Compact Greenberger–Horne–Zeilinger state generation via frequency combs and graph theory

Xuemei Gu, Mario Krenn

PDF(1027 KB)
PDF(1027 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (6) : 61502. DOI: 10.1007/s11467-020-1028-7
VIEW & PERSPECTIVE
VIEW & PERSPECTIVE

Compact Greenberger–Horne–Zeilinger state generation via frequency combs and graph theory

Author information +
History +

Cite this article

Download citation ▾
Xuemei Gu, Mario Krenn. Compact Greenberger–Horne–Zeilinger state generation via frequency combs and graph theory. Front. Phys., 2020, 15(6): 61502 https://doi.org/10.1007/s11467-020-1028-7

References

[1]
A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)
CrossRef ADS Google scholar
[2]
J. S. Bell, On the Einstein–Podolsky–Rosen paradox, Physics 1(3), 195 (1964)
CrossRef ADS Google scholar
[3]
S. J. Freedman and J. F. Clauser, Experimental test of local hiddenvariable theories, Phys. Rev. Lett. 28(14), 938 (1972)
CrossRef ADS Google scholar
[4]
A. Aspect, J. Dalibard, and G. Roger, Experimental test of Bell’s inequalities using time-varying analyzers, Phys. Rev. Lett. 49(25), 1804 (1982)
CrossRef ADS Google scholar
[5]
G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, Violation of Bell’s inequality under strict Einstein locality conditions, Phys. Rev. Lett. 81(23), 5039 (1998)
CrossRef ADS Google scholar
[6]
B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. ABellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, Loopholefree Bell inequality violation using electron spins separated by 1.3 kilometres, Nature 526(7575), 682 (2015)
CrossRef ADS Google scholar
[7]
M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J. Å. Larsson, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, J. Beyer, T. Gerrits, A. E. Lita, L. K. Shalm, S. W. Nam, T. Scheidl, R. Ursin, B. Wittmann, and A. Zeilinger, Significant-loophole-free test of Bell’s theorem with entangled photons, Phys. Rev. Lett. 115(25), 250401 (2015)
CrossRef ADS Google scholar
[8]
J. Handsteiner, A. S. Friedman, D. Rauch, J. Gallicchio, B. Liu, H. Hosp, J. Kofler, D. Bricher, M. Fink, C. Leung, A. Mark, H. T. Nguyen, I. Sanders, F. Steinlechner, R. Ursin, S. Wengerowsky, A. H. Guth, D. I. Kaiser, T. Scheidl, and A. Zeilinger, Cosmic Bell test: Measurement settings from milky way stars, Phys. Rev. Lett. 118(6), 060401 (2017)
CrossRef ADS Google scholar
[9]
D. M. Greenberger, M. A. Horne, and A. Zeilinger, Going beyond Bell’s theorem, in: Bell’s Theorem, Quantum Theory and Conceptions of the Universe, Fundamental Theories of Physics, edited by M. Kafatos, Vol. 37, pp 69–72, Springer, Dordrecht, 1989
CrossRef ADS Google scholar
[10]
D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, Bell’s theorem without inequalities, Am. J. Phys. 58(12), 1131 (1990)
CrossRef ADS Google scholar
[11]
D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, Observation of three-photon Greenberger–Horne–Zeilinger entanglement, Phys. Rev. Lett. 82(7), 1345 (1999)
CrossRef ADS Google scholar
[12]
J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement, Nature 403(6769), 515 (2000)
CrossRef ADS Google scholar
[13]
C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, Experimental entanglement of six photons in graph states, Nat. Phys. 3(2), 91 (2007)
CrossRef ADS Google scholar
[14]
Y. F. Huang, B. H. Liu, L. Peng, Y. H. Li, L. Li, C. F. Li, and G. C. Guo, Experimental generation of an eight-photon Greenberger– Horne–Zeilinger state, Nat. Commun. 2(1), 546 (2011)
CrossRef ADS Google scholar
[15]
X. C. Yao, T. X. Wang, P. Xu, H. Lu, G. S. Pan, X. H. Bao, C. Z. Peng, C. Y. Lu, Y. A. Chen, and J. W. Pan, Observation of eightphoton entanglement,Nat. Photonics 6(4), 225 (2012)
CrossRef ADS Google scholar
[16]
X. L. Wang, L. K. Chen, W. Li, H. L. Huang, C. Liu, C. Chen, Y. H. Luo, Z. E. Su, D. Wu, Z. D. Li, H. Lu, Y. Hu, X. Jiang, C. Z. Peng, L. Li, N. L. Liu, Y. A. Chen, C. Y. Lu, and J. W. Pan, Experimental ten-photon entanglement, Phys. Rev. Lett. 117(21), 210502 (2016)
CrossRef ADS Google scholar
[17]
L. K. Chen, Z. D. Li, X. C. Yao, M. Huang, W. Li, H. Lu, X. Yuan, Y. B. Zhang, X. Jiang, C. Z. Peng, L. Li, N. L. Liu, X. Ma, C. Y. Lu, Y. A. Chen, and J. W. Pan, Observation of ten-photon entanglement using thin BiB3O6 crystals, Optica 4(1), 77 (2017)
CrossRef ADS Google scholar
[18]
H. S.Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion, Phys. Rev. Lett. 121(25), 250505 (2018)
CrossRef ADS Google scholar
[19]
C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, Generation of multiphoton entangled quantum states by means of integrated frequency combs, Science 351(6278), 1176 (2016)
CrossRef ADS Google scholar
[20]
P. Zhu, Q. Zheng, S. Xue, C. Wu, X. Yu, Y. Wang, Y. Liu, X. Qiang, J. Wu, and P. Xu, On-chip multiphoton Greenberger–Horne– Zeilinger state based on integrated frequency combs, Front. Phys. 15(6), 61501 (2020)
CrossRef ADS Google scholar
[21]
L. Lu, L. Xia, Z. Chen, L. Chen, T. Yu, T. Tao, W. Ma, Y. Pan, X. Cai, Y. Lu, S. Zhu, and X.-S. Ma, Three-dimensional entanglement on a silicon chip, npj Quantum Inf. 6, 30 (2020)
CrossRef ADS Google scholar
[22]
J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, Multidimensional quantum entanglement with large-scale integrated optics, Science 360(6386), 285 (2018)
CrossRef ADS Google scholar
[23]
C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, Integrated frequency comb source of heralded single photons, Opt. Express 22(6), 6535 (2014)
CrossRef ADS Google scholar
[24]
M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, On-chip generation of highdimensional entangled quantum states and their coherent control, Nature 546(7660), 622 (2017)
CrossRef ADS Google scholar
[25]
M. Krenn, X. Gu, and A. Zeilinger, Quantum experiments and graphs: Multiparty states as coherent superpositions of perfect matchings, Phys. Rev. Lett. 119(24), 240403 (2017)
CrossRef ADS Google scholar
[26]
X. Gu, M. Erhard, A. Zeilinger, and M. Krenn, Quantum experiments and graphs (ii): Quantum interference, computation, and state generation, Proc. Natl. Acad. Sci. USA 116(10), 4147 (2019)
CrossRef ADS Google scholar
[27]
X. Gu, L. Chen, A. Zeilinger, and M. Krenn, Quantum experiments and graphs (iii): High-dimensional and multiparticle entanglement, Phys. Rev. A 99(3), 032338 (2019)
CrossRef ADS Google scholar
[28]
T. Feng, X. Zhang, Y. Tian, and Q. Feng, On-chip multiphoton entangled states by path identity, Int. J. Theor. Phys. 58(11), 3726 (2019)
CrossRef ADS Google scholar
[29]
P. Zhu, S. Xue, Q. Zheng, C. Wu, X. Yu, Y. Wang, Y. Liu, X. Qiang, M. Deng, J. Wu, and P. Xu, Reconfigurable multiphoton entangled states based on quantum photonic chips, Opt. Express 28 (18), 26792 (2020)
CrossRef ADS Google scholar
[30]
X. Gu, L. Chen, and M. Krenn, Quantum experiments and hypergraphs: Multiphoton sources for quantum interference, quantum computation, and quantum entanglement, Phys. Rev. A 101(3), 033816 (2020)
CrossRef ADS Google scholar
[31]
A. Forbes and I. Nape, Quantum mechanics with patterns of light: Progress in high dimensional and multidimensional entanglement with structured light, AVS Quantum Science 1(1), 011701 (2019)
CrossRef ADS Google scholar
[32]
D. Cozzolino, B. Da Lio, D. Bacco, and L. K. Oxenløwe, Highdimensional quantum communication: Benefits, progress, and future challenges, Adv. Quant. Technol. 2(12), 1900038 (2019)
CrossRef ADS Google scholar
[33]
M. Erhard, M. Krenn, and A. Zeilinger, Advances in high-dimensional quantum entanglement, Nat. Rev. Phys. 2(7), 365 (2020)
CrossRef ADS Google scholar
[34]
M. Krenn, J. Kottmann, N. Tischler, and A. Aspuru-Guzik, Conceptual understanding through efficient inverse-design of quantum optical experiments, arXiv: 2005.06443 (2020)

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(1027 KB)

Accesses

Citations

Detail

Sections
Recommended

/