Nearby source interpretation of differences among light and medium composition spectra in cosmic rays

Qiang Yuan, Bing-Qiang Qiao, Yi-Qing Guo, Yi-Zhong Fan, Xiao-Jun Bi

PDF(952 KB)
PDF(952 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (2) : 24501. DOI: 10.1007/s11467-020-0990-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Nearby source interpretation of differences among light and medium composition spectra in cosmic rays

Author information +
History +

Abstract

Recently the AMS-02 reported the precise measurements of the energy spectra of medium-mass compositions (Neon, Magnesium, Silicon) of primary cosmic rays, which reveal different properties from those of light compositions (Helium, Carbon, Oxygen). Here we propose a nearby source scenario, together with the background source contribution, to explain the newly measured spectra of cosmic ray Ne, Mg, Si, and particularly their differences from that of He, C, O. Their differences at high energies can be naturally accounted for by the element abundance of the nearby source. Specifically, the abundance ratio of the nearby source to the background of the Ne, Mg, Si elements is lower by a factor of ∼ 1.7 than that of the He, C, O elements. Such a difference could be due to the abundance difference of the stellar evolution of the progenitor star or the acceleration process/environment, of the nearby source. This scenario can simultaneously explain the high-energy spectral softening features of cosmic ray spectra revealed recently by CREAM/NUCLEON/DAMPE, as well as the energy-dependent behaviors of the large-scale anisotropies. It is predicted that the dipole anisotropy amplitudes below PeV energies of the Ne, Mg, Si group are smaller than that of the He, C, O group, which can be tested with future measurements.

Keywords

cosmic rays / spectra and anisotropies

Cite this article

Download citation ▾
Qiang Yuan, Bing-Qiang Qiao, Yi-Qing Guo, Yi-Zhong Fan, Xiao-Jun Bi. Nearby source interpretation of differences among light and medium composition spectra in cosmic rays. Front. Phys., 2021, 16(2): 24501 https://doi.org/10.1007/s11467-020-0990-4

References

[1]
A. D. Panov, J. H. Jr Adams, H. S. Ahn, G. L. Bashinzhagyan, J. W. Watts, , Energy spectra of abundant nuclei of primary cosmic rays from the data of ATIC-2 experiment: Final results, Bull. Russ. Acad. Sci.: Physics 73(5), 564 (2009)
CrossRef ADS Google scholar
[2]
H. S. Ahn, P. Allison, M. G. Bagliesi, J. J. Beatty, G. Bigongiari, , Discrepant hardening observed in cosmic-ray elemental spectra, Astrophys. J. 714(1), L89 (2010)
CrossRef ADS Google scholar
[3]
O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Boezio, , PAMELA measurements of cosmicray proton and helium spectra, Science 332(6025), 69 (2011)
[4]
M. Aguilar, D. Aisa, B. Alpat, A. Alvino, G. Ambrosi, , Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 114(17), 171103 (2015)
[5]
M. Aguilar, D. Aisa, B. Alpat, A. Alvino, G. Ambrosi, , Precision measurement of the helium flux in primary cosmic rays of rigidities 1.9 GV to 3 TV with the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 115(21), 211101 (2015)
[6]
M. Aguilar, L. Ali Cavasonza, B. Alpat, G. Ambrosi, L. Arruda, , Observation of the identical rigidity dependence of He, C, and O cosmic rays at high rigidities by the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 119(25), 251101 (2017)
[7]
O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, M. G. Bagliesi, , Direct measurement of the cosmic-ray proton spectrum from 50 GeV to 10 TeV with the calorimetric electron telescope on the international space station, Phys. Rev. Lett. 122(18), 181102 (2019)
[8]
Q. An, A. Kumamoto, R. Xiang, T. Inoue, K. Otsuka, S. Chiashi, C. Bichara, A. Loiseau, Y. Li, Y. Ikuhara, and S. Maruyama, Measurement of the cosmic-ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite, Sci. Adv. 5(5), eaax3793 (2019)
[9]
Y. S. Yoon, T. Anderson, A. Barrau, N. B. Conklin, S. Coutu, Proton and helium spectra from the CREAMIII flight, Astrophys. J. 839(1), 5 (2017)
CrossRef ADS Google scholar
[10]
E. Atkin, V. Bulatov, V. Dorokhov, N. Gorbunov, S. Filippov, , New universal cosmic-ray knee near a magnetic rigidity of 10 TV with the nucleon space observatory, JETP Lett. 108(1), 5 (2018)
CrossRef ADS Google scholar
[11]
Y. Ohira and K. Ioka, Cosmic-ray helium hardening, Astrophys. J. 729(1), L13 (2011)
CrossRef ADS Google scholar
[12]
Q. Yuan, B. Zhang, and X. J. Bi, Cosmic ray spectral hardening due to dispersion in the source injection spectra, Phys. Rev. D 84(4), 043002 (2011)
CrossRef ADS Google scholar
[13]
A. E. Vladimirov, G. Jóhannesson, I. V. Moskalenko, and T. A. Porter, Testing the origin of high-energy cosmic rays, Astrophys. J. 752(1), 68 (2012)
CrossRef ADS Google scholar
[14]
N. Tomassetti, Origin of the cosmic-ray spectral hardening, Astrophys. J. 752(1), L13 (2012)
CrossRef ADS Google scholar
[15]
P. Blasi, E. Amato, and P. D. Serpico, Spectral breaks as a signature of cosmic ray induced turbulence in the galaxy, Phys. Rev. Lett. 109(6), 061101 (2012)
CrossRef ADS Google scholar
[16]
Y. Q. Guo, Z. Tian, and C. Jin, Spatial-dependent propagation of cosmic rays results in spectrum of proton, ratios of p-/p, B/C and anisotropy of nuclei, Astrophys. J. 819(1), 54 (2016)
CrossRef ADS Google scholar
[17]
Y. Q. Guo and Q. Yuan, Understanding the spectral hardenings and radial distribution of Galactic cosmic rays and Fermi diffuse rays with spatially-dependent propagation, Phys. Rev. D 97(6), 063008 (2018)
CrossRef ADS Google scholar
[18]
D. Karmanov, I. Kovalev, I. Kudryashov, A. Kurganov, V. Latonov, A. Panov, D. Podorozhnyy, and A. Turundaevskiy, A possibility of interpretation of the cosmic ray kneenear 10 TV as a contribution of a single close source, arXiv: 1907.05987 (2019)
[19]
C. Yue, P. X. Ma, Q. Yuan, Y. Z. Fan, Z. F. Chen, Implications on the origin of cosmic rays in light of 10 TV spectral softenings, Front. Phys. 15(2), 24601 (2020)
CrossRef ADS Google scholar
[20]
K. Fang, X.J. Bi, and P. F. Yin, DAMPE proton spectrum indicates a slow-diffusion zone in the nearby ISM, arXiv: 2003.13635 (2020)
[21]
M. Aguilar, L. Ali Cavasonza, G. Ambrosi, L. Arruda, N. Attig, , Properties of neon, magnesium, and silicon primary cosmic rays results from the alpha magnetic spectrometer, Phys. Rev. Lett. 124(21), 211102 (2020)
[22]
L. G. Sveshnikova, O. N. Strelnikova, and V. S. Ptuskin, Spectrum and anisotropy of cosmic rays at TeV–PeVenergies and contribution of nearby sources, Astropart. Phys. 50–52, 33 (2013)
CrossRef ADS Google scholar
[23]
V. Savchenko, M. Kachelrieß, and D. V. Semikoz, Imprint of a 2 million year old source on the cosmic-ray anisotropy, Astrophys. J. 809(2), L23 (2015)
CrossRef ADS Google scholar
[24]
W. Liu, Y.-Q. Guo, and Q. Yuan, Indication of nearby source signatures of cosmic rays from energy spectra and anisotropies, J. Cosmol. Astropart. Phys. 10, 010 (2019)
CrossRef ADS Google scholar
[25]
B.-Q. Qiao, W. Liu, Y.-Q. Guo, and Q. Yuan, Anisotropies of different mass compositions of cosmic rays, J. Cosmol. Astropart. Phys. 2019, 007 (2019)
CrossRef ADS Google scholar
[26]
M. Aglietta, B. Alessandro, P. Antonioli, F. Arneodo, L. Bergamasco, , A measurement of the solar and sidereal cosmic-ray anisotropy at E0 approximately 1014 eV, Astrophys. J. 470, 501 (1996)
CrossRef ADS Google scholar
[27]
M. Amenomori, S. Ayabe, X. J. Bi, D. Chen, S. W. Cui, Anisotropy and corotation of galactic cosmic rays, Science 314(5798), 439 (2006)
[28]
M. Aglietta, V. V. Alekseenko, B. Alessandro, P. Antonioli, F. Arneodo, , Evolution of the cosmic-ray anisotropy above 1014 eV, Astrophys. J. 692(2), L130 (2009)
CrossRef ADS Google scholar
[29]
M. G. Aartsen, K. Abraham, M. Ackermann, J. Adams, J. A. Aguilar, , Anisotropy in cosmic-ray arrival directions in the southern hemisphere based on six years of data from the Icecube detector, Astrophys. J. 826(2), 220 (2016)
[30]
M. Amenomori, X. J. Bi, D. Chen, T. L. Chen, W. Y. Chen, , Northern sky galactic cosmic ray anisotropy between 10 and 1000 TeV with the Tibet air shower array, Astrophys. J. 836(2), 153 (2017)
[31]
Q. Yuan, Implications on cosmic ray injection and propagation parameters from Voyager/ACE/AMS-02 nucleus data, Sci. China Phys. Mech. Astron. 62(4), 49511 (2019)
CrossRef ADS Google scholar
[32]
G. L. Case and D. Bhattacharya, A new Σ–D relation and its application to the galactic supernova remnant distribution, Astrophys. J. 504(2), 761 (1998)
CrossRef ADS Google scholar
[33]
N. Tomassetti, Cosmic-ray protons, nuclei, electrons, and antiparticles under a two-halo scenario of diffusive propagation, Phys. Rev. D 92(8), 081301 (2015)
CrossRef ADS Google scholar
[34]
J. Feng, N. Tomassetti, and A. Oliva, Bayesian analysis of spatial-dependent cosmic-ray propagation: Astrophysical background of antiprotons and positrons, Phys. Rev. D 94(12), 123007 (2016)
CrossRef ADS Google scholar
[35]
A. U. Abeysekara, A. Albert, R. Alfaro, C. Alvarez, J. D. Álvarez, , Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth, Science 358(6365), 911 (2017)
[36]
Q. Yuan, S. J. Lin, K. Fang, and X. J. Bi, Propagation of cosmic rays in the AMS-02 era, Phys. Rev. D 95(8), 083007 (2017)
CrossRef ADS Google scholar
[37]
E. S. Seo and V. S. Ptuskin, Stochastic reacceleration of cosmic rays in the interstellar medium, Astrophys. J. 431, 705 (1994)
CrossRef ADS Google scholar
[38]
C. Evoli, D. Gaggero, D. Grasso, and L. Maccione, Cosmic ray nuclei, antiprotons and gamma rays in the galaxy: a new diffusion model, J. Cosmol. Astropart. Phys. 2008(10), 018 (2008)
CrossRef ADS Google scholar
[39]
C. Evoli, D. Gaggero, A. Vittino, G. Di Bernardo, M. Di Mauro, A. Lig-orini, P. Ullio, and D. Grasso, Cosmic-ray propagation with DRAGON2 (I): Numerical solver and astrophysical ingredients, J. Cosmol. Astropart. Phys. 2, 015 (2017)
CrossRef ADS Google scholar
[40]
V. V. Smith, K. Cunha, and B. Plez, Is Geminga a runaway member of the Orion association? Astron. Astrophys. 281, L41 (1994)
[41]
R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs, The Australia Telescope National Facility Pulsar Catalogue, Astron. J. 129(4), 1993 (2005)
CrossRef ADS Google scholar
[42]
L. J. Gleeson and W. I. Axford, Solar modulation of galactic cosmic rays, Astrophys. J. 154, 1011 (1968)
CrossRef ADS Google scholar
[43]
S. Sakakibara, H. Ueno, K. Fujimoto, I. Kondo, and K. Nagashima, in: International Cosmic Ray Conference (1973), Vol. 2 of International Cosmic Ray Conference, p. 1058
[44]
M. Bercovitch and S. P. Agrawal, in: International Cosmic Ray Conference (1981), Vol. 10 of International Cosmic Ray Conference, pp 246–249
[45]
V. V. Alexeyenko, A. E. Chudakov, E. N. Gulieva, and V. G. Sborschikov, in: International Cosmic Ray Conference (1981), Vol. 2 of International Cosmic Ray Conference, p. 146
[46]
V. V. Alekseenko, A. B. Cherniaev, D. D. Djappuev, A. U. Kudjaev, O. I. Michailova, Y. V. Stenkin, V. I. Stepanov, and V. I. Volchenko, 10–100 TeV cosmic ray anisotropy measured at the Baksan EAS“Carpet”array, Nucl. Phys. B Proc. Suppl. 196, 179 (2009)
CrossRef ADS Google scholar
[47]
Y. M. Andreyev, A. E. Chudakov, V. A. Kozyarivsky, A. M. Sidorenko, T. I. Tulupova, and A. V. Voevodsky, in: International Cosmic Ray Conference (1987), Vol. 2 of International Cosmic Ray Conference, p. 22
[48]
D. B. Swinson and K. Nagashima, Corrected sidereal anisotropy for underground muons, Planet. Space Sci. 33(9), 1069 (1985)
CrossRef ADS Google scholar
[49]
K. Munakata, , in: International Cosmic Ray Conference (1995), Vol. 4, p. 639
[50]
S. Mori, S. Yasue, K. Munakata, C. Kato, S. Akahane, M. Koyama, and T. Kitawada, in: International Cosmic Ray Conference (1995), Vol. 4 of International Cosmic Ray Conference, p. 648
[51]
K. B. Fenton, A. G. Fenton, and J. E. Humble, in International Cosmic Ray Conference (1995), Vol. 4, p. 635
[52]
M. Ambrosio, R. Antolini, A. Baldini, G. C. Barbarino, B. C. Barish, , Search for the sidereal and solar diurnal modulations in the total MACRO muon data set, Phys. Rev. D 67(4), 042002 (2003)
[53]
T. Gombosi, J. K’ota, A. J. Somogyi, A. Varga, B. Betev, L. Katsarski, S. Kavlakov, and I. Khirov, in: International Cosmic Ray Conference (1975), Vol. 2 of International Cosmic Ray Conference, pp 586–591
[54]
M. Aglietta, , in: International Cosmic Ray Conference (1995), Vol. 2 of International Cosmic Ray Conference, p. 800
[55]
A. Chiavassa, , in: 34th International Cosmic Ray Conference (ICRC2015) (2015), Vol. 34 of International Cosmic Ray Conference, p. 281
[56]
R. Abbasi, Y. Abdou, T. Abu-Zayyad, J. Adams, J. A. Aguilar, , Measurement of the anisotropy of cosmicray arrival directions with Icecube, Astrophys. J. 718(2), L194 (2010)
[57]
M. G. Aartsen, R. Abbasi, Y. Abdou, M. Ackermann, J. Adams, , Observation of cosmic-ray anisotropy with the Icetop air shower array, Astrophys. J. 765(1), 55 (2013)
[58]
B. Bartoli, P. Bernardini, X. J. Bi, Z. Cao, S. Catalanotti, , ARGO-YBJ observation of the large-scale cosmic ray anisotropy during the solar minimum between cycles 23 and 24, Astrophys. J. 809(1), 90 (2015)
[59]
M. Amenomori, S. Ayabe, S. W. Cui, Danzengluobu, L. K. Ding, , Large-scale sidereal anisotropy of galactic cosmic-ray intensity observed by the Tibet air shower array, Astrophys. J. 626(1), L29 (2005)
[60]
M. Amenomori, , in: 34th International Cosmic Ray Conference (ICRC2015) (2015), Vol. 34 of International Cosmic Ray Conference, p. 355
[61]
X. Bai, B. Y. Bi, X. J. Bi, Z. Cao, S. Z. Chen, , The Large High Altitude Air Shower Observatory (LHAASO) science white paper, arXiv: 1905.02773 (2019)
[62]
R. Hirschi, G. Meynet, and A. Maeder, Yields of rotating stars at solar metallicity, Astron. Astrophys. 433(3), 1013 (2005)
CrossRef ADS Google scholar
[63]
M. Casse and P. Goret, Ionization models of cosmic ray sources, Astrophys. J. 221, 703 (1978)
CrossRef ADS Google scholar
[64]
D. C. Ellison, L. O. Drury, and J. P. Meyer, Galactic cosmic rays from supernova remnants (II): Shock acceleration of gas and dust, Astrophys. J. 487(1), 197 (1997)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(952 KB)

Accesses

Citations

Detail

Sections
Recommended

/