The family of quantum droplets keeps expanding
Boris A. Malomed
The family of quantum droplets keeps expanding
Addition of lattice potentials helps to produce new species of stable fundamental and vortical quantum droplets in two dimensions.
[1] |
L. P. Pitaevskii and S. Stringari, Bose–Einstein Condensation, Oxford University Press, Oxford, 2003
|
[2] |
S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of ultracold atomic Fermi gases, Rev. Mod. Phys. 80(4), 1215 (2008)
CrossRef
ADS
Google scholar
|
[3] |
B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch, Tonks–Girardeau gas of ultracold atoms in an optical lattice, Nature 429(6989), 277 (2004)
CrossRef
ADS
Google scholar
|
[4] |
T. Kinoshita, T. Wenger, and D. S. Weiss, Observation of a one-dimensional Tonks–Girardeau gas, Science 305(5687), 1125 (2004)
CrossRef
ADS
Google scholar
|
[5] |
H. Zhai, Degenerate quantum gases with spin–orbit coupling: A review, Rep. Prog. Phys. 78(2), 026001 (2015)
CrossRef
ADS
Google scholar
|
[6] |
D. S. Petrov, Quantum mechanical stabilization of a collapsing Bose–Bose mixture, Phys. Rev. Lett. 115(15), 155302 (2015)
CrossRef
ADS
Google scholar
|
[7] |
D. S. Petrov and G. E. Astrakharchik, Ultradilute lowdimensional liquids, Phys. Rev. Lett. 117(10), 100401 (2016)
CrossRef
ADS
Google scholar
|
[8] |
C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L. Tarruell, Quantum liquid droplets in a mixture of Bose–Einstein condensates, Science 359(6373), 301 (2018)
CrossRef
ADS
Google scholar
|
[9] |
P. Cheiney, C. R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, and L. Tarruell, Bright soliton to quantum droplet transition in a mixture of Bose–Einstein condensates, Phys. Rev. Lett. 120(13), 135301 (2018)
CrossRef
ADS
Google scholar
|
[10] |
G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk, F. Minardi, M. Modugno, G. Modugno, M. Inguscio, and M. Fattori, Self-bound quantum droplets in atomic mixtures, Phys. Rev. Lett. 120(23), 235301 (2018)
CrossRef
ADS
Google scholar
|
[11] |
G. Ferioli, G. Semeghini, L. Masi, G. Giusti, G. Modugno, M. Inguscio, A. Gallemí, A. Recati, and M. Fattori, Collisions of self-bound quantum droplets, Phys. Rev. Lett. 122(9), 090401 (2019)
CrossRef
ADS
Google scholar
|
[12] |
I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T. Pfau, Observation of quantum droplets in a strongly dipolar Bose gas, Phys. Rev. Lett. 116(21), 215301 (2016)
CrossRef
ADS
Google scholar
|
[13] |
L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, L. Santos, and F. Ferlaino, Quantum-fluctuation-driven crossover from a dilute Bose–Einstein condensate to a macrodroplet in a dipolar quantum fluid, Phys. Rev. X 6(4), 041039 (2016)
CrossRef
ADS
Google scholar
|
[14] |
L. Bergé, Wave collapse in physics: Principles and applications to light and plasma waves, Phys. Rep. 303(5–6), 259 (1998)
CrossRef
ADS
Google scholar
|
[15] |
P. Zin, M. Pylak, T. Wasak, M. Gajda, and Z. Idziaszek, Quantum Bose–Bose droplets at a dimensional crossover, Phys. Rev. A 98, 051603(R) (2018)
CrossRef
ADS
Google scholar
|
[16] |
T. Ilg, J. Kumlin, L. Santos, D. S. Petrov, and H. P. Büchler, Dimensional crossover for the beyond-mean-field correction in Bose gases, Phys. Rev. A 98, 051604(R) (2018)
CrossRef
ADS
Google scholar
|
[17] |
G. E. Astrakharchik and B. A. Malomed, Dynamics of onedimensional quantum droplets, Phys. Rev. A 98(1), 013631 (2018)
CrossRef
ADS
Google scholar
|
[18] |
M. Tylutki, G. E. Astrakharchik, B. A. Malomed, and D. S. Petrov, Collective excitations of a one-dimensional quantum droplet, Phys. Rev. A 101, 051601(R) (2020)
CrossRef
ADS
Google scholar
|
[19] |
B. A. Malomed, Multidimensional solitons: Well-established results and novel findings, Eur. Phys. J. Spec. Top. 225(13–14), 2507 (2016)
CrossRef
ADS
Google scholar
|
[20] |
Y. Kartashov, G. Astrakharchik, B. Malomed, and L. Torner, Frontiers in multidimensional self-trapping of nonlinear fields and matter, Nature Reviews Physics 1(3), 185 (2019)
CrossRef
ADS
Google scholar
|
[21] |
Y. V. Kartashov, B. A. Malomed, L. Tarruell, and L. Torner, Three-dimensional droplets of swirling superfluids, Phys. Rev. A 98(1), 013612 (2018)
CrossRef
ADS
Google scholar
|
[22] |
Y. Li, Z. Luo, Y. Liu, Z. Chen, C. Huang, S. Fu, H. Tan, and B. A. Malomed, Two-dimensional solitons and quantum droplets supported by competing self- and crossinteractions in spin–orbit-coupled condensates, New J. Phys. 19(11), 113043 (2017)
CrossRef
ADS
Google scholar
|
[23] |
Y. Li, Z. Chen, Z. Luo, C. Huang, H. Tan, W. Pang, and B. A. Malomed, Two-dimensional vortex quantum droplets, Phys. Rev. A 98(6), 063602 (2018)
CrossRef
ADS
Google scholar
|
[24] |
Y. V. Kartashov, B. A. Malomed, and L. Torner, Metastability of quantum droplet clusters, Phys. Rev. Lett. 122(19), 193902 (2019)
CrossRef
ADS
Google scholar
|
[25] |
X. Zhang, X. Xu, Y. Zheng, Z. Chen, B. Liu, C. Huang, B. A. Malomed, and Y. Li, Semidiscrete quantum droplets and vortices, Phys. Rev. Lett. 123(13), 133901 (2019)
CrossRef
ADS
Google scholar
|
[26] |
Y. V. Kartashov, B. A. Malomed, and L. Torner, Structured hetero-symmetric quantum droplets, Phys. Rev. Research 2(3), 033522 (2020)
CrossRef
ADS
Google scholar
|
[27] |
E. Shamriz, Z. Chen, and B. A. Malomed, Suppression of the quasi-two-dimensional quantum collapse in the attraction field by the Lee–Huang–Yang effect, Phys. Rev. A 101(6), 063628 (2020)
CrossRef
ADS
Google scholar
|
[28] |
B. A. Malomed, Vortex solitons: Old results and new perspectives, Physica D 399, 108 (2019)
CrossRef
ADS
Google scholar
|
[29] |
Z. Luo, W. Pang, B. Liu, Y. Li, and B. A. Malomed, A new form of liquid matter: Quantum droplets, Front. Phys. 16(3), 32201 (2021)
|
[30] |
B. B. Baizakov, B. A. Malomed, and M. Salerno, Multidimensional solitons in periodic potentials, Europhys. Lett. 63(5), 642 (2003)
CrossRef
ADS
Google scholar
|
[31] |
J. Yang and Z. H. Musslimani, Fundamental and vortex solitons in a two-dimensional optical lattice, Opt. Lett. 28(21), 2094 (2003)
CrossRef
ADS
Google scholar
|
[32] |
O. Morsch and M. Oberthaler, Dynamics of Bose–Einstein condensates in optical lattices, Rev. Mod. Phys. 78(1), 179 (2006)
CrossRef
ADS
Google scholar
|
[33] |
Y. Zheng, S. Chen, Z. Huang, S. Dai, B. Liu, Y. Li, and S. Wang, Quantum droplets in two-dimensional optical lattices, Front. Phys. 16(2), 22501 (2021)
CrossRef
ADS
Google scholar
|
[34] |
Z. Zhou, X. Yu, Y. Zou, and H. Zhong, Dynamics of quantum droplets in a one-dimensional optical lattice, Commun. Nonlinear Sci. Numer. Simul. 78, 104881 (2019)
CrossRef
ADS
Google scholar
|
[35] |
L. Dong, W. Qi, P. Peng, L. Wang, H. Zhou, and C. Huang, Multi-stable quantum droplets in optical lattices, Nonlinear Dyn. 102(1), 303 (2020)
CrossRef
ADS
Google scholar
|
[36] |
I. Morera, G. E. Astrakharchik, A. Polls, and B. Juliá-Díaz, Quantum droplets of bosonic mixtures in a one-dimensional optical lattice, Phys. Rev. Research 2, 022008(R) (2020)
CrossRef
ADS
Google scholar
|
[37] |
R. A. Vicencio and M. Johansson, Discrete mobility in two-dimensional arrays with saturable nonlinearity, Phys. Rev. E 73, 046602 (2006)
CrossRef
ADS
Google scholar
|
[38] |
Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Soliton shape and mobility control in optical lattices, Prog. Opt. 52, 63 (2009)
CrossRef
ADS
Google scholar
|
[39] |
Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Rotary solitons in Bessel optical lattices, Phys. Rev. Lett. 93(9), 093904 (2004)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |