Compound plasmonic vortex generation based on spiral nanoslits

Chang-Da Zhou , Zhen Mou , Rui Bao , Zhong Li , Shu-Yun Teng

Front. Phys. ›› 2021, Vol. 16 ›› Issue (3) : 33503

PDF (1526KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (3) : 33503 DOI: 10.1007/s11467-020-1032-y
RESEARCH ARTICLE

Compound plasmonic vortex generation based on spiral nanoslits

Author information +
History +
PDF (1526KB)

Abstract

In view of wide applications of structured light fields and plasmonic vortices, we propose the concept of compound plasmonic vortex and design several structured plasmonic vortex generators. This kind of structured plasmonic vortex generators consists of multiple spiral nanoslits and they can generate two or more concentric plasmonic vortices. Different from Laguerre–Gaussian beam, the topological charge of the plasmonic vortex in different region is different. Theoretical analysis lays the basis for the design of radially structured plasmonic vortex generators and numerical simulations for several examples confirm the effectiveness of the design principle. The discussions about the interference of vortex fields definite the generation condition for the structured vortex. This work provides a design methodology for generating new vortices using spiral nanoslits and the advanced radially structured plasmonic vortices is helpful for broadening the applications of vortex fields.

Keywords

structured light / plasmonic vortex / singular optics / metasurface

Cite this article

Download citation ▾
Chang-Da Zhou, Zhen Mou, Rui Bao, Zhong Li, Shu-Yun Teng. Compound plasmonic vortex generation based on spiral nanoslits. Front. Phys., 2021, 16(3): 33503 DOI:10.1007/s11467-020-1032-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, Roadmap on structured light, J. Opt. 19(1), 013001 (2017)

[2]

A. M. Yao and M. J. Padgett, Orbital angular momentum: Origins, behavior and applications, Adv. Opt. Photonics 3(2), 161 (2011)

[3]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, Optical communications using orbital angular momentum beams, Adv. Opt. Photonics 7(1), 66 (2015)

[4]

J. Ng, Z. Lin, and C. Chan, Theory of optical trapping by an optical vortex beam, Phys. Rev. Lett. 104(10), 103601 (2010)

[5]

D. Ding, W. Zhang, Z. Zhou, S. Shi, G. Xiang, Z. Wang, Y. Jiang, B. Shi, and G. Guyo, Quantum storage of orbital angular momentum entanglement in an atomic ensemble, Phys. Rev. Lett. 114(3), 050502 (2014)

[6]

Z. Y. Li, Nanophotonics in China: Overviews and highlights, Front. Phys. 7(6), 601 (2012)

[7]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays, Nature 391(6668), 667 (1998)

[8]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, Optical transmission properties of a single subwavelength aperture in a real metal, Opt. Commun. 239(1–3), 61 (2004)

[9]

C. Ku, W. Huang, J. Huang, and C. Huang, Deterministic synthesis of optical vortices in tailored plasmonic Archimedes spiral, IEEE Photonics J. 5(3), 4800409 (2013)

[10]

W. Tsai, J. Huang, and C. Huang, Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic Archimedes spiral, Nano Lett. 14(2), 547 (2014)

[11]

E. Ostrovsky, K. Cohen, S. Tsesses, B. Gjonaj, and G. Bartal, Nanoscale control over optical singularities, Optica 5(3), 283 (2018)

[12]

W. Tsai, Q. Sun, G. Hu, P. Wu, R. Lin, C. Qiu, K. Ueno, H. Misawa, and D. Tsai, Twisted surface plasmons with spincontrolled gold surfaces, Adv. Opt. Mater. 7(8), 1801060 (2019)

[13]

X. Lu, Y. Han, H. Lv, Z. Mou, C. Zhou, S. Wang, and S. Teng, spiral nanoslit and the higher order plasmonic vortex generation, Nanotechnology 31(30), 305201 (2020)

[14]

H. Kim, J. Park, S. Cho, S. Lee, M. Kang, and B. Lee, Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens, Nano Lett. 10(2), 529 (2010)

[15]

P. Zilio, E. Mari, G. Parisi, F. Tamburini, and F. Romanato, Angular momentum properties of electromagnetic field transmitted through holey plasmonic vortex lenses, Opt. Lett. 37(15), 3234 (2012)

[16]

C. Chen, C. Ku, Y. Tai, P. Wei, H. Lin, and C. Huang, Creating optical near-field orbital angular momentum in a gold metasurface, Nano Lett. 15(4), 2746 (2015)

[17]

A. Pham, A. Zhao, C. Genet, and A. Drezet, Optical chirality density and flux measured in the local density of states of spiral plasmonic structures, Phys. Rev. A 98(1), 013837 (2018)

[18]

H. Wang, L. Liu, C. Liu, X. Li, S. Wang, Q. Xu, and S. Teng, Plasmonic vortex generator without polarization dependence, New J. Phys. 20(3), 033024 (2018)

[19]

Q. Zhang, P. Li, Y. Li, H. Wang, L. Liu, L. Zhang, and S. Teng, Optical vortex generator with linearly polarized light illumination, J. Nanophotonics 12(01), 016011 (2018)

[20]

S. Moon, H. Jeong, S. Lee, B. Lee, Y. Ryu, and S. Lee, Compensation of spin-orbit interaction using the geometric phase of distributed nanoslits for polarizationindependent plasmonic vortex generation, Opt. Express 27(14), 19119 (2019)

[21]

Z. Guo, Z. Li, J. Zhang, K. Guo, and F. Shen, Review of the functions of archimedes’ spiral metallic nanostructures, Nanomaterial 7(11), 405 (2017)

[22]

S. Cho, J. Park, S. Lee, H. Kim, and B. Lee, Coupling of spin and angular momentum of light in plasmonic vortex, Opt. Express 20(9), 10083 (2012)

[23]

K. Y. Bliokh, F. J. Rodriguez-Fortuno, F. Nori, and A. V. Zayats, Spin–orbit interactions of light, Nat. Photonics 9(12), 796 (2015)

[24]

Y. Yang, L. Wu, Y. Liu, D. Xie, Z. Jin, J. Li, G. Hu, and C. Qiu, Deuterogenic plasmonic vortices, Nano Lett. 20(9), 6774 (2020)

[25]

H. Wang, L. Liu, C. Zhou, J. Xu, M. Zhang, S. Teng, and Y. Cai, Vortex beam generation with variable topological charge based on a spiral slit, Nanophotonics 8(2), 317 (2019)

[26]

S. Teng, Q. Zhang, H. Wang, L. Liu, and H. Lv, Conversion between polarization sates based on a metasurface, Photon. Res. 7(3), 246 (2019)

[27]

E. D. Palik, Handbook of Optical Constants of Solids, Academic, 1998

[28]

Z. Mou, X. Lu, H. Lv, S. Han, Q. Yue, S. Wang, and S. Teng, Metasurface array illuminator based on Fresnel holography, Opt. Las. Engin. 131, 106146 (2020)

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1526KB)

1005

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/