
Designing nonlinear thermal devices and metamaterials under the Fourier law: A route to nonlinear thermotics
Gao-Le Dai
Front. Phys. ›› 2021, Vol. 16 ›› Issue (5) : 53301.
Designing nonlinear thermal devices and metamaterials under the Fourier law: A route to nonlinear thermotics
Nonlinear heat transfer can be exploited to reveal novel transport phenomena and thus enhance people’s ability to manipulate heat flux at will. However, there has not been a mature discipline called nonlinear thermotics like its counterpart in optics or acoustics to make a systematic summary of relevant researches. In the current review, we focus on recent progress in an important part of nonlinear heat transfer, i.e., tailoring nonlinear thermal devices and metamaterials under the Fourier law, especially with temperature-dependent thermal conductivities. We will present the basic designing techniques including solving the equation directly and the transformation theory. Tuning nonlinearity coming from multi-physical effects, and how to calculate effective properties of nonlinear conductive composites using the effective medium theory are also included. Based on these theories, researchers have successfully designed various functional materials and devices such as the thermal diodes, thermal transistors, thermal memory elements, energy-free thermostats, and intelligent thermal materials, and some of them have also been realized in experiments. Further, these phenomenological works can provide a feasible route for the development of nonlinear thermotics.
nonlinear thermotics / thermal metamaterials / thermal conduction / thermal radiation / thermal convection / thermo-mechanical effects / effective medium theory
[1] |
S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 2nd Ed., CRC Press, Boca Raton, 2018
|
[2] |
W. A. Strauss, Partial Differential Equations: An introduction, 2nd Ed., Wiley, Hoboken, 2008
|
[3] |
N. Bloembergen, Nonlinear Optics, Benjamin, New York, 1964
|
[4] |
N. M. Krylov and N. N. Bogolyubov, Introduction to Non-Linear Mechanics, Princeton University Press, Princeton, 1947
|
[5] |
R. T. Beyer, Nonlinear Acoustics, Naval Ship Systems Command, Washington, D.C., 1974
CrossRef
ADS
Google scholar
|
[6] |
D. L. Pulfrey, Understanding Modern Transistors and Diodes, Cambridge University Press, Cambridge, 2010
CrossRef
ADS
Google scholar
|
[7] |
L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, 3rd Ed., Butterworth–Heinemann, Oxford, 1980
CrossRef
ADS
Google scholar
|
[8] |
L. P. Pitaevskii and E. M. Lifshitz, Physical Kinetics, Pergamon Press, Oxford, 1981
|
[9] |
D. W. Snoke, Solid State Physics: Essential Concepts, 2nd Ed., Cambridge University Press, Cambridge, 2020
CrossRef
ADS
Google scholar
|
[10] |
G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons, Oxford University Press, New York, 2005
|
[11] |
S. Lepri, R. Livi, and A. Politi, Thermal conduction in classical low-dimensional lattices, Phys. Rep. 377(1), 1 (2003)
CrossRef
ADS
Google scholar
|
[12] |
N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Phononics: Manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys. 84(3), 1045 (2012)
CrossRef
ADS
Google scholar
|
[13] |
X. Gu, Y. Wei, X. Yin, B. Li, and R. Yang, Colloquium: Phononic thermal properties of two-dimensional materials, Rev. Mod. Phys. 90(4), 041002 (2018)
CrossRef
ADS
Google scholar
|
[14] |
X. K. Chen and K. Q. Chen, Thermal transport of carbon nanomaterials, J. Phys.: Condens. Matter 32(15), 153002 (2020)
CrossRef
ADS
Google scholar
|
[15] |
Z. Zhang, Y. Ouyang, Y. Cheng, J. Chen, N. Li, and G. Zhang, Size-dependent phononic thermal transport in low-dimensional nanomaterials, Phys. Rep. 860, 1 (2020)
CrossRef
ADS
Google scholar
|
[16] |
J. Ford, The Fermi–Pasta–Ulam problem: Paradox turns discovery, Phys. Rep. 213(5), 271 (1992)
CrossRef
ADS
Google scholar
|
[17] |
O. M. Braun and Y. S. Kivshar, Nonlinear dynamics of the Frenkel–Kontorova model, Phys. Rep. 306(1–2), 1 (1998)
CrossRef
ADS
Google scholar
|
[18] |
D. D. Joseph and L. Preziosi, Heat waves, Rev. Mod. Phys. 61(1), 41 (1989)
CrossRef
ADS
Google scholar
|
[19] |
B. Straughan, Heat Waves, Springer, New York, 2011
CrossRef
ADS
Google scholar
|
[20] |
L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd Ed., Butterworth–Heinemann, Oxford, 1987
|
[21] |
S. Buckley, Thermic diode solar panels for space heating, Sol. Energy 20(6), 495 (1978)
CrossRef
ADS
Google scholar
|
[22] |
C. Starr, The copper oxide rectifier, Physics 7(1), 15 (1936)
CrossRef
ADS
Google scholar
|
[23] |
N. A. Roberts and D. G. Walker, A review of thermal rectification observations and models in solid materials, Int. J. Therm. Sci. 50(5), 648 (2011)
CrossRef
ADS
Google scholar
|
[24] |
M. Terraneo, M. Peyrard, and G. Casati, Controlling the energy flow in nonlinear lattices: A model for a thermal rectifier, Phys. Rev. Lett. 88(9), 094302 (2002)
CrossRef
ADS
Google scholar
|
[25] |
B. Li, L. Wang, and G. Casati, Thermal diode: Rectification of heat flux, Phys. Rev. Lett. 93(18), 184301 (2004)
CrossRef
ADS
Google scholar
|
[26] |
B. Li, J. Lan, and L. Wang, Interface thermal resistance between dissimilar anharmonic lattices, Phys. Rev. Lett. 95(10), 104302 (2005)
CrossRef
ADS
Google scholar
|
[27] |
B. Li, L. Wang, and G. Casati, Negative differential thermal resistance and thermal transistor, Appl. Phys. Lett. 88(14), 143501 (2006)
CrossRef
ADS
Google scholar
|
[28] |
L. Wang and B. Li, Thermal logic gates: Computation with phonons, Phys. Rev. Lett. 99(17), 177208 (2007)
CrossRef
ADS
Google scholar
|
[29] |
L. Wang and B. Li, Thermal memory: A storage of phononic information, Phys. Rev. Lett. 101(26), 267203 (2008)
CrossRef
ADS
Google scholar
|
[30] |
N. Li, P. Hänggi, and B. Li, Ratcheting heat flux against a thermal bias, EPL 84(4), 40009 (2008)
CrossRef
ADS
Google scholar
|
[31] |
Y. Ming, H. M. Li, and Z. J. Ding, Thermal rectification and negative differential thermal conductance in harmonic chains with nonlinear system-bath coupling, Phys. Rev. E 93(3), 032127 (2016)
CrossRef
ADS
Google scholar
|
[32] |
Z. Liu, X. Wu, H. Yang, N. Gupte, and B. Li, Heat flux distribution and rectification of complex networks, New J. Phys. 12(2), 023016 (2010)
CrossRef
ADS
Google scholar
|
[33] |
K. Xiong, J. Zhou, M. Tang, C. Zeng, and Z. Liu, Control of thermal conduction and rectification in a model of complex networks with two asymmetric parts, Phys. Rev. E 98(6), 062144 (2018)
CrossRef
ADS
Google scholar
|
[34] |
C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Solid-state thermal rectifier, Science 314(5802), 1121 (2006)
CrossRef
ADS
Google scholar
|
[35] |
D. Segal and A. Nitzan, Spin-boson thermal rectifier, Phys. Rev. Lett. 94(3), 034301 (2005)
CrossRef
ADS
Google scholar
|
[36] |
D. Segal, Single mode heat rectifier: Controlling energy flow between electronic conductors, Phys. Rev. Lett. 100(10), 105901 (2008)
CrossRef
ADS
Google scholar
|
[37] |
L. A. Wu and D. Segal, Sufficient conditions for thermal rectification in hybrid quantum structures, Phys. Rev. Lett. 102(9), 095503 (2009)
CrossRef
ADS
Google scholar
|
[38] |
D. Sánchez and R. López, Nonlinear phenomena in quantum thermoelectrics and heat, C. R. Phys. 17(10), 1060 (2016)
CrossRef
ADS
Google scholar
|
[39] |
R. Scheibner, M. König, D. Reuter, A. D. Wieck, C. Gould, H. Buhmann, and L. W. Molenkamp, Quantum dot as thermal rectifier, New J. Phys. 10(8), 083016 (2008)
CrossRef
ADS
Google scholar
|
[40] |
J. H. Jiang, M. Kulkarni, D. Segal, and Y. Imry, Phonon thermoelectric transistors and rectifiers, Phys. Rev. B 92(4), 045309 (2015)
CrossRef
ADS
Google scholar
|
[41] |
D. Segal and A. Nitzan, Heat rectification in molecular junctions, J. Chem. Phys. 122(19), 194704 (2005)
CrossRef
ADS
Google scholar
|
[42] |
D. Segal, Heat flow in nonlinear molecular junctions: Master equation analysis, Phys. Rev. B 73(20), 205415 (2006)
CrossRef
ADS
Google scholar
|
[43] |
G. T. Craven, D. He, and A. Nitzan, Electrontransferinduced thermal and thermoelectric rectification, Phys. Rev. Lett. 121(24), 247704 (2018)
CrossRef
ADS
Google scholar
|
[44] |
J. Ren, P. Hänggi, and B. Li, Berry-phase-induced heat pumping and its impact on the fluctuation theorem, Phys. Rev. Lett. 104(17), 170601 (2010)
CrossRef
ADS
Google scholar
|
[45] |
A. Fornieri, M. J. Martínez-Pérez, and F. Giazotto, A normal metal tunnel-junction heat diode, Appl. Phys. Lett. 104(18), 183108 (2014)
CrossRef
ADS
Google scholar
|
[46] |
M. J. Martínez-Pérez, A. Fornieri, and F. Giazotto, Rectification of electronic heat current by a hybrid thermal diode, Nat. Nanotechnol. 10(4), 303 (2015)
CrossRef
ADS
Google scholar
|
[47] |
A. Fornieri and F. Giazotto, Towards phase-coherent caloritronics in superconducting circuits, Nat. Nanotechnol. 12(10), 944 (2017)
CrossRef
ADS
Google scholar
|
[48] |
M. J. Martínez-Pérez and F. Giazotto, Efficient phasetunable Josephson thermal rectifier, Appl. Phys. Lett. 102(18), 182602 (2013)
CrossRef
ADS
Google scholar
|
[49] |
L. Bours, B. Sothmann, M. Carrega, E. Strambini, A. Braggio, E. M. Hankiewicz, L. W. Molenkamp, and F. Giazotto, Phase-tunable thermal rectification in the topological SQUIPT, Phys. Rev. Appl. 11(4), 044073 (2019)
CrossRef
ADS
Google scholar
|
[50] |
C. Guarcello, P. Solinas, A. Braggio, M. Di Ventra, and F. Giazotto, Josephson thermal memory, Phys. Rev. Appl. 9(1), 014021 (2018)
CrossRef
ADS
Google scholar
|
[51] |
C. Guarcello, P. Solinas, A. Braggio, and F. Giazotto, Solitonic Josephson thermal transport, Phys. Rev. Appl. 9(3), 034014 (2018)
CrossRef
ADS
Google scholar
|
[52] |
M. Maldovan, Sound and heat revolutions in phononics, Nature 503(7475), 209 (2013)
CrossRef
ADS
Google scholar
|
[53] |
Y. Li, W. Li, T. Han, X. Zheng, J. Li, B. Li, S. Fan, and C. W. Qiu, Transforming heat transfer with thermal metamaterials and devices, arXiv: 2008.07964v1 (2020)
|
[54] |
J. Wang, G. Dai, and J. Huang, Thermal metamaterial: Fundamental, application, and outlook, iScience 23(10), 101637 (2020)
CrossRef
ADS
Google scholar
|
[55] |
J. C. Kim, Z. Ren, A. Yuksel, E. M. Dede, P. R. Bandaru, D. Oh, and J. Lee, Recent advances in thermal metamaterials and their future applications for electronics packaging, J. Electron. Packag. 143(1), 010801 (2021)
CrossRef
ADS
Google scholar
|
[56] |
N. I. Zhuludev and Y. S. Kivshar, From metamaterials to metadevices, Nat. Mater. 11(11), 917 (2012)
CrossRef
ADS
Google scholar
|
[57] |
S. Narayana and Y. Sato, Heat flux manipulation with engineered thermal materials, Phys. Rev. Lett. 108(21), 214303 (2012)
CrossRef
ADS
Google scholar
|
[58] |
C. Z. Fan, Y. Gao, and J. P. Huang, Shaped graded materials with an apparent negative thermal conductivity, Appl. Phys. Lett. 92(25), 251907 (2008)
CrossRef
ADS
Google scholar
|
[59] |
Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes, Phys. Rev. Lett. 115(19), 195503 (2015)
CrossRef
ADS
Google scholar
|
[60] |
G. S. He, Nonlinear Optics and Photonics, Oxford University Press, Oxford, 2015
|
[61] |
A. Alù and N. Engheta, Achieving transparency with plasmonic and metamaterial coatings, Phys. Rev. E 72(1), 016623 (2005)
CrossRef
ADS
Google scholar
|
[62] |
H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, Ultrathin three-dimensional thermal cloak, Phys. Rev. Lett. 112(5), 054301 (2014)
CrossRef
ADS
Google scholar
|
[63] |
T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, Experimental demonstration of a bilayer thermal cloak, Phys. Rev. Lett. 112(5), 054302 (2014)
CrossRef
ADS
Google scholar
|
[64] |
T. Han, X. Bai, J. T. L. Thong, B. Li, and C. W. Qiu, Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterials, Adv. Mater. 26(11), 1731 (2014)
CrossRef
ADS
Google scholar
|
[65] |
T. Han, P. Yang, Y. Li, D. Lei, B. Li, K. Hippalgaonkar, and C. W. Qiu, Full-parameter omnidirectional thermal metadevices of anisotropic geometry, Adv. Mater. 30(49), 1804019 (2018)
CrossRef
ADS
Google scholar
|
[66] |
C. Marucha, J. Mucha, and J. Rafałowicz, Heat flow rectification in inhomogeneous GaAs, Phys. Status Solidi 31(1), 269 (1975)
CrossRef
ADS
Google scholar
|
[67] |
A. Jeżowski and J. Rafałowicz, Heat flow asymmetry on a junction of quartz with graphite, Phys. Status Solidi 47(1), 229 (1978)
CrossRef
ADS
Google scholar
|
[68] |
B. Hu, D. He, L. Yang, and Y. Zhang, Thermal rectifying effect in macroscopic size, Phys. Rev. E 74(6), 060201 (2006)
CrossRef
ADS
Google scholar
|
[69] |
M. Peyrard, The design of a thermal rectifier, EPL 76(1), 49 (2006)
CrossRef
ADS
Google scholar
|
[70] |
D. B. Go and M. Sen, On the condition for thermal rectification using bulk materials, J. Heat Transfer 132(12), 124502 (2010)
CrossRef
ADS
Google scholar
|
[71] |
Y. Li, J. X. Li, M. H. Qi, C.-W. Qiu, and H. S. Chen, Diffusive nonreciprocity and thermal diode, Phys. Rev. B 103, 014307 (2021)
CrossRef
ADS
Google scholar
|
[72] |
C. Dames, Solid-state thermal rectification with existing bulk materials, J. Heat Transfer 131(6), 061301 (2009)
CrossRef
ADS
Google scholar
|
[73] |
Y. Yang, H. Chen, H. Wang, N. Li, and L. Zhang, Optimal thermal rectification of heterojunctions under Fourier law, Phys. Rev. E 98(4), 042131 (2018)
CrossRef
ADS
Google scholar
|
[74] |
W. Kobayashi, Thermal-rectification coefficients in solidstate thermal rectifiers, Phys. Rev. E 102(3), 032142 (2020)
CrossRef
ADS
Google scholar
|
[75] |
W. Kobayashi, Y. Teraoka, and I. Terasaki, An oxide thermal rectifier, Appl. Phys. Lett. 95(17), 171905 (2009)
