Free control of far-field scattering angle of transmission terahertz wave using multilayer split-ring resonators’ metasurfaces

Ying Tian, Xufeng Jing, Haiyong Gan, Chenxia Li, Zhi Hong

PDF(1528 KB)
PDF(1528 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (6) : 62502. DOI: 10.1007/s11467-020-1013-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Free control of far-field scattering angle of transmission terahertz wave using multilayer split-ring resonators’ metasurfaces

Author information +
History +

Abstract

To enhance transmission efficiency of Pancharatnam–Berry (PB) phase metasurfaces, multilayer splitring resonators were proposed to develop encoding sequences. As per the generalized Snell’s law, the deflection angle of the PB phase encoding metasurfaces depends on the metasurface period’s size. Therefore, it is impossible to design an infinitesimal metasurface unit; consequently, the continuous transmission scattering angle cannot be obtained. In digital signal processing, this study introduces the Fourier convolution principle on encoding metasurface sequences to freely control the transmitted scattering angles. Both addition and subtraction operations between two different encoding sequences were then performed to achieve the continuous variation of the scattering angle. Furthermore, we established that the Fourier convolution principle can be applied to the checkerboard coded metasurfaces.

Keywords

metamaterial / metasurface / scattering / Fourier convolution

Cite this article

Download citation ▾
Ying Tian, Xufeng Jing, Haiyong Gan, Chenxia Li, Zhi Hong. Free control of far-field scattering angle of transmission terahertz wave using multilayer split-ring resonators’ metasurfaces. Front. Phys., 2020, 15(6): 62502 https://doi.org/10.1007/s11467-020-1013-1

References

[1]
S. Teng, Q. Zhang, H. Wang, L. Liu, and H. Lv, Conversion between polarization states based on metasurface, Photon. Res. 7(3), 246 (2019)
CrossRef ADS Google scholar
[2]
X. Luo, Z. Tan, C. Wang, and J. Cao, A reflectingtype highly efficient terahertz cross-polarization converter based on metamaterials, Chin. Opt. Lett. 17(9), 093101 (2019)
CrossRef ADS Google scholar
[3]
L. Koirala, C. Park, S. Lee, and D. Choi, Angle tolerant transmissive color filters exploiting metasurface incorporating hydrogenated amorphous silicon nanopillars, Chin. Opt. Lett. 17(8), 082301 (2019)
CrossRef ADS Google scholar
[4]
T. Hou, Y. An, Q. Chang, P. Ma, J. Li, D. Zhi, L. Huang, R. Su, J. Wu, Y. Ma, and P. Zhou, Deep-learning-based phase control method for tiled aperture coherent beam combining systems, High Power Laser Science and Engineering 7(4), e59 (2019)
CrossRef ADS Google scholar
[5]
H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances, J. Appl. Phys. 115(15), 154504 (2014)
CrossRef ADS Google scholar
[6]
H. Li, G. Wang, H. Xu, T. Cai, and J. Liang, X-band phase-gradient metasurface for high-gain lens antenna application, IEEE Trans. Antenn. Propag. 63(11), 5144 (2015)
CrossRef ADS Google scholar
[7]
L. Huang, S. Zhang, and T. Zentgraf, Metasurface holography: from fundamentals to applications, Nanophotonics 7(6), 1169 (2018)
CrossRef ADS Google scholar
[8]
A. Minovich, A. Miroshnichenko, A. Bykov, T. Murzina, D. Neshev, and Y. Kivshar, Functional and nonlinear optical metasurfaces, Laser Photonics Rev. 9(2), 195 (2015)
CrossRef ADS Google scholar
[9]
H. Wang, J. Zheng, Y. Fu, C. Wang, X. Huang, Z. Ye, and ian, Multichannel high extinction ratio polarized beam splitters based on metasurfaces, Chin. Opt. Lett. 17(5), 052303 (2019)
CrossRef ADS Google scholar
[10]
M. Huault, D. De Luis, J. Apinaniz, M. De Marco, C. Salgado, N. Gordillo, C. Gutiérrez Neira, J. A. Perez-Hernandez, R. Fedosejevs, G. Gatti, L. Roso, and L. Volpe, A 2D scintillator-based proton detector for high repetition rate experiments, High Power Laser Science and Engineering. 7(4), e60 (2019)
CrossRef ADS Google scholar
[11]
M. Akram, M. Mehmood, X. Bai, R. Jin, M. Premaratne, and W. Zhu, High efficiency ultrathin transmissive metasurfaces, Adv. Opt. Mater. 7(11), 1801628 (2019)
CrossRef ADS Google scholar
[12]
M. Akram, G. Ding, K. Chen, Y. Feng, and W. Zhu, Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection, Adv. Mater. 32(12), 1907308 (2020)
CrossRef ADS Google scholar
[13]
M. Akram, X. Bai, R. Jin, G. Vandenbosch, M. Premaratne, and W. Zhu, Photon spin Hall effect-based ultrathin transmissive metasurface for efficient generation of OAM waves, IEEE Trans. Antenn. Propag. 67(7), 4650 (2019)
CrossRef ADS Google scholar
[14]
X. Bie, X. Jing, Z. Hong, and C. Li, Flexible control of transmitting terahertz beams based on multilayer encoding metasurfaces, Appl. Opt. 57(30), 9070 (2018)
CrossRef ADS Google scholar
[15]
Z. Ma, S. Hanham, P. Albella, B. Ng, H. Lu, Y. Gong, S. Maier, and M. Hong, Terahertz all-dielectric magnetic mirror metasurfaces, ACS Photonics 3(6), 1010 (2016)
CrossRef ADS Google scholar
[16]
T. Cui, M. Qi, X. Wan, J. Zhao, and Q. Cheng, Coding metamaterials, digital metamaterials and programmable metamaterials, Light Sci. Appl. 3(10), e218 (2014)
CrossRef ADS Google scholar
[17]
F. Aieta, P. Genevet, M. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, Aberration-free ultrathin flat lenses and axicons at tele-com wavelengths based on plasmonic metasurfaces,Nano Lett. 12(9), 4932 (2012)
CrossRef ADS Google scholar
[18]
X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, Manipulating terahertz plasmonic vortex based on geometric and dynamic phase, Adv. Opt. Mater. 7(3), 1801328 (2019)
CrossRef ADS Google scholar
[19]
Q. T. Li, F. Dong, B. Wang, F. Gan, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, Polarization independent and high-efficiency dielectric metasurfaces for visible light, Opt. Express 24(15), 16309 (2016)
CrossRef ADS Google scholar
[20]
A. Arbabi and A. Faraon, Fundamental limits of ultrathin metasurfaces, Sci. Rep. 7(1), 43722 (2017)
CrossRef ADS Google scholar
[21]
A. Forouzmand, S. Tao, S. Jafar-Zanjani, J. Cheng, M. M. Salary, and H. Mosallaei, Double split-loop resonators as building blocks of metasurfaces for light manipulation: Bnding, focusing, and flat-top generation, J. Opt. Soc. Am. B 33(7), 1411 (2016)
CrossRef ADS Google scholar
[22]
D. Zhang, X. Yang, P. Su, J. Luo, H. Chen, J. Yuan, and L. Li, Design of single-layer high-efficiency transmitting phase-gradient metasurface and high gain antenna, J. Phys. D Appl. Phys. 50(49), 495104 (2017)
CrossRef ADS Google scholar
[23]
M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, Thin AMC structure for radar cross-section reduction, IEEE Trans. Antenn. Propag. 55(12), 3630 (2007)
CrossRef ADS Google scholar
[24]
C. E. Garcia-Ortiz, R. Cortes, J. E. Gómez-Correa, E. Pisano, J. Fiutowski, D. A. Garcia-Ortiz, V. Ruiz-Cortes, H. G. Rubahn, and V. Coello, Plasmonic metasurface Luneburg lens, Photon. Res. 7(10), 1112 (2019)
CrossRef ADS Google scholar
[25]
C. Sitawarin, W. Jin, Z. Lin, and A. W. Rodriguez, Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion, Photon. Res. 6(5), B82 (2018)
CrossRef ADS Google scholar
[26]
B. Du, H. B. Cai, W. S. Zhang, S. Y. Zou, J. Chen, and S. P. Zhu, A demonstration of extracting the strength and wavelength of the magnetic field generated by the Weibel instability from proton radiography, High Power Laser Science and Engineering 7(3), e40 (2019)
CrossRef ADS Google scholar
[27]
S. Rubin and Y. Fainman, Nonlinear, tunable, and active optical metasurface with liquid film, Advanced Photonics 1(06), 066003 (2019)
CrossRef ADS Google scholar
[28]
X. He, F. Lin, F. Liu, and H. Zhang, Investigation of phonon scattering on the tunable mechanisms of terahertz graphene metamaterials, Nanomaterials 10(1), 39 (2019)
CrossRef ADS Google scholar
[29]
X. He, F. Lin, F. Liu, and W. Shi, Tunable strontium titanate terahertz all-dielectric metamaterials, J. Phys. D Appl. Phys. 53(15), 155105 (2020)
CrossRef ADS Google scholar
[30]
J. Peng, X. He, C. Shi, J. Leng, F. Lin, F. Liu, H. Zhang, and W. Shi, Investigation of graphene supported terahertz elliptical metamaterials, Physica E 124, 114309 (2020)
CrossRef ADS Google scholar
[31]
H. Wang, L. Liu, C. Zhou, J. Xu, M. Zhang, S. Teng, and Y. Cai, Vortex beam generation with variable topological charge based on a spiral slit, Nanophotonics 8(2), 317 (2019)
CrossRef ADS Google scholar
[32]
Q. Zhang, H. Wang, L. Liu, and S. Teng, Generation of vector beams using spatial variation nanoslits with linearly polarized light illumination, Opt. Express 26(18), 24145 (2018)
CrossRef ADS Google scholar
[33]
H. Wang, L. Liu, C. Liu, X. Li, S. Wang, Q. Xu, and S. Teng, Plasmonic vortex generator without polarization dependence, New J. Phys. 20(3), 033024 (2018)
CrossRef ADS Google scholar
[34]
L. Liu, H. Wang, Y. Han, X. Lu, H. Lv, and S. Teng, Color filtering and displaying based on hole array, Opt. Commun. 436, 96 (2019)
CrossRef ADS Google scholar
[35]
M. King, N. M. H. Butler, R. Wilson, R. Capdessus, R. J. Gray, H. W. Powell, R. J. Dance, H. Padda, B. Gonzalez-Izquierdo, D. R. Rusby, N. P. Dover, G. S. Hicks, O. C. Ettlinger, C. Scullion, D. C. Carroll, Z. Najmudin, M. Borghesi, D. Neely, and P. McKenna, Role of magnetic field evolution on filamentary structure formation in intense laser–foil interactions, High Power Laser Science and Engineering 7(1), e14 (2019)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(1528 KB)

Accesses

Citations

Detail

Sections
Recommended

/