(2), 27008 (2016)
CrossRef ADS Google scholar
[20]
M. V. Hosseini and M. Zareyan, Model of an exotic chiral superconducting phase in a graphene bilayer, Phys. Rev. Lett. 108(14), 147001 (2012)
CrossRef ADS Google scholar
[21]
J. L. Lado and J. Fernandez-Rossier, Unconventional Yu–Shiba–Rusinov states in hydrogenated grapheme, 2D Mater. 3(2), 025001 (2016)
CrossRef ADS Google scholar
[22]
T. Huang, L. Zhang, and T. Ma, Antiferromagnetically ordered Mott insulator and d+ id superconductivity in twisted bilayer graphene: A quantum Monte Carlo study, Sci. Bull. (Beijing) 64(5), 310 (2019)
CrossRef ADS Google scholar
[23]
W. Chen, Y. Chu, T. Huang, and T. Ma, Metal-insulator transition and dominant d+ id pairing symmetry in twisted bilayer graphene, Phys. Rev. B 101(15), 155413 (2020)
CrossRef ADS Google scholar
[24]
C. X. Zhao and J. F. Jia, Stanene: A good platform for topological insulator and topological superconductor, Front. Phys. 15(5), 53201 (2020)
CrossRef ADS Google scholar
[25]
C. R. Hu, Midgap surface states as a novel signature for dxa2−xb2-wave superconductivity, Phys. Rev. Lett. 72(10), 1526 (1994)
CrossRef ADS Google scholar
[26]
A. V. Balatsky, I. Vekhter, and J. X. Zhu, Impurityinduced states in conventional and unconventional superconductors, Rev. Mod. Phys. 78(2), 373 (2006)
CrossRef ADS Google scholar
[27]
D. G. Zhang, Nonmagnetic impurity resonances as a signature of sign-reversal pairing in FeAs-based superconductors, Phys. Rev. Lett. 103(18), 186402 (2009)
CrossRef ADS Google scholar
[28]
W. F. Tsai, Y. Y. Zhang, C. Fang, and J. P. Hu, Impurityinduced bound states in iron-based superconductors with s-wave cos(kx) · cos(ky) pairing symmetry, Phys. Rev. B 80(6), 064513 (2009)
CrossRef ADS Google scholar
[29]
D. D. Wang, B. Liu, M. Liu, Y. F. Yang, and S. P. Feng, Impurity-induced bound states as a signature of pairing symmetry in multiband superconducting CeCu2Si2, Front. Phys. 14(1), 13501 (2019)
CrossRef ADS Google scholar
[30]
F. M. D. Pellegrino, G. G. N. Angilella, and R. Pucci, Pairing symmetry of superconducting graphene, Eur. Phys. J. B 76(3), 469 (2010)
CrossRef ADS Google scholar
[31]
T. O. Wehling, H. P. Dahal, A. I. Lichtenstein, and A. V. Balatsky, Local impurity effects in superconducting graphene, Phys. Rev. B 78(3), 035414 (2008)
CrossRef ADS Google scholar
[32]
O. A. Awoga and A. M. Black-Schaffer, Probing unconventional superconductivity in proximitized graphene by impurity scattering, Phys. Rev. B 97(21), 214515 (2018)
CrossRef ADS Google scholar
[33]
E. W. Hudson, S. H. Pan, A. K. Gupta, K.-W. Ng, and J. C. Davis, Atomic-scale quasi-particle scattering resonances in Bi2Sr2CaCu2O8+δ, Science 285(5424), 88 (1999)
CrossRef ADS Google scholar
[34]
D. K. Morr, Resonant impurity states in the d-densitywave phase, Phys. Rev. Lett. 89(10), 106401 (2002)
CrossRef ADS Google scholar
[35]
N. Andrenacci, G. G. N. Angilella, H. Beck, and R. Pucci, Linear response theory around a localized impurity in the pseudogap regime of an anisotropic superconductor: Precursor pairing versus d-density-wave scenario, Phys. Rev. B 70(2), 024507 (2004)
CrossRef ADS Google scholar
[36]
M. M. Scherer, Graphene doping reaches new levels, Physics (College Park Md.) 13, 161 (2020)
CrossRef ADS Google scholar
[37]
P. Rosenzweig, H. Karakachian, D. Marchenko, K. Küster, and U. Starke, Overdoping graphene beyond the van hove singularity, Phys. Rev. Lett. 125(17), 176403 (2020)
CrossRef ADS Google scholar
[38]
T. Löthman and A. M. Black-Schaffer, Defects in the d+ id-wave superconducting state in heavily doped graphene, Phys. Rev. B 90(22), 224504 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1209 KB)

Accesses

Citations

Detail

Sections
Recommended

/