CrossRef
ADS
Google scholar
|
[76] |
D. Sawaki, W. Kobayashi, Y. Moritomo, and I. Terasaki, Thermal rectification in bulk materials with asymmetric shape, Appl. Phys. Lett. 98(8), 081915 (2011)
CrossRef
ADS
Google scholar
|
[77] |
T. Takeuchi, H. Goto, R. Nakayama, Y. Terazawa, K. Ogawa, A. Yamamoto, T. Itoh, and M. Mikami, Improvement in rectification ratio of an Al-based bulk thermal rectifier working at high temperatures, J. Appl. Phys. 111(9), 093517 (2012)
CrossRef
ADS
Google scholar
|
[78] |
R. Nakayama and T. Takeuchi, Thermal rectification in bulk material through unusual behavior of electron thermal conductivity of Al–Cu–Fe icosahedral quasicrystal, J. Electron. Mater. 44(1), 356 (2015)
CrossRef
ADS
Google scholar
|
[79] |
T. Takeuchi, Very large thermal rectification in bulk composites consisting partly of icosahedral quasicrystals, Sci. Technol. Adv. Mater. 15(6), 064801 (2014)
CrossRef
ADS
Google scholar
|
[80] |
K. Yuan, J. Shi, W. Aftab, M. Qin, A. Usman, F. Zhou, Y. Lv, S. Gao, and R. Zou, Engineering the thermal conductivity of functional phase-change materials for heat energy conversion, storage, and utilization, Adv. Funct. Mater. 30(8), 1904228 (2020)
CrossRef
ADS
Google scholar
|
[81] |
X. Chen, Z. Tang, H. Gao, S. Chen, and G. Wang, Phase change materials for electro-thermal conversion and storage: From fundamental understanding to engineering design, iScience 23(6), 101208 (2020)
CrossRef
ADS
Google scholar
|
[82] |
Y. Zhou, S. Wu, Y. Ma, H. Zhang, X. Zeng, F. Wu, F. Liu, J. E. Ryu, and Z. Guo, Recent advances in organic/composite phase change materials for energy storage, ES Energy Environ. 9, 28 (2020)
|
[83] |
W. Kobayashi, D. Sawaki, T. Omura, T. Katsufuji, Y. Moritomo, and I. Terasaki, Thermal rectification in the vicinity of a structural phase transition, Appl. Phys. Express 5(2), 027302 (2012)
CrossRef
ADS
Google scholar
|
[84] |
A. L. Cottrill and M. S. Strano, Analysis of thermal diodes enabled by junctions of phase change materials, Adv. Energy Mater. 5(23), 1500921 (2015)
CrossRef
ADS
Google scholar
|
[85] |
J. Ordonez-Miranda, J. M. Hill, K. Joulain, Y. Ezzahri, and J. Drevillon, Conductive thermal diode based on the thermal hysteresis of VO2 and nitinol, J. Appl. Phys. 123(8), 085102 (2018)
CrossRef
ADS
Google scholar
|
[86] |
K. I. Garcia-Garcia and J. Alvarez-Quintana, Thermal rectification assisted by lattice transitions, Int. J. Therm. Sci. 81, 76 (2014)
CrossRef
ADS
Google scholar
|
[87] |
V. Birman, Review of mechanics of shape memory alloy structures, Appl. Mech. Rev. 50(11), 629 (1997)
CrossRef
ADS
Google scholar
|
[88] |
E. Pallecchi, Z. Chen, G. E. Fernandes, Y. Wan, J. H. Kim, and J. Xu, A thermal diode and novel implementation in a phase-change material, Mater. Horiz. 2(1), 125 (2015)
CrossRef
ADS
Google scholar
|
[89] |
S. Wang, A. L. Cottrill, Y. Kunai, A. R. Toland, P. Liu, W. J. Wang, and M. S. Strano, Microscale solidstate thermal diodes enabling ambient temperature thermal circuits for energy applications, Phys. Chem. Chem. Phys. 19(20), 13172 (2017)
CrossRef
ADS
Google scholar
|
[90] |
J. A. Leon-Gil, J. J. Martinez-Flores, and J. Alvarez-Quintana, A hybrid thermal diode based on phase transition materials, J. Mater. Sci. 54(4), 3211 (2019)
CrossRef
ADS
Google scholar
|
[91] |
H. Kang, F. Yang, and J. J. Urban, Thermal rectification via heterojunctions of solid-state phase-change materials, Phys. Rev. Appl. 10(2), 024034 (2018)
CrossRef
ADS
Google scholar
|
[92] |
A. L. Cottrill, S. Wang, A. T. Liu, W. J. Wang, and M. S. Strano, Dual phase change thermal diodes for enhanced rectification ratios: Theory and experiment, Adv. Energy Mater. 8(11), 1702692 (2018)
CrossRef
ADS
Google scholar
|
[93] |
S. O. Kasali, J. Ordonez-Miranda, and K. Joulain, Conductive thermal diode based on two phase-change materials, Int. J. Therm. Sci. 153, 106393 (2020)
CrossRef
ADS
Google scholar
|
[94] |
C. Y. Tso and C. Y. H. Chao, Solid-state thermal diode with shape memory alloys, Int. J. Heat Mass Transfer 93, 605 (2016)
CrossRef
ADS
Google scholar
|
[95] |
M. Hao, J. Li, S. Park, S. Moura, and C. Dames, Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy, Nat. Energy 3(10), 899 (2018)
CrossRef
ADS
Google scholar
|
[96] |
D. W. Hengeveld, M. M. Mathison, J. E. Braun, E. A. Groll, and A. D. Williams, Review of modern spacecraft thermal control technologies, HVAC & R Res. 16(2), 189 (2010)
CrossRef
ADS
Google scholar
|
[97] |
L. Guo, X. Zhang, Y. Huang, R. Hu, and C. Liu, Thermal characterization of a new differential thermal expansion heat switch for space optical remote sensor, Appl. Therm. Eng. 113, 1242 (2017)
CrossRef
ADS
Google scholar
|
[98] |
P. R. Gaddam, S. T. Huxtable, and W. A. Ducker, A liquid-state thermal diode, Int. J. Heat Mass Transfer 106, 741 (2017)
CrossRef
ADS
Google scholar
|
[99] |
H. Wang, S. Hu, K. Takahashi, X. Zhang, H. Takamatsu, and J. Chen, Experimental study of thermal rectification in suspended monolayer graphene, Nat. Commun. 8(1), 15843 (2017)
CrossRef
ADS
Google scholar
|
[100] |
M. Kasprzak, M. Sledzinska, K. Zaleski, I. Iatsunskyi, F. Alzina, S. Volz, C. M. Sotomayor Torres, and B. Graczykowski, High-temperature silicon thermal diode and switch, Nano Energy 78, 105261 (2020)
CrossRef
ADS
Google scholar
|
[101] |
T. Zhang and T. Luo, Giant thermal rectification from polyethylene nanofiber thermal diodes, Small 11(36), 4657 (2015)
CrossRef
ADS
Google scholar
|
[102] |
J. Hu, X. Ruan, and Y. P. Chen, Thermal conductivity and thermal rectification in graphene nanoribbons: A molecular dynamics study, Nano Lett. 9(7), 2730 (2009)
CrossRef
ADS
Google scholar
|
[103] |
N. Yang, N. Li, L. Wang, and B. Li, Thermal rectification and negative differential thermal resistance in lattices with mass gradient, Phys. Rev. B 76, 020301(R) (2007)
CrossRef
ADS
Google scholar
|
[104] |
N. Yang, G. Zhang, and B. Li, Carbon nanocone: A promising thermal rectifier, Appl. Phys. Lett. 93(24), 243111 (2008)
CrossRef
ADS
Google scholar
|
[105] |
G. Wu and B. Li, Thermal rectifiers from deformed carbon nanohorns, J. Phys. Condens. Matter 20(17), 175211 (2008)
CrossRef
ADS
Google scholar
|
[106] |
N. Yang, G. Zhang, and B. Li, Thermal rectification in asymmetric graphene ribbons, Appl. Phys. Lett. 95(3), 033107 (2009)
CrossRef
ADS
Google scholar
|
[107] |
M. Criado-Sancho, F. X. Alvarez, and D. Jou, Thermal rectification in inhomogeneous nanoporous Si devices, J. Appl. Phys. 114(5), 053512 (2013)
CrossRef
ADS
Google scholar
|
[108] |
M. G. Naso, E. Vuk, and F. Zullo, On the optimization of heat rectification in graded materials, Int. J. Heat Mass Transfer 143, 118520 (2019)
CrossRef
ADS
Google scholar
|
[109] |
Y. Y. Liu, W. X. Zhou, L. M. Tang, and K. Q. Chen, An important mechanism for thermal rectification in graded nanowires, Appl. Phys. Lett. 105(20), 203111 (2014)
CrossRef
ADS
Google scholar
|
[110] |
X. K. Chen, J. Liu, Z. X. Xie, Y. Zhang, Y. X. Deng, and K. Q. Chen, A local resonance mechanism for thermal rectification in pristine/branched graphene nanoribbon junctions, Appl. Phys. Lett. 113(12), 121906 (2018)
CrossRef
ADS
Google scholar
|
[111] |
Y. Wang, S. Chen, and X. Ruan, Tunable thermal rectification in graphene nanoribbons through defect engineering: A molecular dynamics study, Appl. Phys. Lett. 100(16), 163101 (2012)
CrossRef
ADS
Google scholar
|
[112] |
C. Zhang, M. An, Z. Guo, and S. Chen, Perturbation theory of thermal rectification, Phys. Rev. E 102(4), 042106 (2020)
CrossRef
ADS
Google scholar
|
[113] |
D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, What is — and what is not — an optical isolator, Nat. Photonics 7(8), 579 (2013)
CrossRef
ADS
Google scholar
|
[114] |
V. S. Asadchy, M. S. Mirmoosa, A. Díaz-Rubio, S. Fan, and S. A. Tretyakov, Tutorial on electromagnetic nonreciprocity and its origins, Proc. IEEE 108(10), 1684 (2020)
CrossRef
ADS
Google scholar
|
[115] |
C. Caloz, A. Alù, S. Tretyakov, D. Sounas, K. Achouri, and Z. L. Deck-Léger, Electromagnetic nonreciprocity, Phys. Rev. Appl. 10(4), 047001 (2018)
CrossRef
ADS
Google scholar
|
[116] |
H. Nassar, B. Yousefzadeh, R. Fleury, M. Ruzzene, A. Alù, C. Daraio, A. N. Norris, G. Huang, and M. R. Haberman, Nonreciprocity in acoustic and elastic materials, Nat. Rev. Mater. 5(9), 667 (2020)
CrossRef
ADS
Google scholar
|
[117] |
B. Liang, B. Yuan, and J. C. Cheng, Acoustic diode: Rectification of acoustic energy flux in one-dimensional systems, Phys. Rev. Lett. 103(10), 104301 (2009)
CrossRef
ADS
Google scholar
|
[118] |
B. Liang, X. S. Guo, J. Tu, D. Zhang, and J. C. Cheng, An acoustic rectifier, Nat. Mater. 9(12), 989 (2010)
CrossRef
ADS
Google scholar
|
[119] |
H. Masoud, and H. A. Stone, The reciprocal theorem in fluid dynamics and transport phenomena, J. Fluid Mech. 879, P1 (2019)
CrossRef
ADS
Google scholar
|
[120] |
X. Xu and T. Qian, Generalized Lorentz reciprocal theorem in complex fluids and in non-isothermal systems, J. Phys.: Condens. Matter 31(47), 475101 (2019)
CrossRef
ADS
Google scholar
|
[121] |
G. Wu, Y. Long, and J. Ren, Asymmetric nonlinear system is not sufficient for a nonreciprocal wave diode, Phys. Rev. B 97(20), 205423 (2018)
CrossRef
ADS
Google scholar
|
[122] |
D. He, S. Buyukdagli, and B. Hu, Origin of negative differential thermal resistance in a chain of two weakly coupled nonlinear lattices, Phys. Rev. B 80(10), 104302 (2009)
CrossRef
ADS
Google scholar
|
[123] |
J. Hu, Y. Wang, A. Vallabhaneni, X. Ruan, and Y. P. Chen, Nonlinear thermal transport and negative differential thermal conductance in graphene nanoribbons, Appl. Phys. Lett. 99(11), 113101 (2011)
CrossRef
ADS
Google scholar
|
[124] |
X. K. Chen, J. Liu, Z. H. Peng, D. Du, and K. Q. Chen, A wave-dominated heat transport mechanism for negative differential thermal resistance in graphene/hexagonal boron nitride heterostructures, Appl. Phys. Lett. 110(9), 091907 (2017)
CrossRef
ADS
Google scholar
|
[125] |
A. Fornieri, G. Timossi, R. Bosisio, P. Solinas, and F. Giazotto, Negative differential thermal conductance and heat amplification in superconducting hybrid devices, Phys. Rev. B 93(13), 134508 (2016)
CrossRef
ADS
Google scholar
|
[126] |
H. Liu, C. Wang, L. Q. Wang, and J. Ren, Strong systembath coupling induces negative differential thermal conductance and heat amplification in nonequilibrium twoqubit systems, Phys. Rev. E 99(3), 032114 (2019)
CrossRef
ADS
Google scholar
|
[127] |
Y. Yang, D. Ma, Y. Zhao, and L. Zhang, Negative differential thermal resistance effect in a macroscopic homojunction, J. Appl. Phys. 127(19), 195301 (2020)
CrossRef
ADS
Google scholar
|
[128] |
G. L. Pollack, Kapitza resistance, Rev. Mod. Phys. 41(1), 48 (1969)
CrossRef
ADS
Google scholar
|
[129] |
E. T. Swartz and R. O. Pohl, Thermal boundary resistance, Rev. Mod. Phys. 61(3), 605 (1989)
CrossRef
ADS
Google scholar
|
[130] |
G. Bertotti, Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers, Academic Press, San Diego, 1998
|
[131] |
H. M. Gibbs, Optical Bistability: Controlling Light with Light, Academic Press, Orlando, 1985
CrossRef
ADS
Google scholar
|
[132] |
O. H. Schmitt, A thermionic trigger, J. Sci. Instrum. 15(1), 24 (1938)
CrossRef
ADS
Google scholar
|
[133] |
N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82(2), 1539 (2010)
CrossRef
ADS
Google scholar
|
[134] |
C. X. Liu, S. C. Zhang, and X. L. Qi, The quantum anomalous Hall effect, arXiv: 1508.07106 (2015)
|
[135] |
D. Dubnau and R. Losick, Bistability in bacteria, Mol. Microbiol. 61(3), 564 (2006)
CrossRef
ADS
Google scholar
|
[136] |
J. W. Veening, W. K. Smits, and O. P. Kuipers, Bistability, epigenetics, and bet-hedging in bacteria, Annu. Rev. Microbiol. 62(1), 193 (2008)
CrossRef
ADS
Google scholar
|
[137] |
R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. Thong, An electrically tuned solid-state thermal memory based on metal-insulator transition of single-crystalline VO2 nanobeams, Adv. Funct. Mater. 21(9), 1602 (2011)
CrossRef
ADS
Google scholar
|
[138] |
J. Wang, G. Dai, F. Yang, and J. Huang, Designing bistability or multistability in macroscopic diffusive systems, Phys. Rev. E 101(2), 022119 (2020)
CrossRef
ADS
Google scholar
|
[139] |
L. Chua, Memristor — The missing circuit element, IEEE Trans. Circuit Theory 18(5), 507 (1971)
CrossRef
ADS
Google scholar
|
[140] |
D. S. Shang, Y. S. Chai, Z. X. Cao, J. Lu, and Y. Sun, Toward the complete relational graph of fundamental circuit elements, Chin. Phys. B 24(6), 068402 (2015)
CrossRef
ADS
Google scholar
|
[141] |
D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, The missing memristor found, Nature 453(7191), 80 (2008)
CrossRef
ADS
Google scholar
|
[142] |
M. Di Ventra, Y. V. Pershin, and L. O. Chua, Circuit elements with memory: Memristors, memcapacitors, and meminductors, Proc. IEEE 97(10), 1717 (2009)
CrossRef
ADS
Google scholar
|
[143] |
Y. V. Pershin and M. Di Ventra, Memory effects in complex materials and nanoscale systems, Adv. Phys. 60(2), 145 (2011)
CrossRef
ADS
Google scholar
|
[144] |
Y. V. Pershin, S. La Fontaine, and M. Di Ventra, Memristive model of amoeba learning, Phys. Rev. E 80(2), 021926 (2009)
CrossRef
ADS
Google scholar
|
[145] |
V. K. Sangwan, H. S. Lee, H. Bergeron, I. Balla, M. E. Beck, K. S. Chen, and M. C. Hersam, Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide, Nature 554(7693), 500 (2018)
CrossRef
ADS
Google scholar
|
[146] |
P. Ben-Abdallah, Thermal memristor and neuromorphic networks for manipulating heat flow, AIP Adv. 7(6), 065002 (2017)
CrossRef
ADS
Google scholar
|
[147] |
F. Yang, M. P. Gordon, and J. J. Urban, Theoretical framework of the thermal memristor via a solidstate phase change material, J. Appl. Phys. 125(2), 025109 (2019)
CrossRef
ADS
Google scholar
|
[148] |
K. Liu, S. Lee, S. Yang, O. Delaire, and J. Wu, Recent progresses on physics and applications of vanadium dioxide, Mater. Today 21(8), 875 (2018)
CrossRef
ADS
Google scholar
|
[149] |
T. Driscoll, H. T. Kim, B. G. Chae, M. Di Ventra, and D. N. Basov, Phase-transition driven memristive system, Appl. Phys. Lett. 95(4), 043503 (2009)
CrossRef
ADS
Google scholar
|
[150] |
T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, Memory metamaterials, Science 325(5947), 1518 (2009)
CrossRef
ADS
Google scholar
|
[151] |
X. Shen, Y. Li, C. Jiang, and J. Huang, Temperature trapping: Energy-free maintenance of constant temperatures as ambient temperature gradients change, Phys. Rev. Lett. 117(5), 055501 (2016)
CrossRef
ADS
Google scholar
|
[152] |
J. Wang, J. Shang, and J. Huang, Negative energy consumption of thermostats at ambient temperature: Electricity generation with zero energy maintenance, Phys. Rev. Appl. 11(2), 024053 (2019)
CrossRef
ADS
Google scholar
|
[153] |
J. B. Pendry, D. Schurig, and D. R. Smith, Controlling electromagnetic fields, Science 312(5781), 1780 (2006)
CrossRef
ADS
Google scholar
|
[154] |
U. Leonhardt, Controlling electromagnetic fields, Science 312(5781), 1777 (2006)
CrossRef
ADS
Google scholar
|
[155] |
U. Leonhardt and T. G. Philbin, General relativity in electrical engineering, New J. Phys. 8(10), 247 (2006)
CrossRef
ADS
Google scholar
|
[156] |
H. Chen, C. T. Chan, and P. Sheng, Transformation optics and metamaterials, Nat. Mater. 9(5), 387 (2010)
CrossRef
ADS
Google scholar
|
[157] |
M. Kadic, T. Bückmann, R. Schittny, and M. Wegener, Metamaterials beyond electromagnetism, Rep. Prog. Phys. 76(12), 126501 (2013)
CrossRef
ADS
Google scholar
|
[158] |
H. Chen and C. T. Chan, Acoustic cloaking and transformation acoustics, J. Phys. D Appl. Phys. 43(11), 113001 (2010)
CrossRef
ADS
Google scholar
|
[159] |
S. Zhang, D. A. Genov, C. Sun, and X. Zhang, Cloaking of matter waves, Phys. Rev. Lett. 100(12), 123002 (2008)
CrossRef
ADS
Google scholar
|
[160] |
A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, Electromagnetic wormholes and virtual magnetic monopoles from metamaterials, Phys. Rev. Lett. 99(18), 183901 (2007)
CrossRef
ADS
Google scholar
|
[161] |
D. A. Genov, S. Zhang, and X. Zhang, Mimicking celestial mechanics in metamaterials, Nat. Phys. 5(9), 687 (2009)
CrossRef
ADS
Google scholar
|
[162] |
Y. A. Urzhumov and D. R. Smith, Fluid flow control with transformation media, Phys. Rev. Lett. 107(7), 074501 (2011)
CrossRef
ADS
Google scholar
|
[163] |
J. Park, J. R. Youn, and Y. S. Song, Hydrodynamic metamaterial cloak for drag-free flow, Phys. Rev. Lett. 123(7), 074502 (2019)
CrossRef
ADS
Google scholar
|
[164] |
F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, DC electric invisibility cloak, Phys. Rev. Lett. 109(5), 053902 (2012)
CrossRef
ADS
Google scholar
|
[165] |
G. W. Milton, M. Briane, and J. R. Willis, On cloaking for elasticity and physical equations with a transformation invariant form, New J. Phys. 8(10), 248 (2006)
CrossRef
ADS
Google scholar
|
[166] |
Y. Li, X. Shen, J. Huang, and Y. Ni, Temperaturedependent transformation thermotics for unsteady states: Switchable concentrator for transient heat flow, Phys. Lett. A 380(18–19), 1641 (2016)
CrossRef
ADS
Google scholar
|
[167] |
C. I. Christov, On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction, Mech. Res. Commun. 36(4), 481 (2009)
CrossRef
ADS
Google scholar
|
[168] |
J.P. Huang, Theoretical Thermotics: Transformation Thermotics and Extended Theories for Thermal Metamaterials, Springer, Singapore, 2020
CrossRef
ADS
Google scholar
|
[169] |
S. Guenneau, C. Amra, and D. Veynante, Transformation thermodynamics: Cloaking and concentrating heat flux, Opt. Express 20(7), 8207 (2012)
CrossRef
ADS
Google scholar
|
[170] |
S. R. Sklan and B. Li, A unified approach to nonlinear transformation materials, Sci. Rep. 8(1), 4436 (2018)
CrossRef
ADS
Google scholar
|
[171] |
A. Zareei and M. R. Alam, Cloaking in shallow-water waves via nonlinear medium transformation, J. Fluid Mech. 778, 273 (2015)
CrossRef
ADS
Google scholar
|
[172] |
X. Shen, Y. Li, C. Jiang, Y. Ni, and J. Huang, Thermal cloak-concentrator, Appl. Phys. Lett. 109(3), 031907 (2016)
CrossRef
ADS
Google scholar
|
[173] |
G. Park, S. Kang, H. Lee, and W. Choi, Tunable multifunctional thermal metamaterials: Manipulation of local heat flux via assembly of unit-cell thermal shifters, Sci. Rep. 7(1), 41000 (2017)
CrossRef
ADS
Google scholar
|
[174] |
J. Shang, B. Y. Tian, C. R. Jiang, and J. P. Huang, Digital thermal metasurface with arbitrary infrared thermogram, Appl. Phys. Lett. 113(26), 261902 (2018)
CrossRef
ADS
Google scholar
|
[175] |
J. Wang, F. Yang, L. Xu, and J. Huang, Omnithermal restructurable metasurfaces for both infrared-light illusion and visible-light similarity, Phys. Rev. Appl. 14(1), 014008 (2020)
CrossRef
ADS
Google scholar
|
[176] |
S. Kang, J. Cha, K. Seo, S. Kim, Y. Cha, H. Lee, J. Park, and W. Choi, Temperature-responsive thermal metamaterials enabled by modular design of thermally tunable unit cells, Int. J. Heat Mass Transfer 130, 469 (2019)
CrossRef
ADS
Google scholar
|
[177] |
C. R. Otey, W. T. Lau, and S. Fan, Thermal rectification through vacuum, Phys. Rev. Lett. 104(15), 154301 (2010)
CrossRef
ADS
Google scholar
|
[178] |
T. Ruokola, T. Ojanen, and A. P. Jauho, Thermal rectification in nonlinear quantum circuits, Phys. Rev. B 79(14), 144306 (2009)
CrossRef
ADS
Google scholar
|
[179] |
P. Ben-Abdallah and S. A. Biehs, Phase-change radiative thermal diode, Appl. Phys. Lett. 103(19), 191907 (2013)
CrossRef
ADS
Google scholar
|
[180] |
Y. Yang, S. Basu, and L. Wang, Radiation-based nearfield thermal rectification with phase transition materials, Appl. Phys. Lett. 103(16), 163101 (2013)
CrossRef
ADS
Google scholar
|
[181] |
P. Ben-Abdallah and S. A. Biehs, Near-field thermal transistor, Phys. Rev. Lett. 112(4), 044301 (2014)
CrossRef
ADS
Google scholar
|
[182] |
V. Kubytskyi, S. A. Biehs, and P. Ben-Abdallah, Radiative bistability and thermal memory, Phys. Rev. Lett. 113(7), 074301 (2014)
CrossRef
ADS
Google scholar
|
[183] |
S. A. Dyakov, J. Dai, M. Yan, and M. Qiu, Near field thermal memory based on radiative phase bistability of VO2, J. Phys. D Appl. Phys. 48(30), 305104 (2015)
CrossRef
ADS
Google scholar
|
[184] |
J. Ordonez-Miranda, Y. Ezzahri, J. A. Tiburcio-Moreno, K. Joulain, and J. Drevillon, Radiative thermal memristor, Phys. Rev. Lett. 123(2), 025901 (2019)
CrossRef
ADS
Google scholar
|
[185] |
I. Latella, R. Messina, J. M. Rubi, and P. Ben-Abdallah, Radiative heat shuttling, Phys. Rev. Lett. 113, 074301 (2018)
CrossRef
ADS
Google scholar
|
[186] |
P. Ben-Abdallah and S. A. Biehs, Contactless heat flux control with photonic devices, AIP Adv. 5(5), 053502 (2015)
CrossRef
ADS
Google scholar
|
[187] |
L. M. Jiji, Heat Conduction, 3rd Ed., Springer, Berlin, 2009
|
[188] |
J. Ordonez-Miranda, Y. Ezzahri, J. Drevillon, and K. Joulain, Transistorlike device for heating and cooling based on the thermal hysteresis of VO2, Phys. Rev. Appl. 6(5), 054003 (2016)
CrossRef
ADS
Google scholar
|
[189] |
J. R. Howell, M. P. Mengüç, and R. Siegel, Thermal Radiation Heat Transfer, 6th Ed., CRC Press, Boca Raton, 2016
CrossRef
ADS
Google scholar
|
[190] |
H. Gomart and J. Taine, Validity criterion of the radiative Fourier law for an absorbing and scattering medium, Phys. Rev. E 83(2), 021202 (2011)
CrossRef
ADS
Google scholar
|
[191] |
S. P. Jr Clark, Radiative transfer ia the earth’s mantle, Eos, Transactions American Geophysical Union 38, 931 (1957)
CrossRef
ADS
Google scholar
|
[192] |
J. R. Aronson, L. H. Bellotti, S. W. Eckroad, A. G. Emslie, R. K. McConnell, and P. C. von Thüna, Infrared spectra and radiative thermal conductivity of minerals at high temperatures, J. Geophys. Res. 75(17), 3443 (1970)
CrossRef
ADS
Google scholar
|
[193] |
J. F. Schatz and G. Simmons, Thermal conductivity of Earth materials at high temperatures, J. Geophys. Res. 77(35), 6966 (1972)
CrossRef
ADS
Google scholar
|
[194] |
V. A. Petrov, Combined radiation and conduction heat transfer in high temperature fiber thermal insulation, Int. J. Heat Mass Transfer 40(9), 2241 (1997)
CrossRef
ADS
Google scholar
|
[195] |
J. S. Kwon, C. H. Jang, H. Jung, and T. H. Song, Effective thermal conductivity of various filling materials for vacuum insulation panels, Int. J. Heat Mass Transfer 52(23–24), 5525 (2009)
CrossRef
ADS
Google scholar
|
[196] |
S. Y. Zhao, B. M. Zhang, and X. D. He, Temperature and pressure dependent effective thermal conductivity of fibrous insulation, Int. J. Therm. Sci. 48(2), 440 (2009)
CrossRef
ADS
Google scholar
|
[197] |
X. Lu, R. Caps, J. Fricke, C. T. Alviso, and R. W. Pekala, Correlation between structure and thermal conductivity of organic aerogels, J. Non-Cryst. Solids 188(3), 226 (1995)
CrossRef
ADS
Google scholar
|
[198] |
J. J. Zhao, Y. Y. Duan, X. D. Wang, and B. X. Wang, Experimental and analytical analyses of the thermal conductivities and high-temperature characteristics of silica aerogels based on microstructures, J. Phys. D Appl. Phys. 46(1), 015304 (2013)
CrossRef
ADS
Google scholar
|
[199] |
D. Dan, H. Zhang, and W. Q. Tao, Effective structure of aerogels and decomposed contributions of its thermal conductivity, Appl. Therm. Eng. 72(1), 2 (2014)
CrossRef
ADS
Google scholar
|
[200] |
Y. L. He and T. Xie, Advances of thermal conductivity models of nanoscale silica aerogel insulation material, Appl. Therm. Eng. 81, 28 (2015)
CrossRef
ADS
Google scholar
|
[201] |
Y. J. Dai, Y. Q. Tang, W. Z. Fang, H. Zhang, and W. Q. Tao, A theoretical model for the effective thermal conductivity of silica aerogel composites, Appl. Therm. Eng. 128, 1634 (2018)
CrossRef
ADS
Google scholar
|
[202] |
L. Xu, G. Dai, and J. Huang, Transformation multithermotics: Controlling radiation and conduction simultaneously, Phys. Rev. Appl. 13(2), 024063 (2020)
CrossRef
ADS
Google scholar
|
[203] |
L. Xu and J. Huang, Metamaterials for manipulating thermal radiation: Transparency, cloak, and expander, Phys. Rev. Appl. 12(4), 044048 (2019)
CrossRef
ADS
Google scholar
|
[204] |
L. Xu, S. Yang, G. Dai, and J. Huang, Transformation omnithermotics: Simultaneous manipulation of three basic modes of heat transfer, ES Energy Environ. 7, 65 (2020)
|
[205] |
S. Yang, L. Xu, G. Dai, and J. Huang, Omnithermal metamaterials switchable between transparency and cloaking, J. Appl. Phys. 128(9), 095102 (2020)
CrossRef
ADS
Google scholar
|
[206] |
A. M. Hofmeister, Mantle values of thermal conductivity and the geotherm from phonon lifetimes, Science 283(5408), 1699 (1999)
CrossRef
ADS
Google scholar
|
[207] |
F. Bellet, E. Chalopin, F. Fichot, E. Iacona, and J. Taine, RDFI determination of anisotropic and scattering dependent radiative conductivity tensors in porous media: Application to rod bundles, Int. J. Heat Mass Transfer 52(5–6), 1544 (2009)
CrossRef
ADS
Google scholar
|
[208] |
C. Su, L. J. Xu, and J. Huang,Nonlinear thermal conductivities of core-shell metamaterials: Rigorous theory and intelligent application, EPL 130(3), 34001 (2020)
CrossRef
ADS
Google scholar
|
[209] |
J. Li, Y. Li, P. C. Cao, T. Yang, X. F. Zhu, W. Wang, and C. W. Qiu, A continuously tunable solid-like convective thermal metadevice on the reciprocal line, Adv. Mater. 32(42), 2003823 (2020)
CrossRef
ADS
Google scholar
|
[210] |
D. Torrent, P. Poncelet, and J. C. Batsale, Nonreciprocal thermal material by spatiotemporal modulation, Phys. Rev. Lett. 120(12), 125501 (2018)
CrossRef
ADS
Google scholar
|
[211] |
M. Camacho, B. Edwards, and N. Engheta, Achieving asymmetry and trapping in diffusion with spatiotemporal metamaterials, Nat. Commun. 11(1), 3733 (2020)
CrossRef
ADS
Google scholar
|
[212] |
A. V. Getling, Rayleigh–Bénard Convection: Structures and Dynamics, World Scientific, Singapore, 1998
CrossRef
ADS
Google scholar
|
[213] |
E. Palm, Nonlinear thermal convection, Annu. Rev. Fluid Mech. 7(1), 39 (1975)
CrossRef
ADS
Google scholar
|
[214] |
F. H. Busse, Non-linear properties of thermal convection, Rep. Prog. Phys. 41(12), 1929 (1978)
CrossRef
ADS
Google scholar
|
[215] |
E. Bodenschatz, W. Pesch, and G. Ahlers, Recent developments in Rayleigh–Bénard convection, Annu. Rev. Fluid Mech. 32(1), 709 (2000)
CrossRef
ADS
Google scholar
|
[216] |
G. Ahlers, S. Grossmann, and D. Lohse, Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection, Rev. Mod. Phys. 81(2), 503 (2009)
CrossRef
ADS
Google scholar
|
[217] |
E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20(2), 130 (1963)
CrossRef
ADS
Google scholar
|
[218] |
M. Y. Wong, B. Traipattanakul, C. Y. Tso, C. Y. H. Chao, and H. Qiu, Experimental and theoretical study of a water–vapor chamber thermal diode, Int. J. Heat Mass Transfer 138, 173 (2019)
CrossRef
ADS
Google scholar
|
[219] |
A. Pugsley, A. Zacharopoulos, J. Deb Mondol, and M. Smyth, Theoretical and experimental analysis of a horizontal planar Liquid–Vapour Thermal Diode (PLVTD), Int. J. Heat Mass Transfer 144, 118660 (2019)
CrossRef
ADS
Google scholar
|
[220] |
J. B. Boreyko, Y. Zhao, and C. H. Chen, Planar jumpingdrop thermal diodes, Appl. Phys. Lett. 99(23), 234105 (2011)
CrossRef
ADS
Google scholar
|
[221] |
M. Edalatpour, K. R. Murphy, R. Mukherjee, and J. B. Boreyko, Bridging-droplet thermal diodes, Adv. Funct. Mater. 30(43), 2004451 (2020)
CrossRef
ADS
Google scholar
|
[222] |
Z. Meng, R. Gulfam, P. Zhang, and F. Ma, Numerical and experimental study of the thermal rectification of a solid–liquid phase change thermal diode, Int. J. Heat Mass Transfer 147, 118915 (2020)
CrossRef
ADS
Google scholar
|
[223] |
H. N. Chaudhry, B. R. Hughes, and S. A. Ghani, A review of heat pipe systems for heat recovery and renewable energy applications, Renew. Sustain. Energy Rev. 16(4), 2249 (2012)
CrossRef
ADS
Google scholar
|
[224] |
G. Wehmeyer, T. Yabuki, C. Monachon, J. Wu, and C. Dames, Thermal diodes, regulators, and switches: Physical mechanisms and potential applications, Appl. Phys. Rev. 4(4), 041304 (2017)
CrossRef
ADS
Google scholar
|
[225] |
C. Khandekar and A. W. Rodriguez, Thermal bistability through coupled photonic resonances, Appl. Phys. Lett. 111(8), 083104 (2017)
CrossRef
ADS
Google scholar
|
[226] |
A. M. Morsy, R. Biswas, and M. L. Povinelli, High temperature, experimental thermal memory based on optical resonances in photonic crystal slabs, APL Photon. 4(1), 010804 (2019)
CrossRef
ADS
Google scholar
|
[227] |
M. Criado-Sancho and D. Jou, A simple model of thermoelastic heat switches and heat transistors, J. Appl. Phys. 121(2), 024503 (2017)
CrossRef
ADS
Google scholar
|
[228] |
Z. M. Zhang, Nano/Microscale Heat Transfer, 2nd Ed., Springer, 2020
CrossRef
ADS
Google scholar
|
[229] |
M. Reina, R. Messina, S. A. Biehs, and P. Ben-Abdallah, Thermomechanical bistability of phase transition oscillators driven by near-field heat exchange, Phys. Rev. B 101, 041409(R) (2020)
CrossRef
ADS
Google scholar
|
[230] |
M. Elzouka and S. Ndao, Near-field NanoThermoMechanical memory, Appl. Phys. Lett. 105(24), 243510 (2014)
CrossRef
ADS
Google scholar
|
[231] |
G. W. Milton, The Theory of Composites, Cambridge University Press, Cambridge, 2002
|
[232] |
T. C. Choy, Effective Medium Theory: Principles and Applications, 2nd Ed., Oxford University Press, Oxford, 2016
|
[233] |
M. Wang and N. Pan, Predictions of effective physical properties of complex multiphase materials, Mater. Sci. Eng. Rep. 63(1), 1 (2008)
CrossRef
ADS
Google scholar
|
[234] |
J. Wang, J. K. Carson, M. F. North, and D. J. Cleland, A new approach to modelling the effective thermal conductivity of heterogeneous materials, Int. J. Heat Mass Transfer 49(17–18), 3075 (2006)
CrossRef
ADS
Google scholar
|
[235] |
J. Li, Y. Li, W. Wang, L. Li, and C. W. Qiu, Effective medium theory for thermal scattering off rotating structures, Opt. Express 28(18), 25894 (2020)
CrossRef
ADS
Google scholar
|
[236] |
J. Fan and L. Wang, Review of heat conduction in nanofluids, J. Heat Transfer 133(4), 040801 (2011)
CrossRef
ADS
Google scholar
|
[237] |
G. Lebon, Heat conduction at micro and nanoscales: A review through the prism of Extended Irreversible Thermodynamics, J. Non-Equilib. Thermodyn. 39(1), 35 (2014)
CrossRef
ADS
Google scholar
|
[238] |
D. J. Bergman and D. Stroud, Physical properties of macroscopically inhomogeneous media, Solid State Phys. 46, 147 (1992)
CrossRef
ADS
Google scholar
|
[239] |
V. A. Markel, Maxwell Garnett approximation (advanced topics): Tutorial, J. Opt. Soc. Am. A 33(11), 2237 (2016)
CrossRef
ADS
Google scholar
|
[240] |
J. P. Huang and K. W. Yu, Enhanced nonlinear optical responses of materials: Composite effects, Phys. Rep. 431(3), 87 (2006)
CrossRef
ADS
Google scholar
|
[241] |
R. Wang, J. Shang, and J. Huang, Design and realization of thermal camouflage with many-particle systems, Int. J. Therm. Sci. 131, 14 (2018)
CrossRef
ADS
Google scholar
|
[242] |
J. Shang, C. Jiang, L. Xu, and J. Huang, Many-particle thermal invisibility and diode from effective media, J. Heat Transfer 140(9), 092004 (2018)
CrossRef
ADS
Google scholar
|
[243] |
L. Xu, C. Jiang, J. Shang, R. Wang, and J. Huang, Periodic composites: Quasiuniform heat conduction, Janus thermal illusion, and illusion thermal diodes, Eur. Phys. J. B 90(11), 221 (2017)
CrossRef
ADS
Google scholar
|
[244] |
L. Xu, S. Yang, and J. Huang, Thermal transparency induced by periodic interparticle interaction, Phys. Rev. Appl. 11(3), 034056 (2019)
CrossRef
ADS
Google scholar
|
[245] |
G. Dai, J. Shang, R. Wang, and J. Huang, Nonlinear thermotics: Nonlinearity enhancement and harmonic generation in thermal metasurfaces, Eur. Phys. J. B 91(3), 59 (2018)
CrossRef
ADS
Google scholar
|
[246] |
G. Dai, Designing Thermal metamaterials: Theories Beyond Conduction and Linearity, Ph.D. Dissertation, Fudan University, Shanghai, 2020) (in Chinese)
|
[247] |
M. Maldovan, Narrow low-frequency spectrum and heat management by thermocrystals, Phys. Rev. Lett. 110(2), 025902 (2013)
CrossRef
ADS
Google scholar
|
[248] |
R. C. McPhedran, N. A. Nicorovici, L. C. Botten, and A. B. Movchan, Advances in the Rayleigh multipole method for problems in photonics and phononics, in: UTAM Symposium on Mechanical and Electromagnetic Waves in Structured Media, Solid Mechanics and Its Applications, edited by R. C. McPhedran, L. C. Botten, and N. A. Nicorovici, Springer, Dordrecht, 2001, pp 15–28
CrossRef
ADS
Google scholar
|
[249] |
T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, Multipole method for microstructured optical fibers. I. Formulation, J. Opt. Soc. Am. B 19(10), 2322 (2002)
CrossRef
ADS
Google scholar
|
[250] |
G. Gu, K. W. Yu, and P. M. Hui, First-principles approach to conductivity of a nonlinear composite, Phys. Rev. B 58(6), 3057 (1998)
CrossRef
ADS
Google scholar
|
[251] |
G. Dai and J. Huang, Nonlinear thermal conductivity of periodic composites, Int. J. Heat Mass Transfer 147, 118917 (2020)
CrossRef
ADS
Google scholar
|
[252] |
R. C. McPhedran and D. R. McKenzie, The conductivity of lattices of spheres (I): The simple cubic lattice, Proc. R. Soc. Lond. A Math. Phys. Sci. 359(1696), 45 (1978)
CrossRef
ADS
Google scholar
|
[253] |
D. R. McKenzie, R. C. McPhedran, and G. H. Derrick, The conductivity of lattices of spheres (II): The body centred and face centred cubic lattices, Proc. R. Soc. Lond. A Math. Phys. Sci. 362(1709), 211 (1978)
CrossRef
ADS
Google scholar
|
[254] |
N. A. Nicorovici and R. C. McPhedran, Transport properties of arrays of elliptical cylinders, Phys. Rev. E 54(2), 1945 (1996)
CrossRef
ADS
Google scholar
|
[255] |
J. G. Yardley, R. C. McPhedran, N. A. Nicorovici, and L. C. Botten, Addition formulas and the Rayleigh identity for arrays of elliptical cylinders, Phys. Rev. E 60(5), 6068 (1999)
CrossRef
ADS
Google scholar
|
[256] |
S. Yang, L. Xu, and J. Huang, Metathermotics: Nonlinear thermal responses of core-shell metamaterials, Phys. Rev. E 99(4), 042144 (2019)
CrossRef
ADS
Google scholar
|
[257] |
A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, Active and tunable metamaterials, Laser Photonics Rev. 5(2), 287 (2011)
CrossRef
ADS
Google scholar
|
[258] |
M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, Colloquium: Nonlinear metamaterials, Rev. Mod. Phys. 86(3), 1093 (2014)
CrossRef
ADS
Google scholar
|
[259] |
G. Li, S. Zhang, and T. Zentgraf, Nonlinear photonic metasurfaces, Nat. Rev. Mater. 2(5), 17010 (2017)
CrossRef
ADS
Google scholar
|
[260] |
A. Krasnok, M. Tymchenko, and A. Alù, Nonlinear metasurfaces: A paradigm shift in nonlinear opticss, Mater. Today 21(1), 8 (2018)
CrossRef
ADS
Google scholar
|
[261] |
S. A. Cummer, J. Christensen, and A. Alù, Controlling sound with acoustic metamaterials, Nat. Rev. Mater. 1(3), 16001 (2016)
CrossRef
ADS
Google scholar
|
[262] |
K. Bertoldi, V. Vitelli, J. Christensen, and M. van Hecke, Flexible mechanical metamaterials, Nat. Rev. Mater. 2(11), 17066 (2017)
CrossRef
ADS
Google scholar
|
[263] |
G. Dai, J. Shang, and J. Huang, Theory of transformation thermal convection for creeping flow in porous media: Cloaking, concentrating, and camouflage, Phys. Rev. E 97(2), 022129 (2018)
CrossRef
ADS
Google scholar
|
[264] |
G. Dai and J. Huang, A transient regime for transforming thermal convection: Cloaking, concentrating, and rotating creeping flow and heat flux, J. Appl. Phys. 124(23), 235103 (2018)
CrossRef
ADS
Google scholar
|
[265] |
T. Stedman and L. M. Woods, Cloaking of thermoelectric transport, Sci. Rep. 7(1), 6988 (2017)
CrossRef
ADS
Google scholar
|
[266] |
A. Greenleaf, M. Lassas, and G. Uhlmann, Anisotropic conductivities that cannot be detected by EIT, Physiol. Meas. 24(2), 413 (2003)
CrossRef
ADS
Google scholar
|
[267] |
G. Uhlmann, Electrical impedance tomography and Calderón’s problem, Inverse Probl. 25(12), 123011 (2009)
CrossRef
ADS
Google scholar
|
[268] |
A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, Cloaking devices, electromagnetic wormholes, and transformation optics, SIAM Rev. 51(1), 3 (2009)
CrossRef
ADS
Google scholar
|
[269] |
S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, and D. H. Werner, Review of numerical optimization techniques for meta-device design, Opt. Mater. Express 9(4), 1842 (2019)
CrossRef
ADS
Google scholar
|
[270] |
E. M. Dede, T. Nomura, and J. Lee, Thermal-composite design optimization for heat flux shielding, focusing, and reversal, Struct. Multidiscipl. Optim. 49(1), 59 (2014)
CrossRef
ADS
Google scholar
|
[271] |
G. Fujii, Y. Akimoto, and M. Takahashi, Exploring optimal topology of thermal cloaks by CMA-ES, Appl. Phys. Lett. 112(6), 061108 (2018)
CrossRef
ADS
Google scholar
|
[272] |
G. V. Alekseev and D. A. Tereshko, Particle swarm optimization-based algorithms for solving inverse problems of designing thermal cloaking and shielding devices, Int. J. Heat Mass Transfer 135, 1269 (2019)
CrossRef
ADS
Google scholar
|
[273] |
J. Guo, Z. Qu, and X. Wang, A reverse thermal cloak design method based on inverse problem theory, ES Energy Environ. 7, 71 (2020)
|
[274] |
W. Sha, Y. Zhao, L. Gao, M. Xiao, and R. Hu, Illusion thermotics with topology optimization, J. Appl. Phys. 128(4), 045106 (2020)
CrossRef
ADS
Google scholar
|
[275] |
M. Seo, H. Park, and S. Min, Heat flux manipulation by using a single-variable formulated multi-scale topology optimization method, Int. Commun. Heat Mass Transf. 118, 104873 (2020)
CrossRef
ADS
Google scholar
|
[276] |
J. C. Álvarez Hostos, V. D. Fachinotti, and I. Peralta, Computational design of thermo-mechanical metadevices using topology optimization, Appl. Math. Model. 90, 758 (2021)
CrossRef
ADS
Google scholar
|
[277] |
G. Fujii and Y. Akimoto, Optimizing the structural topology of bifunctional invisible cloak manipulating heat flux and direct current, Appl. Phys. Lett. 115(17), 174101 (2019)
CrossRef
ADS
Google scholar
|
[278] |
M. Farhat, S. Guenneau, P. Y. Chen, A. Alù, and K. N. Salama, Scattering cancellation-based cloaking for the Maxwell–Cattaneo heat waves, Phys. Rev. Appl. 11(4), 044089 (2019)
CrossRef
ADS
Google scholar
|
[279] |
A. L. Chen, Z. Y. Li, T. X. Ma, X. S. Li, and Y. S. Wang, Heat reduction by thermal wave crystals, Int. J. Heat Mass Transfer 121, 215 (2018)
CrossRef
ADS
Google scholar
|
[280] |
A. Sellitto, V. Tibullo, and Y. Dong, Nonlinear heattransport equation beyond Fourier law: Application to heatwave propagation in isotropic thin layers, Contin. Mech. Thermodyn. 29(2), 411 (2017)
CrossRef
ADS
Google scholar
|
[281] |
Y. Guo and M. Wang, Phonon hydrodynamics and its applications in nanoscale heat transport, Phys. Rep. 595, 1 (2015)
CrossRef
ADS
Google scholar
|
[282] |
A. Sellitto and M. Di Domenico, Nonlocal and nonlinear contributions to the thermal and elastic highfrequency wave propagations at nanoscale, Contin. Mech. Thermodyn. 31(3), 807 (2019)
CrossRef
ADS
Google scholar
|
[283] |
M. Maldovan, Phonon wave interference and thermal bandgap materials, Nat. Mater. 14(7), 667 (2015)
CrossRef
ADS
Google scholar
|
[284] |
M. Sledzinska, B. Graczykowski, J. Maire, E. Chavez-Angel, C. M. Sotomayor-Torres, and F. Alzina, 2D phononic crystals: Progress and prospects in hypersound and thermal transport engineering, Adv. Funct. Mater. 30(8), 1904434 (2020)
CrossRef
ADS
Google scholar
|
[285] |
M. I. Hussein, C. N. Tsai, and H. Honarvar, Thermal conductivity reduction in a nanophononic metamaterial versus a nanophononic crystal: A review and comparative analysis, Adv. Funct. Mater. 30(8), 1906718 (2020)
CrossRef
ADS
Google scholar
|
[286] |
N. Zen, T. A. Puurtinen, T. J. Isotalo, S. Chaudhuri, and I. J. Maasilta, Engineering thermal conductance using a two-dimensional phononic crystal, Nat. Commun. 5(1), 3435 (2014)
CrossRef
ADS
Google scholar
|
[287] |
B. Li, K. T. Tan, and J. Christensen, Tailoring the thermal conductivity in nanophononic metamaterials, Phys. Rev. B 95(14), 144305 (2017)
CrossRef
ADS
Google scholar
|
[288] |
Y. Li, Y. G. Peng, L. Han, M. A. Miri, W. Li, M. Xiao, X. F. Zhu, J. Zhao, A. Alù, S. Fan, and C. W. Qiu, Anti-parity–time symmetry in diffusive systems, Science 364, 170 (2019)
|
[289] |
P. Cao, Y. Li, Y. Peng, C. Qiu, and Z. Xue, High-order exceptional points in diffusive systems: Robust apt symmetry against perturbation and phase oscillation at apt symmetry breaking, ES Energy Environ. 7, 48 (2020)
CrossRef
ADS
Google scholar
|
[290] |
L. Xu and J. Huang, Negative thermal transport in conduction and advection, Chin. Phys. Lett. 37(8), 080502 (2020)
CrossRef
ADS
Google scholar
|
[291] |
L. J. Xu and J. P. Huang, Active thermal wave cloak, Chin. Phys. Lett. 37(12), 120501 (2020)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |