Giant enhancement of photoluminescence emission in monolayer WS2 by femtosecond laser irradiation

Cheng-Bing Qin , Xi-Long Liang , Shuang-Ping Han , Guo-Feng Zhang , Rui-Yun Chen , Jian-Yong Hu , Lian-Tuan Xiao , Suo-Tang Jia

Front. Phys. ›› 2021, Vol. 16 ›› Issue (1) : 12501

PDF (1744KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (1) : 12501 DOI: 10.1007/s11467-020-0995-z
RESEARCH ARTICLE

Giant enhancement of photoluminescence emission in monolayer WS2 by femtosecond laser irradiation

Author information +
History +
PDF (1744KB)

Abstract

Monolayer transition metal dichalcogenides have emerged as promising materials for optoelectronic and nanophotonic devices. However, the low photoluminescence (PL) quantum yield (QY) hinders their various potential applications. Here we engineer and enhance the PL intensity of monolayer WS2 by femtosecond laser irradiation. More than two orders of magnitude enhancement of PL intensity as compared to the as-prepared sample is determined. Furthermore, the engineering time is shortened by three orders of magnitude as compared to the improvement of PL intensity by continuous-wave laser irradiation. Based on the evolution of PL spectra, we attribute the giant PL enhancement to the conversion from trion emission to exciton, as well as the improvement of the QY when exciton and trion are localized to the new-formed defects. We have created microstructures on the monolayer WS2 based on the enhancement of PL intensity, where the engineered structures can be stably stored for more than three years. This flexible approach with the feature of excellent long-term storage stability is promising for applications in information storage, display technology, and optoelectronic devices.

Keywords

monolayers / WS 2 / giant enhancement / photoluminescence / femtosecond laser irradiation / micropatterning / exciton / trion / quantum yield

Cite this article

Download citation ▾
Cheng-Bing Qin, Xi-Long Liang, Shuang-Ping Han, Guo-Feng Zhang, Rui-Yun Chen, Jian-Yong Hu, Lian-Tuan Xiao, Suo-Tang Jia. Giant enhancement of photoluminescence emission in monolayer WS2 by femtosecond laser irradiation. Front. Phys., 2021, 16(1): 12501 DOI:10.1007/s11467-020-0995-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Zeng and X. Cui, An optical spectroscopic study on two-dimensional group-VI transition metal dichalco- genides, Chem. Soc. Rev. 44(9), 2629 (2015)

[2]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)

[3]

X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides, Nat. Phys. 10(5), 343 (2014)

[4]

C. Qin, Y. Gao, Z. Qiao, L. Xiao, and S. Jia, Atomiclayered MoS2 as a tunable optical platform, Adv. Opt. Mater. 4(10), 1429 (2016)

[5]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)

[6]

D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Optical spectrum of MoS2: Many-body effects and diversity of exciton states, Phys. Rev. Lett. 111(21), 216805 (2013)

[7]

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Tightly bound trions in monolayer MoS2, Nat. Mater. 12(3), 207 (2013)

[8]

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Valley polarization in MoS2 monolayers by optical pumping, Nat. Nanotechnol. 7(8), 490 (2012)

[9]

D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Phys. Rev. Lett. 108(19), 196802 (2012)

[10]

H. Kim, D. H. Lien, M. Amani, J. W. Ager, and A. Javey, Highly stable near-unity photoluminescence yield in monolayer MoS2 by fluoropolymer encapsulation and superacid treatment, ACS Nano 11(5), 5179 (2017)

[11]

G. Cheng, B. Li, C. Zhao, Z. Jin, H. Li, K. M. Lau, and J. Wang, Exciton aggregation induced photoluminescence enhancement of monolayer WS2, Appl. Phys. Lett. 114(23), 232101 (2019)

[12]

H. Yao, L. Liu, Z. Wang, H. Li, L. Chen, M. E. Pam, W. Chen, H. Y. Yang, W. Zhang, and Y. Shi, Significant photoluminescence enhancement in WS2 monolayers through Na2S treatment, Nanoscale 10(13), 6105 (2018)

[13]

A. O. A. Tanoh, J. Alexander-Webber, J. Xiao, G. Delport, C. A. Williams, H. Bretscher, N. Gauriot, J. Allardice, R. Pandya, Y. Fan, Z. Li, S. Vignolini, S. D. Stranks, S. Hofmann, and A. Rao, Enhancing photoluminescence and mobilities in WS2 monolayers with oleic acid ligands, Nano Lett. 19(9), 6299 (2019)

[14]

C. Zou, M. Chen, X. Luo, H. Zhou, T. Yu, and C. Yuan, Enhanced photoluminescence of WS2/WO3 heterostructural QDs, J. Alloys Compd. 834, 155066 (2020)

[15]

A. Yang, J. C. Blancon, W. Jiang, H. Zhang, J. Wong, E. Yan, Y. R. Lin, J. Crochet, M. G. Kanatzidis, D. Jariwala, T. Low, A. D. Mohite, and H. A. Atwater, Giant enhancement of photoluminescence emission in WS2- two-dimensional perovskite heterostructures, Nano Lett. 19(8), 4852 (2019)

[16]

Y. Liu, H. Li, X. Zheng, X. Cheng, and T. Jiang, Giant photoluminescence enhancement in monolayer WS2 by energy transfer from CsPbBr3 quantum dots, Opt. Mater. Express 7(4), 1327 (2017)

[17]

F. Cheng, A. D. Johnson, Y. Tsai, P. H. Su, S. Hu, J. G. Ekerdt, and C. K. Shih, Enhanced photoluminescence of monolayer WS2 on Ag films and nanowire–WS2–film composites, ACS Photon. 4(6), 1421 (2017)

[18]

J. Wang, H. Li, Y. Ma, M. Zhao, W. Liu, B. Wang, S. Wu, X. Liu, L. Shi, T. Jiang, and J. Zi, Routing valley exciton emission of a WS2 monolayer via delocalized Bloch modes of in-plane inversion-symmetry-broken photonic crystal slabs, Light Sci. Appl. 9(1), 148 (2020)

[19]

H. Li, J. Wang, Y. Ma, J. Chu, X. Cheng, L. Shi, and T. Jiang, Enhanced directional emission of monolayer tungsten disulfide (WS2) with robust linear polarization via one-dimensional photonic crystal (PhC) slab, Nanophotonics 9(14), 4337 (2020)

[20]

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, Near-unity photoluminescence quantum yield in MoS2, Science 350(6264), 1065 (2015)

[21]

C. Yang, Y. Gao, C. Qin, X. Liang, S. Han, G. Zhang, R. Chen, J. Hu, L. Xiao, and S. Jia, All-optical reversible manipulation of exciton and trion emissions in monolayer WS2, Nanomaterials 10(1), 23 (2019)

[22]

D. Zhou, H. Shu, C. Hu, L. Jiang, P. Liang, and X. Chen, Unveiling the growth mechanism of MoS2 with chemical vapor deposition: From 2D planar nucleation to selfseeding nucleation, Cryst. Growth Des. 18(2), 1012 (2018)

[23]

W. He, C. Qin, Z. Qiao, G. Zhang, L. Xiao, and S. Jia, Two fluorescence lifetime components reveal the photoreduction dynamics of monolayer graphene oxide, Carbon 109, 264 (2016)

[24]

Z. Qiao, C. Qin, W. He, Y. Gong, G. Zhang, R. Chen, Y. Gao, L. Xiao, and S. Jia, Versatile and scalable micropatterns on graphene oxide films based on laser induced fluorescence quenching effect, Opt. Express 25(25), 31025 (2017)

[25]

H. Ardekani, R. Younts, Y. Yu, L. Cao, and K. Gundogdu, Reversible photoluminescence tuning by defect passivation via laser irradiation on aged monolayer MoS2, ACS Appl. Mater. Interfaces 11(41), 38240 (2019)

[26]

H. M. Oh, G. H. Han, H. Kim, J. J. Bae, M. S. Jeong, and Y. H. Lee, Photochemical reaction in monolayer MoS2 via correlated photoluminescence, Raman spectroscopy, and atomic force microscopy, ACS Nano 10(5), 5230 (2016)

[27]

P. K. Chow, R. B. Jacobs-Gedrim, J. Gao, T. M. Lu, B. Yu, H. Terrones, and N. Koratkar, Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides, ACS Nano 9(2), 1520 (2015)

[28]

C. Qin, Y. Gao, L. Zhang, X. Liang, W. He, G. Zhang, R. Chen, J. Hu, L. Xiao, and S. Jia, Flexible engineering of light emission in monolayer MoS2 via direct laser writing for multimode optical recording, AIP Adv. 10(4), 045230 (2020)

[29]

Y. Lee, S. J. Yun, Y. Kim, M. S. Kim, G. H. Han, A. K. Sood, and J. Kim, Near-field spectral mapping of individual exciton complexes of monolayer WS2 correlated with local defects and charge population, Nanoscale 9(6), 2272 (2017)

[30]

V. Carozo, Y. X. Wang, K. Fujisawa, B. R. Carvalho, A. McCreary, S. M. Feng, Z. Lin, C. J. Zhou, N. Perea-Lopez, A. L. Elias, B. Kabius, V. H. Crespi, and M. Terrones, Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide, Sci. Adv. 3(4), e1602813 (2017)

[31]

Y. Lee, G. Ghimire, S. Roy, Y. Kim, C. Seo, A. K. Sood, J. I. Jang, and J. Kim, Impeding exciton–exciton annihilation in monolayer WS2 by laser irradiation, ACS Photon. 5(7), 2904 (2018)

[32]

J. Hong, M. Wang, J. Jiang, P. Zheng, H. Zheng, L. Zheng, D. Huo, Z. Wu, Z. Ni, and Y. Zhang, Optoelectronic performance of multilayer WSe2 transistors enhanced by defect engineering, Appl. Phys. Express 13(6), 061004 (2020)

[33]

Y. Lee, S. Park, H. Kim, G. H. Han, Y. H. Lee, and J. Kim, Characterization of the structural defects in CVDgrown monolayered MoS2 using near-field photoluminescence imaging, Nanoscale 7(28), 11909 (2015)

[34]

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu, Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged, and free excitons, Sci. Rep. 3(1), 2657 (2013)

[35]

H. J. Kim, Y. J. Yun, S. N. Yi, S. K. Chang, and D. H. Ha, Changes in the photoluminescence of monolayer and bilayer molybdenum disulfide during laser irradiation, ACS Omega 5(14), 7903 (2020)

[36]

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, and Z. Ni, Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding, ACS Nano 8(6), 5738 (2014)

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1744KB)

Supplementary files

Supplementary Material

1271

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/