Compound plasmonic vortex generation based on spiral nanoslits

Chang-Da Zhou, Zhen Mou, Rui Bao, Zhong Li, Shu-Yun Teng

PDF(1526 KB)
PDF(1526 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (3) : 33503. DOI: 10.1007/s11467-020-1032-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Compound plasmonic vortex generation based on spiral nanoslits

Author information +
History +

Abstract

In view of wide applications of structured light fields and plasmonic vortices, we propose the concept of compound plasmonic vortex and design several structured plasmonic vortex generators. This kind of structured plasmonic vortex generators consists of multiple spiral nanoslits and they can generate two or more concentric plasmonic vortices. Different from Laguerre–Gaussian beam, the topological charge of the plasmonic vortex in different region is different. Theoretical analysis lays the basis for the design of radially structured plasmonic vortex generators and numerical simulations for several examples confirm the effectiveness of the design principle. The discussions about the interference of vortex fields definite the generation condition for the structured vortex. This work provides a design methodology for generating new vortices using spiral nanoslits and the advanced radially structured plasmonic vortices is helpful for broadening the applications of vortex fields.

Keywords

structured light / plasmonic vortex / singular optics / metasurface

Cite this article

Download citation ▾
Chang-Da Zhou, Zhen Mou, Rui Bao, Zhong Li, Shu-Yun Teng. Compound plasmonic vortex generation based on spiral nanoslits. Front. Phys., 2021, 16(3): 33503 https://doi.org/10.1007/s11467-020-1032-y

References

[1]
H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, Roadmap on structured light, J. Opt. 19(1), 013001 (2017)
CrossRef ADS Google scholar
[2]
A. M. Yao and M. J. Padgett, Orbital angular momentum: Origins, behavior and applications, Adv. Opt. Photonics 3(2), 161 (2011)
CrossRef ADS Google scholar
[3]
A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, Optical communications using orbital angular momentum beams, Adv. Opt. Photonics 7(1), 66 (2015)
CrossRef ADS Google scholar
[4]
J. Ng, Z. Lin, and C. Chan, Theory of optical trapping by an optical vortex beam, Phys. Rev. Lett. 104(10), 103601 (2010)
CrossRef ADS Google scholar
[5]
D. Ding, W. Zhang, Z. Zhou, S. Shi, G. Xiang, Z. Wang, Y. Jiang, B. Shi, and G. Guyo, Quantum storage of orbital angular momentum entanglement in an atomic ensemble, Phys. Rev. Lett. 114(3), 050502 (2014)
CrossRef ADS Google scholar
[6]
Z. Y. Li, Nanophotonics in China: Overviews and highlights, Front. Phys. 7(6), 601 (2012)
CrossRef ADS Google scholar
[7]
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays, Nature 391(6668), 667 (1998)
CrossRef ADS Google scholar
[8]
A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, Optical transmission properties of a single subwavelength aperture in a real metal, Opt. Commun. 239(1–3), 61 (2004)
CrossRef ADS Google scholar
[9]
C. Ku, W. Huang, J. Huang, and C. Huang, Deterministic synthesis of optical vortices in tailored plasmonic Archimedes spiral, IEEE Photonics J. 5(3), 4800409 (2013)
CrossRef ADS Google scholar
[10]
W. Tsai, J. Huang, and C. Huang, Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic Archimedes spiral, Nano Lett. 14(2), 547 (2014)
CrossRef ADS Google scholar
[11]
E. Ostrovsky, K. Cohen, S. Tsesses, B. Gjonaj, and G. Bartal, Nanoscale control over optical singularities, Optica 5(3), 283 (2018)
CrossRef ADS Google scholar
[12]
W. Tsai, Q. Sun, G. Hu, P. Wu, R. Lin, C. Qiu, K. Ueno, H. Misawa, and D. Tsai, Twisted surface plasmons with spincontrolled gold surfaces, Adv. Opt. Mater. 7(8), 1801060 (2019)
CrossRef ADS Google scholar
[13]
X. Lu, Y. Han, H. Lv, Z. Mou, C. Zhou, S. Wang, and S. Teng, spiral nanoslit and the higher order plasmonic vortex generation, Nanotechnology 31(30), 305201 (2020)
CrossRef ADS Google scholar
[14]
H. Kim, J. Park, S. Cho, S. Lee, M. Kang, and B. Lee, Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens, Nano Lett. 10(2), 529 (2010)
CrossRef ADS Google scholar
[15]
P. Zilio, E. Mari, G. Parisi, F. Tamburini, and F. Romanato, Angular momentum properties of electromagnetic field transmitted through holey plasmonic vortex lenses, Opt. Lett. 37(15), 3234 (2012)
CrossRef ADS Google scholar
[16]
C. Chen, C. Ku, Y. Tai, P. Wei, H. Lin, and C. Huang, Creating optical near-field orbital angular momentum in a gold metasurface, Nano Lett. 15(4), 2746 (2015)
CrossRef ADS Google scholar
[17]
A. Pham, A. Zhao, C. Genet, and A. Drezet, Optical chirality density and flux measured in the local density of states of spiral plasmonic structures, Phys. Rev. A 98(1), 013837 (2018)
CrossRef ADS Google scholar
[18]
H. Wang, L. Liu, C. Liu, X. Li, S. Wang, Q. Xu, and S. Teng, Plasmonic vortex generator without polarization dependence, New J. Phys. 20(3), 033024 (2018)
CrossRef ADS Google scholar
[19]
Q. Zhang, P. Li, Y. Li, H. Wang, L. Liu, L. Zhang, and S. Teng, Optical vortex generator with linearly polarized light illumination, J. Nanophotonics 12(01), 016011 (2018)
CrossRef ADS Google scholar
[20]
S. Moon, H. Jeong, S. Lee, B. Lee, Y. Ryu, and S. Lee, Compensation of spin-orbit interaction using the geometric phase of distributed nanoslits for polarizationindependent plasmonic vortex generation, Opt. Express 27(14), 19119 (2019)
CrossRef ADS Google scholar
[21]
Z. Guo, Z. Li, J. Zhang, K. Guo, and F. Shen, Review of the functions of archimedes’ spiral metallic nanostructures, Nanomaterial 7(11), 405 (2017)
CrossRef ADS Google scholar
[22]
S. Cho, J. Park, S. Lee, H. Kim, and B. Lee, Coupling of spin and angular momentum of light in plasmonic vortex, Opt. Express 20(9), 10083 (2012)
CrossRef ADS Google scholar
[23]
K. Y. Bliokh, F. J. Rodriguez-Fortuno, F. Nori, and A. V. Zayats, Spin–orbit interactions of light, Nat. Photonics 9(12), 796 (2015)
CrossRef ADS Google scholar
[24]
Y. Yang, L. Wu, Y. Liu, D. Xie, Z. Jin, J. Li, G. Hu, and C. Qiu, Deuterogenic plasmonic vortices, Nano Lett. 20(9), 6774 (2020)
CrossRef ADS Google scholar
[25]
H. Wang, L. Liu, C. Zhou, J. Xu, M. Zhang, S. Teng, and Y. Cai, Vortex beam generation with variable topological charge based on a spiral slit, Nanophotonics 8(2), 317 (2019)
CrossRef ADS Google scholar
[26]
S. Teng, Q. Zhang, H. Wang, L. Liu, and H. Lv, Conversion between polarization sates based on a metasurface, Photon. Res. 7(3), 246 (2019)
CrossRef ADS Google scholar
[27]
E. D. Palik, Handbook of Optical Constants of Solids, Academic, 1998
[28]
Z. Mou, X. Lu, H. Lv, S. Han, Q. Yue, S. Wang, and S. Teng, Metasurface array illuminator based on Fresnel holography, Opt. Las. Engin. 131, 106146 (2020)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1526 KB)

Accesses

Citations

Detail

Sections
Recommended

/