Nonideal double-slope effect in organic field-effect transistors

Ming-Chao Xiao, Jie Liu, Yuan-Yuan Hu, Shuai Wang, Lang Jiang

PDF(4566 KB)
PDF(4566 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (1) : 13305. DOI: 10.1007/s11467-020-0997-x
TOPICAL REVIEW
TOPICAL REVIEW

Nonideal double-slope effect in organic field-effect transistors

Author information +
History +

Abstract

With the development of device engineering and molecular design, organic field effect transistors (OFETs) with high mobility over 10 cm2·V−1·s−1 have been reported. However, the nonideal doubleslope effect has been frequently observed in some of these OFETs, which makes it difficult to extract the intrinsic mobility OFETs accurately, impeding the further application of them. In this review, the origin of the nonideal double-slope effect has been discussed thoroughly, with affecting factors such as contact resistance, charge trapping, disorder effects and coulombic interactions considered. According to these discussions and the understanding of the mechanism behind double-slope effect, several strategies have been proposed to realize ideal OFETs, such as doping, molecular engineering, charge trapping reduction, and contact engineering. After that, some novel devices based on the nonideal double-slope behaviors have been also introduced.

Keywords

organic field effect transistors / nonideal double-slope effect / mobility

Cite this article

Download citation ▾
Ming-Chao Xiao, Jie Liu, Yuan-Yuan Hu, Shuai Wang, Lang Jiang. Nonideal double-slope effect in organic field-effect transistors. Front. Phys., 2021, 16(1): 13305 https://doi.org/10.1007/s11467-020-0997-x

References

[1]
H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, Ultralow-power organic complementary circuits, Nature 445(7129), 745 (2007)
CrossRef ADS Google scholar
[2]
G. Gelinck, P. Heremans, K. Nomoto, and T. D. Anthopoulos, Organic transistors in optical displays and microelectronic applications, Adv. Mater. 22(34), 3778 (2010)
CrossRef ADS Google scholar
[3]
C. Zhang, P. Chen, and W. Hu, Organic field-effect transistor-based gas sensors, Chem. Soc. Rev. 44(8), 2087 (2015)
CrossRef ADS Google scholar
[4]
J. Y. Oh, S. Rondeau-Gagne, Y. C. Chiu, A. Chortos, F. Lissel, G. N. Wang, B. C. Schroeder, T. Kurosawa, J. Lopez, T. Katsumata, J. Xu, C. Zhu, X. Gu, W. G. Bae, Y. Kim, L. Jin, J. W. Chung, J. B. Tok, and Z. Bao, Intrinsically stretchable and healable semiconducting polymer for organic transistors, Nature 539(7629), 411 (2016)
CrossRef ADS Google scholar
[5]
Y. Zang, D. Huang, C. A. Di, and D. Zhu, Device engineered organic transistors for flexible sensing applications, Adv. Mater. 28(22), 4549 (2016)
CrossRef ADS Google scholar
[6]
H. I. Un, P. Cheng, T. Lei, C. Y. Yang, J. Y. Wang, and J. Pei, Charge-trapping-induced non-ideal behaviors in organic field-effect transistors, Adv. Mater. 30(18), 1800017 (2018)
CrossRef ADS Google scholar
[7]
R. Warren, A. Privitera, P. Kaienburg, A. E. Lauritzen, O. Thimm, J. Nelson, and M. K. Riede, Controlling energy levels and Fermi level en route to fully tailored energetics in organic semiconductors, Nat. Commun. 10(1), 5538 (2019)
CrossRef ADS Google scholar
[8]
J. Ko, Y. Kim, J. S. Kang, R. Berger, H. Yoon, and K. Char, Enhanced vertical charge transport of homo- and blended semiconducting polymers by nanoconfinement, Adv. Mater. 32(10), 1908087 (2020)
CrossRef ADS Google scholar
[9]
G. Schweicher, G. Garbay, R. Jouclas, F. Vibert, F. Devaux, and Y. H. Geerts, Molecular semiconductors for logic operations: Dead-end or bright future? Adv. Mater. 32(10), 1905909 (2020)
CrossRef ADS Google scholar
[10]
X. Wang, R. Kerr, F. Chen, N. Goujon, J. M. Pringle, D. Mecerreyes, M. Forsyth, and P. C. Howlett, Toward high-energy-density lithium metal batteries: Opportunities and challenges for solid organic electrolytes, Adv. Mater. 32(18), 1905219 (2020)
CrossRef ADS Google scholar
[11]
H. Fukagawa, M. Hasegawa, K. Morii, K. Suzuki, T. Sasaki, and T. Shimizu, Universal strategy for efficient electron injection into organic semiconductors utilizing hydrogen bonds, Adv. Mater. 31(43), 1904201 (2019)
CrossRef ADS Google scholar
[12]
Y. Li, C. Ji, Y. Qu, X. Huang, S. Hou, C. Z. Li, L. S. Liao, L. J. Cuo, and S. R. Forrest, Enhanced light utilization in semitransparent organic photovoltaics using an optical outcoupling architecture, Adv. Mater. 31(40), 1903173 (2019)
CrossRef ADS Google scholar
[13]
J. Mun, J. Kang, Y. Zheng, S. Luo, H. C. Wu, N. Matsuhisa, J. Xu, G. N. Wang, Y. Yun, G. Xue, J. B. H. Tok, and Z. Bao, Conjugated carbon cyclic nanorings as additives for intrinsically stretchable semiconducting polymers, Adv. Mater. 31(42), 1903912 (2019)
CrossRef ADS Google scholar
[14]
Y. Yamashita, J. Tsurumi, M. Ohno, R. Fujimoto, S. Kumagai, T. Kurosawa, T. Okamoto, J. Takeya, and S. Watanabe, Efficient molecular doping of polymeric semiconductors driven by anion exchange, Nature 572(7771), 634 (2019)
CrossRef ADS Google scholar
[15]
J. Xu, S. Wang, G. N. Wang, C. Zhu, S. Luo, L. Jin, X. Gu, S. Chen, V. R. Feig, J. W. To, S. Rondeau-Gagne, J. Park, B. C. Schroeder, C. Lu, J. Y. Oh, Y. Wang, Y. H. Kim, H. Yan, R. Sinclair, D. Zhou, G. Xue, B. Murmann, C. Linder, W. Cai, J. B. Tok, J. W. Chung, and Z. Bao, Highly stretchable polymer semiconductor films through the nanoconfinement effect, Science 355(6320), 59 (2017)
CrossRef ADS Google scholar
[16]
P. Chao, H. Chen, Y. Zhu, H. Lai, D. Mo, N. Zheng, X. Chang, H. Meng, F. He, and A. Benzo, [1,2-b:4,5- c]dithiophene-4,8-dione-based polymer donor achieving an efficiency over 16%, Adv. Mater. 32(10), 1907059 (2020)
CrossRef ADS Google scholar
[17]
Y. Gao, Y. Yi, X. Wang, H. Meng, D. Lei, X. F. Yu, P. K. Chu, and J. Li, A novel hybrid-layered organic phototransistor enables efficient intermolecular charge transfer and carrier transport for ultrasensitive photodetection, Adv. Mater. 31(16), 1900763 (2019)
CrossRef ADS Google scholar
[18]
J. Wang, H. Yu, T. Fu, C. Zhao, H. Yu, Z. Liu, Q. He, D. Zhang, H. Meng, and W. Huang, Wide band gap pyromellitic diimides for photo stable n-channel thin film transistors, J. Mater. Chem. C 8(22), 7344 (2020)
CrossRef ADS Google scholar
[19]
X. Ren, F. Yang, X. Gao, S. Cheng, X. Zhang, H. Dong, and W. Hu, Organic field-effect transistor for energyrelated applications: Low-power-consumption devices, near-infrared phototransistors, and organic thermoelectric devices, Adv. Energy Mater. 8(24), 1801003 (2018)
CrossRef ADS Google scholar
[20]
T. N. Jackson, Y.-Y. Lin, D. J. Gundlach, and H. Klauk, Organic thin-film transistors for organic light-emitting flat-panel display backplanes, IEEE J. Sel. Top. Quantum Electron. 4(1), 100 (1998)
CrossRef ADS Google scholar
[21]
P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, and S. D. Theiss, Pentacene-based radio-frequency identification circuitry, Appl. Phys. Lett. 82(22), 3964 (2003)
CrossRef ADS Google scholar
[22]
Y. Yao, H. Dong, and W. Hu, Charge transport in organic and polymeric semiconductors for flexible and stretchable devices, Adv. Mater. 28(22), 4513 (2016)
CrossRef ADS Google scholar
[23]
H. Li, Y. Shi, G. Han, J. Liu, J. Zhang, C. Li, J. Liu, Y. Yi, T. Li, X. Gao, C. Di, J. Huang, Y. Che, D. Wang, W. Hu, Y. Liu, and L. Jiang, Monolayer two-dimensional molecular crystals for an ultrasensitive OFET-based chemical sensor, Angew. Chem. Int. Ed. 59(11), 4380 (2020)
CrossRef ADS Google scholar
[24]
I. Yagi, N. Hirai, Y. Miyamoto, M. Noda, A. Imaoka, N. Yoneya, K. Nomoto, J. Kasahara, A. Yumoto, and T. Urabe, A flexible full-color AMOLED display driven by OTFTs, J. Soc. Inf. Disp. 16(1), 15 (2008)
CrossRef ADS Google scholar
[25]
C. Reese, and Z. Bao, Detailed characterization of contact resistance, gate-bias-dependent field-effect mobility, and short-channel effects with microscale elastomeric singlecrystal field-effect transistors, Adv. Funct. Mater. 19(5), 763 (2009)
CrossRef ADS Google scholar
[26]
W. Deng, X. Zhang, C. Gong, Q. Zhang, Y. Xing, Y. Wu, X. Zhang, and J. Jie, Aligned nanowire arrays on thin flexible substrates for organic transistors with high bending stability, J. Mater. Chem. C 2(7), 1314 (2014)
CrossRef ADS Google scholar
[27]
C. Wang, H. Dong, L. Jiang, and W. Hu, Organic semiconductor crystals, Chem. Soc. Rev. 47(2), 422 (2018)
CrossRef ADS Google scholar
[28]
K. Ryu, I. Kymissis, V. Bulovic, and C. G. Sodini, Direct extraction of mobility in pentacene OFETs using C– V and I–V measurements, IEEE Electron Device Lett. 26(10), 716 (2005)
CrossRef ADS Google scholar
[29]
E. G. Bittle, J. I. Basham, T. N. Jackson, O. D. Jurchescu, and D. J. Gundlach, Mobility overestimation due to gated contacts in organic field-effect transistors, Nat. Commun. 7(1), 10908 (2016)
CrossRef ADS Google scholar
[30]
Y. Shi, L. Jiang, J. Liu, Z. Tu, Y. Hu, Q. Wu, Y. Yi, E. Gann, C. R. McNeill, H. Li, W. Hu, D. Zhu, and H. Sirringhaus, Bottom-up growth of n-type monolayer molecular crystals on polymeric substrate for optoelectronic device applications, Nat. Commun. 9(1), 2933 (2018)
CrossRef ADS Google scholar
[31]
Q. Tang, H. Li, Y. Liu, and W. Hu, High-performance air-stable n-type transistors with an asymmetrical device configuration based on organic single-crystalline submicrometer/ nanometer ribbons, J. Am. Chem. Soc. 128(45), 14634 (2006)
CrossRef ADS Google scholar
[32]
J. H. Gao, R. J. Li, L. Q. Li, Q. Meng, H. Jiang, H. X. Li, and W. P. Hu, High-performance field-effect transistor based on dibenzo[d,d]thieno[3,2-b;4,5-b]dithiophene, an easily synthesized semiconductor with high ionization potential, Adv. Mater. 19(19), 3008 (2007)
CrossRef ADS Google scholar
[33]
J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, and S. Ogawa, Very high-mobility organic single-crystal transistors with in-crystal conduction channels, Appl. Phys. Lett. 90(10), 102120 (2007)
CrossRef ADS Google scholar
[34]
H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, and T. Hasegawa, Inkjet printing of single-crystal films, Nature 475(7356), 364 (2011)
CrossRef ADS Google scholar
[35]
H. R. Tseng, L. Ying, B. B. Hsu, L. A. Perez, C. J. Takacs, G. C. Bazan, and A. J. Heeger, High mobility field effect transistors based on macroscopically oriented regioregular copolymers, Nano Lett. 12(12), 6353 (2012)
CrossRef ADS Google scholar
[36]
C. Luo, A. K. Kyaw, L. A. Perez, S. Patel, M. Wang, B. Grimm, G. C. Bazan, E. J. Kramer, and A. J. Heeger, General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility, Nano Lett. 14(5), 2764 (2014)
CrossRef ADS Google scholar
[37]
H. R. Tseng, H. Phan, C. Luo, M. Wang, L. A. Perez, S. N. Patel, L. Ying, E. J. Kramer, T. Q. Nguyen, G. C. Bazan, and A. J. Heeger, High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers, Adv. Mater. 26(19), 2993 (2014)
CrossRef ADS Google scholar
[38]
Y. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. Mannsfeld, J. Chen, D. Nordlund, M. F. Toney, J. Huang, and Z. Bao, Ultra-high mobility transparent organic thin film transistors grown by an off-centre spincoating method, Nat. Commun. 5(1), 3005 (2014)
CrossRef ADS Google scholar
[39]
J. H. Dou, Y. Q. Zheng, Z. F. Yao, T. Lei, X. Shen, X. Y. Luo, Z. A. Yu, S. D. Zhang, G. Han, Z. Wang, Y. Yi, J. Y. Wang, and J. Pei, A cofacially stacked electron-deficient small molecule with a high electron mobility of over 10 cm2·V−1·s−1 in air, Adv. Mater. 27(48), 8051 (2015)
CrossRef ADS Google scholar
[40]
J. Liu, H. Zhang, H. Dong, L. Meng, L. Jiang, L. Jiang, Y. Wang, J. Yu, Y. Sun, W. Hu, and A. J. Heeger, High mobility emissive organic semiconductor, Nat. Commun. 6(1), 10032 (2015)
CrossRef ADS Google scholar
[41]
Y. Q. Zheng, T. Lei, J. H. Dou, X. Xia, J. Y. Wang, C. J. Liu, and J. Pei, Strong electron-deficient polymers lead to high electron mobility in air and their morphologydependent transport behaviors, Adv. Mater. 28(33), 7213 (2016)
CrossRef ADS Google scholar
[42]
G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, and Z. Bao, Tuning charge transport in solution-sheared organic semiconductors using lattice strain, Nature 480(7378), 504 (2011)
CrossRef ADS Google scholar
[43]
H. Chen, Y. Guo, G. Yu, Y. Zhao, J. Zhang, D. Gao, H. Liu, and Y. Liu, Highly pi-extended copolymers with diketopyrrolopyrrole moieties for high-performance fieldeffect transistors, Adv. Mater. 24(34), 4618 (2012)
CrossRef ADS Google scholar
[44]
J. Li, Y. Zhao, H. S. Tan, Y. Guo, C. A. Di, G. Yu, Y. Liu, M. Lin, S. H. Lim, Y. Zhou, H. Su, and B. S. Ong, A stable solution-processed polymer semiconductor with record high-mobility for printed transistors, Sci. Rep. 2(1), 754 (2012)
CrossRef ADS Google scholar
[45]
I. Kang, T. K. An, J. A. Hong, H. J. Yun, R. Kim, D. S. Chung, C. E. Park, Y. H. Kim, and S. K. Kwon, Effect of selenophene in a DPP copolymer incorporating a vinyl group for high-performance organic field-effect transistors, Adv. Mater. 25(4), 524 (2013)
CrossRef ADS Google scholar
[46]
H. Sirringhaus, 25th anniversary article: Organic fieldeffect transistors: The path beyond amorphous silicon, Adv. Mater. 26(9), 1319 (2014)
CrossRef ADS Google scholar
[47]
S. Fratini, H. Xie, I. N. Hulea, S. Ciuchi, and A. F. Morpurgo, Current saturation and Coulomb interactions in organic single-crystal transistors, New J. Phys. 10(3), 033031 (2008)
CrossRef ADS Google scholar
[48]
H. Phan, M. Wang, G. C. Bazan, and T. Q. Nguyen, Electrical instability induced by electron trapping in lowbandgap donor-acceptor polymer field-effect transistors, Adv. Mater. 27(43), 7004 (2015)
CrossRef ADS Google scholar
[49]
Y. Xu, T. Minari, K. Tsukagoshi, J. A. Chroboczek, and G. Ghibaudo, Direct evaluation of low-field mobility and access resistance in pentacene field-effect transistors, J. Appl. Phys. 107(11), 114507 (2010)
CrossRef ADS Google scholar
[50]
F. Chiarella, M. Barra, A. Carella, L. Parlato, E. Sarnelli, and A. Cassinese, Contact-resistance effects in PDI8-CN2 n-type thin-film transistors investigated by Kelvin-probe potentiometry, Org. Electron. 28, 299 (2016)
CrossRef ADS Google scholar
[51]
A. Ablat, A. Kyndiah, G. Houin, T. Y. Alic, L. Hirsch, and M. Abbas, Role of oxide/metal bilayer electrodes in solution processed organic field effect transistors, Sci. Rep. 9(1), 6685 (2019)
CrossRef ADS Google scholar
[52]
A. Yamamura, T. Sakon, K. Takahira, T. Wakimoto, M. Sasaki, T. Okamoto, S. Watanabe, and J. Takeya, Highspeed organic single-crystal transistor responding to very high frequency band, Adv. Funct. Mater. 30(11), 1909501 (2020)
CrossRef ADS Google scholar
[53]
N. Tessler and Y. Roichman, Two-dimensional simulation of polymer field-effect transistor, Appl. Phys. Lett. 79(18), 2987 (2001)
CrossRef ADS Google scholar
[54]
T. J. Richards and H. Sirringhaus, Analysis of the contact resistance in staggered, top-gate organic field-effect transistors, J. Appl. Phys. 102(9), 094510 (2007)
CrossRef ADS Google scholar
[55]
D. Braga and G. Horowitz, High-performance organic field-effect transistors, Adv. Mater. 21(14–15), 1473 (2009)
CrossRef ADS Google scholar
[56]
S. Mansouri, M. Mahdouani, A. Oudir, S. Zorai, S. Ben Dkhil, G. Horowitz, and R. Bourguiga, Analytic model for organic thin film transistors (OTFTs): Effect of contact resistances application to the octithiophene, Eur. Phys. J. Appl. Phys. 48(3), 30401 (2009)
CrossRef ADS Google scholar
[57]
C. Liu, G. Li, R. Di Pietro, J. Huang, Y. Y. Noh, X. Liu, and T. Minari, Device physics of contact issues for the overestimation and underestimation of carrier mobility in field-effect transistors, Phys. Rev. Appl. 8(3), 034020 (2017)
CrossRef ADS Google scholar
[58]
Y. Hu, G. Li, W. Peng, and Z. Chen, Comparing the gate dependence of contact resistance and channel resistance in organic field-effect transistors for understanding the mobility overestimation issue, IEEE Electron Device Lett. 39(3), 421 (2018)
CrossRef ADS Google scholar
[59]
Z. A. Lamport, H. F. Haneef, S. Anand, M. Waldrip, and O. D. Jurchescu, Tutorial: Organic field-effect transistors: Materials, structure and operation, J. Appl. Phys. 124(7), 071101 (2018)
CrossRef ADS Google scholar
[60]
B. H. Hamadani and D. Natelson, Temperaturedependent contact resistances in high-quality polymer field-effect transistors, Appl. Phys. Lett. 84(3), 443 (2004)
CrossRef ADS Google scholar
[61]
M. A. Reyes-Martinez, A. J. Crosby, and A. L. Briseno, Rubrene crystal field-effect mobility modulation via conducting channel wrinkling, Nat. Commun. 6(1), 6948 (2015)
CrossRef ADS Google scholar
[62]
T. Yang, Q. Wu, F. Dai, K. Huang, H. Xu, C. Liu, C. Chen, S. Hu, X. Liang, X. Liu, Y. Y. Noh, and C. Liu, Understanding, optimizing, and utilizing nonideal transistors based on organic or organic hybrid semiconductors, Adv. Funct. Mater. 30(20), 1903889 (2020)
CrossRef ADS Google scholar
[63]
C. Liu, C. Chen, X. Li, S. Hu, C. Liu, K. Huang, F. Dai, B. Zhang, X. Liu, T. Minari, Y. Y. Noh, and J. Chen, A general approach to probe dynamic operation and carrier mobility in field‐effect transistors with nonuniform accumulation, Adv. Funct. Mater. 29(29), 1901700 (2019)
CrossRef ADS Google scholar
[64]
D. F. Figer, An upper limit to the masses of stars, Nature 434(7030), 192 (2005)
CrossRef ADS Google scholar
[65]
C. M. Aguirre, P. L. Levesque, M. Paillet, F. Lapointe, B. C. St-Antoine, P. Desjardins, and R. Martel, The role of the oxygen/water redox couple in suppressing electron conduction in field-effect transistors, Adv. Mater. 21(30), 3087 (2009)
CrossRef ADS Google scholar
[66]
P. A. Bobbert, A. Sharma, S. G. Mathijssen, M. Kemerink, and D. M. de Leeuw, Operational stability of organic field-effect transistors, Adv. Mater. 24(9), 1146 (2012)
CrossRef ADS Google scholar
[67]
F. V. Di Girolamo, F. Ciccullo, M. Barra, A. Carella, and A. Cassinese, Investigation on bias stress effects in n-type PDI8-CN2 thin-film transistors, Org. Electron. 13(11), 2281 (2012)
CrossRef ADS Google scholar
[68]
H. N. Tsao, D. M. Cho, I. Park, M. R. Hansen, A. Mavrinskiy, D. Y. Yoon, R. Graf, W. Pisula, H. W. Spiess, and K. Mullen, Ultrahigh mobility in polymer field-effect transistors by design, J. Am. Chem. Soc. 133(8), 2605 (2011)
CrossRef ADS Google scholar
[69]
Z. Chen, M. J. Lee, R. Shahid Ashraf, Y. Gu, S. Albert-Seifried, M. Meedom Nielsen, B. Schroeder, T. D. Anthopoulos, M. Heeney, I. McCulloch, and H. Sirringhaus, High-performance ambipolar diketopyrrolopyrrolethieno[ 3, 2-b]thiophene copolymer field-effect transistors with balanced hole and electron mobilities, Adv. Mater. 24(5), 647 (2012)
CrossRef ADS Google scholar
[70]
F. Fujimori, K. Shigeto, T. Hamano, T. Minari, T. Miyadera, K. Tsukagoshi, and Y. Aoyagi, Current transport in short channel top-contact pentacene field-effect transistors investigated with the selective molecular doping technique, Appl. Phys. Lett. 90(19), 193507 (2007)
CrossRef ADS Google scholar
[71]
T. Minari, T. Miyadera, K. Tsukagoshi, Y. Aoyagi, and H. Ito, Charge injection process in organic field-effect transistors, Appl. Phys. Lett. 91(5), 053508 (2007)
CrossRef ADS Google scholar
[72]
H. Kleemann, C. Schuenemann, A. A. Zakhidov, M. Riede, B. Lüssem, and K. Leo, Structural phase transition in pentacene caused by molecular doping and its effect on charge carrier mobility, Org. Electron. 13(1), 58 (2012)
CrossRef ADS Google scholar
[73]
T. Minari, P. Darmawan, C. Liu, Y. Li, Y. Xu, and K. Tsukagoshi, Highly enhanced charge injection in thienoacene-based organic field-effect transistors with chemically doped contact, Appl. Phys. Lett. 100(9), 093303 (2012)
CrossRef ADS Google scholar
[74]
G. Lu, J. Blakesley, S. Himmelberger, P. Pingel, J. Frisch, I. Lieberwirth, I. Salzmann, M. Oehzelt, R. Di Pietro, A. Salleo, N. Koch, and D. Neher, Moderate doping leads to high performance of semiconductor/insulator polymer blend transistors, Nat. Commun. 4(1), 1588 (2013)
CrossRef ADS Google scholar
[75]
J. E. Cochran, M. J. N. Junk, A. M. Glaudell, P. L. Miller, J. S. Cowart, M. F. Toney, C. J. Hawker, B. F. Chmelka, and M. L. Chabinyc, Molecular interactions and ordering in electrically doped polymers: Blends of PBTTT and F4TCNQ, Macromolecules 47(19), 6836 (2014)
CrossRef ADS Google scholar
[76]
M. J. Ford, M. Wang, H. Phan, T. Q. Nguyen, and G. C. Bazan, Fullerene additives convert ambipolar transport to p-type transport while improving the operational stability of organic thin film transistors, Adv. Funct. Mater. 26(25), 4472 (2016)
CrossRef ADS Google scholar
[77]
M. Nikolka, I. Nasrallah, B. Rose, M. K. Ravva, K. Broch, A. Sadhanala, D. Harkin, J. Charmet, M. Hurhangee, A. Brown, S. Illig, P. Too, J. Jongman, I. McCulloch, J. L. Bredas, and H. Sirringhaus, High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives, Nat. Mater. 16(3), 356 (2017)
CrossRef ADS Google scholar
[78]
J. Panidi, A. F. Paterson, D. Khim, Z. Fei, Y. Han, L. Tsetseris, G. Vourlias, P. A. Patsalas, M. Heeney, and T. D. Anthopoulos, Remarkable enhancement of the hole mobility in several organic small-molecules, polymers, and small-molecule: Polymer blend transistors by simple admixing of the lewis acid p-dopant B(C6F5)3, Adv. Sci. 5(1), 1700290 (2018)
CrossRef ADS Google scholar
[79]
K. Pei, A. H. Y. Lau, and P. K. L. Chan, Understanding molecular surface doping of large bandgap organic semiconductors and overcoming the contact/access resistance in organic field-effect transistors, Phys. Chem. Chem. Phys. 22(13), 7100 (2020)
CrossRef ADS Google scholar
[80]
C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J. L. Brédas, P. C. Ewbank, and K. R. Mann, Introduction to organic thin film transistors and design of n-channel organic semiconductors, Chem. Mater. 16(23), 4436 (2004)
CrossRef ADS Google scholar
[81]
I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. Macdonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. L. Chabinyc, R. J. Kline, M. D. McGehee, and M. F. Toney, Liquid-crystalline semiconducting polymers with high charge-carrier mobility, Nat. Mater. 5(4), 328 (2006)
CrossRef ADS Google scholar
[82]
H. Phan, M. J. Ford, A. T. Lill, M. Wang, G. C. Bazan, and T. Q. Nguyen, Electrical double-slope nonideality in organic field-effect transistors, Adv. Funct. Mater. 28(17), 1707221 (2018)
CrossRef ADS Google scholar
[83]
M. Wang, M. J. Ford, A. T. Lill, H. Phan, T. Q. Nguyen, and G. C. Bazan, Hole mobility and electron injection properties of D-A conjugated copolymers with fluorinated phenylene acceptor units, Adv. Mater. 29(7), 1603830 (2017)
CrossRef ADS Google scholar
[84]
C. Goldmann, C. Krellner, K. P. Pernstich, S. Haas, D. J. Gundlach, and B. Batlogg, Determination of the interface trap density of rubrene single-crystal field-effect transistors and comparison to the bulk trap density, J. Appl. Phys. 99(3), 034507 (2006)
CrossRef ADS Google scholar
[85]
J. Kan, Y. Chen, D. Qi, Y. Liu, and J. Jiang, Highperformance air-stable ambipolar organic field-effect transistor based on tris(phthalocyaninato) europium(III), Adv. Mater. 24(13), 1755 (2012)
CrossRef ADS Google scholar
[86]
H. Wang, H. Liu, Q. Zhao, C. Cheng, W. Hu, and Y. Liu, Three-component integrated ultrathin organic photosensors for plastic optoelectronics, Adv. Mater. 28(4), 624 (2016)
CrossRef ADS Google scholar
[87]
J. Huang, Z. Mao, Z. Chen, D. Gao, C. Wei, W. Zhang, and G. Yu, Diazaisoindigo-based polymers with highperformance charge-transport properties: From computational screening to experimental characterization, Chem. Mater. 28(7), 2209 (2016)
CrossRef ADS Google scholar
[88]
M. Nikolka, G. Schweicher, J. Armitage, I. Nasrallah, C. Jellett, Z. Guo, M. Hurhangee, A. Sadhanala, I. McCulloch, C. B. Nielsen, and H. Sirringhaus, Performance improvements in conjugated polymer devices by removal of water-induced traps, Adv. Mater. 30(36), 1801874 (2018)
CrossRef ADS Google scholar
[89]
D. He, J. Qiao, L. Zhang, J. Wang, T. Lan, J. Qian, Y. Li, Y. Shi, Y. Chai, W. Lan, L. K. Ono, Y. Qi, J. B. Xu, W. Ji, and X. Wang, Ultrahigh mobility and efficient charge injection in monolayer organic thin-film transistors on boron nitride, Sci. Adv. 3(9), e1701186 (2017)
CrossRef ADS Google scholar
[90]
X. Cheng, Y. Y. Noh, J. Wang, M. Tello, J. Frisch, R. P. Blum, A. Vollmer, J. P. Rabe, N. Koch, and H. Sirringhaus, Controlling electron and hole charge injection in ambipolar organic field-effect transistors by selfassembled monolayers, Adv. Funct. Mater. 19(15), 2407 (2009)
CrossRef ADS Google scholar
[91]
K. A. Singh, T. L. Nelson, J. A. Belot, T. M. Young, N. R. Dhumal, T. Kowalewski, R. D. McCullough, P. Nachimuthu, S. Thevuthasan, and L. M. Porter, Effect of self-assembled monolayers on charge injection and transport in poly(3-hexylthiophene)-based field-effect transistors at different channel length scales, ACS Appl. Mater. Interfaces 3(8), 2973 (2011)
CrossRef ADS Google scholar
[92]
J. Youn, G. R. Dholakia, H. Huang, J. W. Hennek, A. Facchetti, and T. J. Marks, Influence of Thiol selfassembled monolayer processing on bottom-contact thinfilm transistors based on n-type organic semiconductors, Adv. Funct. Mater. 22(9), 1856 (2012)
CrossRef ADS Google scholar
[93]
S. Chung, M. Jang, S. B. Ji, H. Im, N. Seong, J. Ha, S. K. Kwon, Y. H. Kim, H. Yang, and Y. Hong, Flexible high-performance all-inkjet-printed inverters: Organocompatible and stable interface engineering, Adv. Mater. 25(34), 4773 (2013)
CrossRef ADS Google scholar
[94]
C. G. Tang, M. C. Ang, K. K. Choo, V. Keerthi, J. K. Tan, M. N. Syafiqah, T. Kugler, J. H. Burroughes, R. Q. Png, L. L. Chua, and P. K. Ho, Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts, Nature 539(7630), 536 (2016)
CrossRef ADS Google scholar
[95]
J. Liu, L. Jiang, J. Shi, C. Li, Y. Shi, J. Tan, H. Li, H. Jiang, Y. Hu, X. Liu, J. Yu, Z. Wei, L. Jiang, and W. Hu, Relieving the photosensitivity of organic field-effect transistors, Adv. Mater. 32(4), 1906122 (2020)
CrossRef ADS Google scholar
[96]
J. Liu, L. Jiang, W. Hu, Y. Liu, and D. Zhu, Monolayer organic field-effect transistors, Sci. China Chem. 62(3), 313 (2019)
CrossRef ADS Google scholar
[97]
L. Jiang, J. Liu, Y. Shi, D. Zhu, H. Zhang, Y. Hu, J. Yu, W. Hu, and L. Jiang, Realizing low-voltage operating crystalline monolayer organic field-effect transistors with a low contact resistance, J. Mater. Chem. C 7(12), 3436 (2019)
CrossRef ADS Google scholar
[98]
L. Jiang, J. Liu, X. Lu, L. Fu, Y. Shi, J. Zhang, X. Zhang, H. Geng, Y. Hu, H. Dong, L. Jiang, J. Yu, and W. Hu, Controllable growth of C8-BTBT single crystalline microribbon arrays by a limited solvent vapor-assisted crystallization (LSVC) method, J. Mater. Chem. C 6(10), 2419 (2018)
CrossRef ADS Google scholar
[99]
T. Uemura, C. Rolin, T. H. Ke, P. Fesenko, J. Genoe, P. Heremans, and J. Takeya, On the extraction of charge carrier mobility in high-mobility organic transistors, Adv. Mater. 28(1), 151 (2016)
CrossRef ADS Google scholar
[100]
Z. A. Lamport, K. J. Barth, H. Lee, E. Gann, S. Engmann, H. Chen, M. Guthold, I. McCulloch, J. E. Anthony, L. J. Richter, D. M. DeLongchamp, and O. D. Jurchescu, A simple and robust approach to reducing contact resistance in organic transistors, Nat. Commun. 9(1), 5130 (2018)
CrossRef ADS Google scholar
[101]
C. Jiang, H. W. Choi, X. Cheng, H. Ma, D. Hasko, and A. Nathan, Printed subthreshold organic transistors operating at high gain and ultralow power, Science 363(6428), 719 (2019)
CrossRef ADS Google scholar
[102]
R. A. Sporea, M. J. Trainor, N. D. Young, J. M. Shannon, and S. R. Silva, Source-gated transistors for order-ofmagnitude performance improvements in thin-film digital circuits, Sci. Rep. 4(1), 4295 (2015)
CrossRef ADS Google scholar
[103]
J. Wu, C. Fan, G. Xue, T. Ye, S. Liu, R. Lin, H. Chen, H. L. Xin, R. G. Xiong, and H. Li, Interfacing solution-grown C60 and (3-Pyrrolinium)(CdCl3) single crystals for highmobility transistor-based memory devices, Adv. Mater. 27(30), 4476 (2015)
CrossRef ADS Google scholar
[104]
W. Li, F. Guo, H. Ling, P. Zhang, M. Yi, L. Wang, D. Wu, L. Xie, and W. Huang, High-performance nonvolatile organic field-effect transistor memory based on organic semiconductor heterostructures of pentacene/ P13/pentacene as both charge transport and trapping layers, Adv. Sci. 4(8), 1700007 (2017)
CrossRef ADS Google scholar
[105]
J. Liu, K. Zhou, J. Liu, J. Zhu, Y. Zhen, H. Dong, and W. Hu, Organic-single-crystal vertical field-effect transistors and phototransistors, Adv. Mater. 30(44), 1803655 (2018)
CrossRef ADS Google scholar
[106]
K. Pei, X. Ren, Z. Zhou, Z. Zhang, X. Ji, and P. K. L. Chan, A high-performance optical memory array based on inhomogeneity of organic semiconductors, Adv. Mater. 30(13), 1706647 (2018)
CrossRef ADS Google scholar
[107]
X. Wu, Y. Chu, R. Liu, H. E. Katz, and J. Huang, Pursuing polymer dielectric interfacial effect in organic transistors for photosensing performance optimization, Adv. Sci. 4(12), 1700442 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(4566 KB)

Accesses

Citations

Detail

Sections
Recommended

/