Shooting flexible electronics
Qichun Zhang
Shooting flexible electronics
Carbon-rich materials are the key.
[1] |
https://www.lg.com/us/business/oled-displays/lg-55EF5E-L, LG Electronics USA, Inc, 2020
|
[2] |
https://news.samsung.com/us/samsung-displays-unbreakable-panel-certified- underwriters-laboratories/, SAMSUNG, 2018
|
[3] |
Sony applies for a flexible screen patent. E. Udin, https://www.gizchina. com/2019/07/19/sony-applies-for-a-flexible-screen-patent/, 2019
|
[4] |
Flexible Lithium-ion rechargeable battery for smartcards, wearables and IoT devices. Panasonic Industry, https://industry.panasonic.eu/ panasonic-industry- news/flexible-lithium-ion-rechargeable-battery-smartcards-wearables- and-iot-devices, 2017
|
[5] |
Samsung’s foldable battery almost ready for mass production. J. Soni, https://www.techradar.com/news/samsungs-foldable-battery-almost-readyfor- mass-production, 2020
|
[6] |
https://www.samsung.com/us/mobile/galaxy-fold/, SAMSUNG, 2020
|
[7] |
M. Choi, S.-R. Bae, L. Hu, A. T. Hoang, S. Y. Kim, and J.-H. Ahn, Full-color active-matrix organic light-emitting diode display on human skin based on a large-area MoS2 backplane, Sci. Adv. 6(28), eabb5898 (2020)
CrossRef
ADS
Google scholar
|
[8] |
M. U. Chaudhry, K. Muhieddine, R. Wawrzinek, J. Sobus, K. Tandy, S. C. Lo, and E. B. Namdas, Organic light-emitting transistors: Advances and perspectives, Adv. Funct. Mater. 30(20), 1905282 (2020)
CrossRef
ADS
Google scholar
|
[9] |
H. Chen, X. Xing, J. Miao, C. Zhao, M. Zhu, J. W. Bai, Y. He, and H. Meng, Highly efficient flexible organic light emitting transistor based on high-k polymer gate dielectric, Adv. Opt. Mater. 8(6), 1901651 (2020)
CrossRef
ADS
Google scholar
|
[10] |
J. C. Yang, J. Mun, S. Y. Kwon, S. Park, Z. Bao, and S. Park, Electronic skin: Recent progress and future prospects for skin-ttachable devices for health monitoring, robotics, and prosthetics, Adv. Mater. 31(48), 1904765 (2019)
CrossRef
ADS
Google scholar
|
[11] |
S. Yuvaraja, A. Nawaz, Q. Liu, D. Dubal, S. G. Surya, K. N. Salama, and P. Sonar, Organic field-effect transistor-based flexible sensors,Chem. Soc. Rev. 49(11), 3423 (2020)
CrossRef
ADS
Google scholar
|
[12] |
Y. H. Lee, O. Y. Kweon, H. Kim, J. H. Yoo, S. G. Han, and J. H. Oh, Recent advances in organic sensors for health self-monitoring systems, J. Mater. Chem. C 6(32), 8569 (2018)
CrossRef
ADS
Google scholar
|
[13] |
M. Zhu, M. U. Ali, C. Zou, W. Xie, S. Li, and H. Meng, Tactile and temperature sensors based on organic transistors: Towards e-skin fabrication, Front. Phys. 16(1), 13302 (2021)
|
[14] |
Y. H. Lee, M. Jang, M. Y. Lee, O. Y. Kweon, and J. H. Oh, Flexible field-effect transistor-type sensors based on conjugated molecules, Chem 3(5), 724 (2017)
CrossRef
ADS
Google scholar
|
[15] |
J. W. Borchert, U. Zschieschang, F. Letzkus, M. Giorgio, R. T. Weitz, M. Caironi, J. N. Burghartz, S. Ludwigs and H. Klauk, Flexible low-voltage high-frequency organic thin-film transistors, Sci. Adv. 6(21), eaaz5156 (2020)
CrossRef
ADS
Google scholar
|
[16] |
M. Y. Lee, H. R. Lee, C. H. Park, S. G. Han, and J. H. Oh, Organic transistor- based chemical sensors for wearable bioelectronics, Acc. Chem. Res. 51(11), 2829 (2018)
CrossRef
ADS
Google scholar
|
[17] |
M. Y. Lee, H. J. Kim, G. Y. Jung, A. R. Han, S. K. Kwak, B. Kim, and J. H. Oh, Highly sensitive and selective liquid-hase sensors based on a solvent- resistant organic-transistor platform, Adv. Mater. 27(9), 1540 (2015)
CrossRef
ADS
Google scholar
|
[18] |
X. Huang, D. Ji, H. Fuchs, W. Hu, and T. Li, Recent progress in organic phototransistors: Semiconductor materials, device structures and optoelectronic applications, ChemPhotoChem 4(1), 9 (2020)
CrossRef
ADS
Google scholar
|
[19] |
C. Wang, X. Zhang, and W. Hu, Organic photodiodes and phototransistors toward infrared detection: Materials, devices, and applications, Chem. Soc. Rev. 49(3), 653 (2020)
CrossRef
ADS
Google scholar
|
[20] |
X. Wang, F. Zhao, Z. Xue, Y. Yuan, M. Huang, G. Zhang, Y. Ding, and L. Qiu, Highly sensitive polymer phototransistor based on the synergistic effect of chemical and physical blending in D (Donor)-A (Acceptor), Copolymers. Adv. Electronic Mater. 5(6), 1900174 (2019)
CrossRef
ADS
Google scholar
|
[21] |
H. Han, C. Lee, H. Kim, and Y. Kim, Flexible near-infrared plastic phototransistors with conjugated polymer gate-sensing layers, Adv. Funct. Mater. 28(20), 1800704 (2018)
CrossRef
ADS
Google scholar
|
[22] |
M. Kondo, M. Melzer, D. Karnaushenko, T. Uemura, S. Yoshimoto, M. Akiyama, Y. Noda, T. Araki, O. G. Schmidt, and T. Sekitani, Imperceptible magnetic sensor matrix system integrated with organic driver and amplifier circuits, Sci. Adv. 6(4), eaay6094 (2020)
CrossRef
ADS
Google scholar
|
[23] |
K. Pak, J. Choi, C. Lee, and S. G. Im, Low-power, flexible nonvolatile organic transistor memory based on an ultrathin bilayer dielectric stack, Adv. Electron. Mater. 5(4), 1800799 (2019)
CrossRef
ADS
Google scholar
|
[24] |
Y. Kim, A. Chortos, W. Xu, Y. Liu, J. Y. Oh, D. Son, J. Kang, A. M. Foudeh, C. Zhu, Y. Lee, S. Niu, J. Liu, R. Pfattner, Z. Bao, and T. W. Lee, A bioinspired flexible organic artificial afferent nerve, Science 360(6392), 998 (2018)
CrossRef
ADS
Google scholar
|
[25] |
H. Matsui, Y. Takeda, and S. Tokito, Flexible and printed organic transistors: From materials to integrated circuits, Org. Electron. 75, 105432 (2019)
CrossRef
ADS
Google scholar
|
[26] |
J. Kwon, Y. Takeda, R. Shiwaku, S. Tokito, K. Cho, and S. Jung, Three-dimensional monolithic integration in flexible printed organic transistors, Nat. Commun. 10(1), 54 (2019)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |