The family of quantum droplets keeps expanding

Boris A. Malomed

PDF(929 KB)
PDF(929 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (2) : 22504. DOI: 10.1007/s11467-020-1024-y
VIEW & PERSPECTIVE
VIEW & PERSPECTIVE

The family of quantum droplets keeps expanding

Author information +
History +

Abstract

Addition of lattice potentials helps to produce new species of stable fundamental and vortical quantum droplets in two dimensions.

Cite this article

Download citation ▾
Boris A. Malomed. The family of quantum droplets keeps expanding. Front. Phys., 2021, 16(2): 22504 https://doi.org/10.1007/s11467-020-1024-y

References

[1]
L. P. Pitaevskii and S. Stringari, Bose–Einstein Condensation, Oxford University Press, Oxford, 2003
[2]
S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of ultracold atomic Fermi gases, Rev. Mod. Phys. 80(4), 1215 (2008)
CrossRef ADS Google scholar
[3]
B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch, Tonks–Girardeau gas of ultracold atoms in an optical lattice, Nature 429(6989), 277 (2004)
CrossRef ADS Google scholar
[4]
T. Kinoshita, T. Wenger, and D. S. Weiss, Observation of a one-dimensional Tonks–Girardeau gas, Science 305(5687), 1125 (2004)
CrossRef ADS Google scholar
[5]
H. Zhai, Degenerate quantum gases with spin–orbit coupling: A review, Rep. Prog. Phys. 78(2), 026001 (2015)
CrossRef ADS Google scholar
[6]
D. S. Petrov, Quantum mechanical stabilization of a collapsing Bose–Bose mixture, Phys. Rev. Lett. 115(15), 155302 (2015)
CrossRef ADS Google scholar
[7]
D. S. Petrov and G. E. Astrakharchik, Ultradilute lowdimensional liquids, Phys. Rev. Lett. 117(10), 100401 (2016)
CrossRef ADS Google scholar
[8]
C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L. Tarruell, Quantum liquid droplets in a mixture of Bose–Einstein condensates, Science 359(6373), 301 (2018)
CrossRef ADS Google scholar
[9]
P. Cheiney, C. R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, and L. Tarruell, Bright soliton to quantum droplet transition in a mixture of Bose–Einstein condensates, Phys. Rev. Lett. 120(13), 135301 (2018)
CrossRef ADS Google scholar
[10]
G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk, F. Minardi, M. Modugno, G. Modugno, M. Inguscio, and M. Fattori, Self-bound quantum droplets in atomic mixtures, Phys. Rev. Lett. 120(23), 235301 (2018)
CrossRef ADS Google scholar
[11]
G. Ferioli, G. Semeghini, L. Masi, G. Giusti, G. Modugno, M. Inguscio, A. Gallemí, A. Recati, and M. Fattori, Collisions of self-bound quantum droplets, Phys. Rev. Lett. 122(9), 090401 (2019)
CrossRef ADS Google scholar
[12]
I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T. Pfau, Observation of quantum droplets in a strongly dipolar Bose gas, Phys. Rev. Lett. 116(21), 215301 (2016)
CrossRef ADS Google scholar
[13]
L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, L. Santos, and F. Ferlaino, Quantum-fluctuation-driven crossover from a dilute Bose–Einstein condensate to a macrodroplet in a dipolar quantum fluid, Phys. Rev. X 6(4), 041039 (2016)
CrossRef ADS Google scholar
[14]
L. Bergé, Wave collapse in physics: Principles and applications to light and plasma waves, Phys. Rep. 303(5–6), 259 (1998)
CrossRef ADS Google scholar
[15]
P. Zin, M. Pylak, T. Wasak, M. Gajda, and Z. Idziaszek, Quantum Bose–Bose droplets at a dimensional crossover, Phys. Rev. A 98, 051603(R) (2018)
CrossRef ADS Google scholar
[16]
T. Ilg, J. Kumlin, L. Santos, D. S. Petrov, and H. P. Büchler, Dimensional crossover for the beyond-mean-field correction in Bose gases, Phys. Rev. A 98, 051604(R) (2018)
CrossRef ADS Google scholar
[17]
G. E. Astrakharchik and B. A. Malomed, Dynamics of onedimensional quantum droplets, Phys. Rev. A 98(1), 013631 (2018)
CrossRef ADS Google scholar
[18]
M. Tylutki, G. E. Astrakharchik, B. A. Malomed, and D. S. Petrov, Collective excitations of a one-dimensional quantum droplet, Phys. Rev. A 101, 051601(R) (2020)
CrossRef ADS Google scholar
[19]
B. A. Malomed, Multidimensional solitons: Well-established results and novel findings, Eur. Phys. J. Spec. Top. 225(13–14), 2507 (2016)
CrossRef ADS Google scholar
[20]
Y. Kartashov, G. Astrakharchik, B. Malomed, and L. Torner, Frontiers in multidimensional self-trapping of nonlinear fields and matter, Nature Reviews Physics 1(3), 185 (2019)
CrossRef ADS Google scholar
[21]
Y. V. Kartashov, B. A. Malomed, L. Tarruell, and L. Torner, Three-dimensional droplets of swirling superfluids, Phys. Rev. A 98(1), 013612 (2018)
CrossRef ADS Google scholar
[22]
Y. Li, Z. Luo, Y. Liu, Z. Chen, C. Huang, S. Fu, H. Tan, and B. A. Malomed, Two-dimensional solitons and quantum droplets supported by competing self- and crossinteractions in spin–orbit-coupled condensates, New J. Phys. 19(11), 113043 (2017)
CrossRef ADS Google scholar
[23]
Y. Li, Z. Chen, Z. Luo, C. Huang, H. Tan, W. Pang, and B. A. Malomed, Two-dimensional vortex quantum droplets, Phys. Rev. A 98(6), 063602 (2018)
CrossRef ADS Google scholar
[24]
Y. V. Kartashov, B. A. Malomed, and L. Torner, Metastability of quantum droplet clusters, Phys. Rev. Lett. 122(19), 193902 (2019)
CrossRef ADS Google scholar
[25]
X. Zhang, X. Xu, Y. Zheng, Z. Chen, B. Liu, C. Huang, B. A. Malomed, and Y. Li, Semidiscrete quantum droplets and vortices, Phys. Rev. Lett. 123(13), 133901 (2019)
CrossRef ADS Google scholar
[26]
Y. V. Kartashov, B. A. Malomed, and L. Torner, Structured hetero-symmetric quantum droplets, Phys. Rev. Research 2(3), 033522 (2020)
CrossRef ADS Google scholar
[27]
E. Shamriz, Z. Chen, and B. A. Malomed, Suppression of the quasi-two-dimensional quantum collapse in the attraction field by the Lee–Huang–Yang effect, Phys. Rev. A 101(6), 063628 (2020)
CrossRef ADS Google scholar
[28]
B. A. Malomed, Vortex solitons: Old results and new perspectives, Physica D 399, 108 (2019)
CrossRef ADS Google scholar
[29]
Z. Luo, W. Pang, B. Liu, Y. Li, and B. A. Malomed, A new form of liquid matter: Quantum droplets, Front. Phys. 16(3), 32201 (2021)
[30]
B. B. Baizakov, B. A. Malomed, and M. Salerno, Multidimensional solitons in periodic potentials, Europhys. Lett. 63(5), 642 (2003)
CrossRef ADS Google scholar
[31]
J. Yang and Z. H. Musslimani, Fundamental and vortex solitons in a two-dimensional optical lattice, Opt. Lett. 28(21), 2094 (2003)
CrossRef ADS Google scholar
[32]
O. Morsch and M. Oberthaler, Dynamics of Bose–Einstein condensates in optical lattices, Rev. Mod. Phys. 78(1), 179 (2006)
CrossRef ADS Google scholar
[33]
Y. Zheng, S. Chen, Z. Huang, S. Dai, B. Liu, Y. Li, and S. Wang, Quantum droplets in two-dimensional optical lattices, Front. Phys. 16(2), 22501 (2021)
CrossRef ADS Google scholar
[34]
Z. Zhou, X. Yu, Y. Zou, and H. Zhong, Dynamics of quantum droplets in a one-dimensional optical lattice, Commun. Nonlinear Sci. Numer. Simul. 78, 104881 (2019)
CrossRef ADS Google scholar
[35]
L. Dong, W. Qi, P. Peng, L. Wang, H. Zhou, and C. Huang, Multi-stable quantum droplets in optical lattices, Nonlinear Dyn. 102(1), 303 (2020)
CrossRef ADS Google scholar
[36]
I. Morera, G. E. Astrakharchik, A. Polls, and B. Juliá-Díaz, Quantum droplets of bosonic mixtures in a one-dimensional optical lattice, Phys. Rev. Research 2, 022008(R) (2020)
CrossRef ADS Google scholar
[37]
R. A. Vicencio and M. Johansson, Discrete mobility in two-dimensional arrays with saturable nonlinearity, Phys. Rev. E 73, 046602 (2006)
CrossRef ADS Google scholar
[38]
Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Soliton shape and mobility control in optical lattices, Prog. Opt. 52, 63 (2009)
CrossRef ADS Google scholar
[39]
Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Rotary solitons in Bessel optical lattices, Phys. Rev. Lett. 93(9), 093904 (2004)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(929 KB)

Accesses

Citations

Detail

Sections
Recommended

/