Nearby source interpretation of differences among light and medium composition spectra in cosmic rays
Qiang Yuan, Bing-Qiang Qiao, Yi-Qing Guo, Yi-Zhong Fan, Xiao-Jun Bi
Nearby source interpretation of differences among light and medium composition spectra in cosmic rays
Recently the AMS-02 reported the precise measurements of the energy spectra of medium-mass compositions (Neon, Magnesium, Silicon) of primary cosmic rays, which reveal different properties from those of light compositions (Helium, Carbon, Oxygen). Here we propose a nearby source scenario, together with the background source contribution, to explain the newly measured spectra of cosmic ray Ne, Mg, Si, and particularly their differences from that of He, C, O. Their differences at high energies can be naturally accounted for by the element abundance of the nearby source. Specifically, the abundance ratio of the nearby source to the background of the Ne, Mg, Si elements is lower by a factor of ∼ 1.7 than that of the He, C, O elements. Such a difference could be due to the abundance difference of the stellar evolution of the progenitor star or the acceleration process/environment, of the nearby source. This scenario can simultaneously explain the high-energy spectral softening features of cosmic ray spectra revealed recently by CREAM/NUCLEON/DAMPE, as well as the energy-dependent behaviors of the large-scale anisotropies. It is predicted that the dipole anisotropy amplitudes below PeV energies of the Ne, Mg, Si group are smaller than that of the He, C, O group, which can be tested with future measurements.
cosmic rays / spectra and anisotropies
[1] |
A. D. Panov, J. H. Jr Adams, H. S. Ahn, G. L. Bashinzhagyan, J. W. Watts,
CrossRef
ADS
Google scholar
|
[2] |
H. S. Ahn, P. Allison, M. G. Bagliesi, J. J. Beatty, G. Bigongiari,
CrossRef
ADS
Google scholar
|
[3] |
O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Boezio,
|
[4] |
M. Aguilar, D. Aisa, B. Alpat, A. Alvino, G. Ambrosi,
|
[5] |
M. Aguilar, D. Aisa, B. Alpat, A. Alvino, G. Ambrosi,
|
[6] |
M. Aguilar, L. Ali Cavasonza, B. Alpat, G. Ambrosi, L. Arruda,
|
[7] |
O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, M. G. Bagliesi,
|
[8] |
Q. An, A. Kumamoto, R. Xiang, T. Inoue, K. Otsuka, S. Chiashi, C. Bichara, A. Loiseau, Y. Li, Y. Ikuhara, and S. Maruyama, Measurement of the cosmic-ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite, Sci. Adv. 5(5), eaax3793 (2019)
|
[9] |
Y. S. Yoon, T. Anderson, A. Barrau, N. B. Conklin, S. Coutu,
CrossRef
ADS
Google scholar
|
[10] |
E. Atkin, V. Bulatov, V. Dorokhov, N. Gorbunov, S. Filippov,
CrossRef
ADS
Google scholar
|
[11] |
Y. Ohira and K. Ioka, Cosmic-ray helium hardening, Astrophys. J. 729(1), L13 (2011)
CrossRef
ADS
Google scholar
|
[12] |
Q. Yuan, B. Zhang, and X. J. Bi, Cosmic ray spectral hardening due to dispersion in the source injection spectra, Phys. Rev. D 84(4), 043002 (2011)
CrossRef
ADS
Google scholar
|
[13] |
A. E. Vladimirov, G. Jóhannesson, I. V. Moskalenko, and T. A. Porter, Testing the origin of high-energy cosmic rays, Astrophys. J. 752(1), 68 (2012)
CrossRef
ADS
Google scholar
|
[14] |
N. Tomassetti, Origin of the cosmic-ray spectral hardening, Astrophys. J. 752(1), L13 (2012)
CrossRef
ADS
Google scholar
|
[15] |
P. Blasi, E. Amato, and P. D. Serpico, Spectral breaks as a signature of cosmic ray induced turbulence in the galaxy, Phys. Rev. Lett. 109(6), 061101 (2012)
CrossRef
ADS
Google scholar
|
[16] |
Y. Q. Guo, Z. Tian, and C. Jin, Spatial-dependent propagation of cosmic rays results in spectrum of proton, ratios of p-/p, B/C and anisotropy of nuclei, Astrophys. J. 819(1), 54 (2016)
CrossRef
ADS
Google scholar
|
[17] |
Y. Q. Guo and Q. Yuan, Understanding the spectral hardenings and radial distribution of Galactic cosmic rays and Fermi diffuse rays with spatially-dependent propagation, Phys. Rev. D 97(6), 063008 (2018)
CrossRef
ADS
Google scholar
|
[18] |
D. Karmanov, I. Kovalev, I. Kudryashov, A. Kurganov, V. Latonov, A. Panov, D. Podorozhnyy, and A. Turundaevskiy, A possibility of interpretation of the cosmic ray kneenear 10 TV as a contribution of a single close source, arXiv: 1907.05987 (2019)
|
[19] |
C. Yue, P. X. Ma, Q. Yuan, Y. Z. Fan, Z. F. Chen,
CrossRef
ADS
Google scholar
|
[20] |
K. Fang, X.J. Bi, and P. F. Yin, DAMPE proton spectrum indicates a slow-diffusion zone in the nearby ISM, arXiv: 2003.13635 (2020)
|
[21] |
M. Aguilar, L. Ali Cavasonza, G. Ambrosi, L. Arruda, N. Attig,
|
[22] |
L. G. Sveshnikova, O. N. Strelnikova, and V. S. Ptuskin, Spectrum and anisotropy of cosmic rays at TeV–PeVenergies and contribution of nearby sources, Astropart. Phys. 50–52, 33 (2013)
CrossRef
ADS
Google scholar
|
[23] |
V. Savchenko, M. Kachelrieß, and D. V. Semikoz, Imprint of a 2 million year old source on the cosmic-ray anisotropy, Astrophys. J. 809(2), L23 (2015)
CrossRef
ADS
Google scholar
|
[24] |
W. Liu, Y.-Q. Guo, and Q. Yuan, Indication of nearby source signatures of cosmic rays from energy spectra and anisotropies, J. Cosmol. Astropart. Phys. 10, 010 (2019)
CrossRef
ADS
Google scholar
|
[25] |
B.-Q. Qiao, W. Liu, Y.-Q. Guo, and Q. Yuan, Anisotropies of different mass compositions of cosmic rays, J. Cosmol. Astropart. Phys. 2019, 007 (2019)
CrossRef
ADS
Google scholar
|
[26] |
M. Aglietta, B. Alessandro, P. Antonioli, F. Arneodo, L. Bergamasco,
CrossRef
ADS
Google scholar
|
[27] |
M. Amenomori, S. Ayabe, X. J. Bi, D. Chen, S. W. Cui,
|
[28] |
M. Aglietta, V. V. Alekseenko, B. Alessandro, P. Antonioli, F. Arneodo,
CrossRef
ADS
Google scholar
|
[29] |
M. G. Aartsen, K. Abraham, M. Ackermann, J. Adams, J. A. Aguilar,
|
[30] |
M. Amenomori, X. J. Bi, D. Chen, T. L. Chen, W. Y. Chen,
|
[31] |
Q. Yuan, Implications on cosmic ray injection and propagation parameters from Voyager/ACE/AMS-02 nucleus data, Sci. China Phys. Mech. Astron. 62(4), 49511 (2019)
CrossRef
ADS
Google scholar
|
[32] |
G. L. Case and D. Bhattacharya, A new Σ–D relation and its application to the galactic supernova remnant distribution, Astrophys. J. 504(2), 761 (1998)
CrossRef
ADS
Google scholar
|
[33] |
N. Tomassetti, Cosmic-ray protons, nuclei, electrons, and antiparticles under a two-halo scenario of diffusive propagation, Phys. Rev. D 92(8), 081301 (2015)
CrossRef
ADS
Google scholar
|
[34] |
J. Feng, N. Tomassetti, and A. Oliva, Bayesian analysis of spatial-dependent cosmic-ray propagation: Astrophysical background of antiprotons and positrons, Phys. Rev. D 94(12), 123007 (2016)
CrossRef
ADS
Google scholar
|
[35] |
A. U. Abeysekara, A. Albert, R. Alfaro, C. Alvarez, J. D. Álvarez,
|
[36] |
Q. Yuan, S. J. Lin, K. Fang, and X. J. Bi, Propagation of cosmic rays in the AMS-02 era, Phys. Rev. D 95(8), 083007 (2017)
CrossRef
ADS
Google scholar
|
[37] |
E. S. Seo and V. S. Ptuskin, Stochastic reacceleration of cosmic rays in the interstellar medium, Astrophys. J. 431, 705 (1994)
CrossRef
ADS
Google scholar
|
[38] |
C. Evoli, D. Gaggero, D. Grasso, and L. Maccione, Cosmic ray nuclei, antiprotons and gamma rays in the galaxy: a new diffusion model, J. Cosmol. Astropart. Phys. 2008(10), 018 (2008)
CrossRef
ADS
Google scholar
|
[39] |
C. Evoli, D. Gaggero, A. Vittino, G. Di Bernardo, M. Di Mauro, A. Lig-orini, P. Ullio, and D. Grasso, Cosmic-ray propagation with DRAGON2 (I): Numerical solver and astrophysical ingredients, J. Cosmol. Astropart. Phys. 2, 015 (2017)
CrossRef
ADS
Google scholar
|
[40] |
V. V. Smith, K. Cunha, and B. Plez, Is Geminga a runaway member of the Orion association? Astron. Astrophys. 281, L41 (1994)
|
[41] |
R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs, The Australia Telescope National Facility Pulsar Catalogue, Astron. J. 129(4), 1993 (2005)
CrossRef
ADS
Google scholar
|
[42] |
L. J. Gleeson and W. I. Axford, Solar modulation of galactic cosmic rays, Astrophys. J. 154, 1011 (1968)
CrossRef
ADS
Google scholar
|
[43] |
S. Sakakibara, H. Ueno, K. Fujimoto, I. Kondo, and K. Nagashima, in: International Cosmic Ray Conference (1973), Vol. 2 of International Cosmic Ray Conference, p. 1058
|
[44] |
M. Bercovitch and S. P. Agrawal, in: International Cosmic Ray Conference (1981), Vol. 10 of International Cosmic Ray Conference, pp 246–249
|
[45] |
V. V. Alexeyenko, A. E. Chudakov, E. N. Gulieva, and V. G. Sborschikov, in: International Cosmic Ray Conference (1981), Vol. 2 of International Cosmic Ray Conference, p. 146
|
[46] |
V. V. Alekseenko, A. B. Cherniaev, D. D. Djappuev, A. U. Kudjaev, O. I. Michailova, Y. V. Stenkin, V. I. Stepanov, and V. I. Volchenko, 10–100 TeV cosmic ray anisotropy measured at the Baksan EAS“Carpet”array, Nucl. Phys. B Proc. Suppl. 196, 179 (2009)
CrossRef
ADS
Google scholar
|
[47] |
Y. M. Andreyev, A. E. Chudakov, V. A. Kozyarivsky, A. M. Sidorenko, T. I. Tulupova, and A. V. Voevodsky, in: International Cosmic Ray Conference (1987), Vol. 2 of International Cosmic Ray Conference, p. 22
|
[48] |
D. B. Swinson and K. Nagashima, Corrected sidereal anisotropy for underground muons, Planet. Space Sci. 33(9), 1069 (1985)
CrossRef
ADS
Google scholar
|
[49] |
K. Munakata,
|
[50] |
S. Mori, S. Yasue, K. Munakata, C. Kato, S. Akahane, M. Koyama, and T. Kitawada, in: International Cosmic Ray Conference (1995), Vol. 4 of International Cosmic Ray Conference, p. 648
|
[51] |
K. B. Fenton, A. G. Fenton, and J. E. Humble, in International Cosmic Ray Conference (1995), Vol. 4, p. 635
|
[52] |
M. Ambrosio, R. Antolini, A. Baldini, G. C. Barbarino, B. C. Barish,
|
[53] |
T. Gombosi, J. K’ota, A. J. Somogyi, A. Varga, B. Betev, L. Katsarski, S. Kavlakov, and I. Khirov, in: International Cosmic Ray Conference (1975), Vol. 2 of International Cosmic Ray Conference, pp 586–591
|
[54] |
M. Aglietta,
|
[55] |
A. Chiavassa,
|
[56] |
R. Abbasi, Y. Abdou, T. Abu-Zayyad, J. Adams, J. A. Aguilar,
|
[57] |
M. G. Aartsen, R. Abbasi, Y. Abdou, M. Ackermann, J. Adams,
|
[58] |
B. Bartoli, P. Bernardini, X. J. Bi, Z. Cao, S. Catalanotti,
|
[59] |
M. Amenomori, S. Ayabe, S. W. Cui, Danzengluobu, L. K. Ding,
|
[60] |
M. Amenomori,
|
[61] |
X. Bai, B. Y. Bi, X. J. Bi, Z. Cao, S. Z. Chen,
|
[62] |
R. Hirschi, G. Meynet, and A. Maeder, Yields of rotating stars at solar metallicity, Astron. Astrophys. 433(3), 1013 (2005)
CrossRef
ADS
Google scholar
|
[63] |
M. Casse and P. Goret, Ionization models of cosmic ray sources, Astrophys. J. 221, 703 (1978)
CrossRef
ADS
Google scholar
|
[64] |
D. C. Ellison, L. O. Drury, and J. P. Meyer, Galactic cosmic rays from supernova remnants (II): Shock acceleration of gas and dust, Astrophys. J. 487(1), 197 (1997)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |