Investigation on the Cs 6S1/2 to 7D electric quadrupole transition via monochromatic two-photon process at 767 nm

San-Dan Wang, Jin-Peng Yuan, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia

PDF(1321 KB)
PDF(1321 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (1) : 12502. DOI: 10.1007/s11467-020-0988-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Investigation on the Cs 6S1/2 to 7D electric quadrupole transition via monochromatic two-photon process at 767 nm

Author information +
History +

Abstract

We experimentally demonstrate the cesium electric quadrupole transition from the 6S1/2 ground state to the 7D3/2,5/2 excited state through a virtual level by using a single laser at 767 nm. The excited state energy level population is characterized by varying the laser power, the temperature of the vapor, and the polarization combinations of the laser beams. The optimized experimental parameters are obtained for a high resolution transition interval identification. The magnetic dipole coupling constant A and electric quadrupole coupling constant B for the 7D3/2,5/2 states are precisely determined by using the hyperfine levels intervals. The results, A = 7.39 (0.06) MHz, B = −0.19 (0.18) MHz for the 7D3/2 state, and A = −1.79 (0.05) MHz, B =1.05 (0.29) MHz for the 7D5/2 state, are in good agreement with the previous reported results. This work is beneficial for the determination of atomic structure information and parity non-conservation, which paves the way for the field of precision measurements and atomic physics.

Keywords

two-photon process / hyperfine structure / electric quadrupole transition

Cite this article

Download citation ▾
San-Dan Wang, Jin-Peng Yuan, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia. Investigation on the Cs 6S1/2 to 7D electric quadrupole transition via monochromatic two-photon process at 767 nm. Front. Phys., 2021, 16(1): 12502 https://doi.org/10.1007/s11467-020-0988-y

References

[1]
C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner, and C. E. Wieman, Measurement of parity non-conservation and an anapole moment in cesium, Science 275(5307), 1759 (1997)
CrossRef ADS Google scholar
[2]
S. G. Porsev, K. Beloy, and A. Derevianko, Precision determination of electroweak coupling from atomic parity violation and implications for particle physics, Phys. Rev. Lett. 102(18), 181601 (2009)
CrossRef ADS Google scholar
[3]
X. Zheng, Y. Sun, J. Chen, W. Jiang, K. Pachucki, and S. Hu, Measurement of the frequency of the 23S–23Ptransition of 4He, Phys. Rev. Lett. 119(26), 263002 (2017)
CrossRef ADS Google scholar
[4]
J. Yuan, C. Wu, Y. Li, L. Wang, Y. Zhang, L. Xiao, and S. Jia, Controllable electromagnetically induced grating in a cascade-type atomic system, Front. Phys. 14(5), 52603 (2019)
CrossRef ADS Google scholar
[5]
R. Li, Y. Wu, Y. Rui, B. Li, Y. Jiang, L. Ma, and H. Wu, Absolute frequency measurement of 6Li D lines with kHzlevel uncertainty, Phys. Rev. Lett. 124(6), 063002 (2020)
CrossRef ADS Google scholar
[6]
A. Ramos, R. Cardman, and G. Raithel, Measurement of the hyperfine coupling constant for nS1/2 Rydberg states of 85Rb, Phys. Rev. A 100(6), 062515 (2019)
CrossRef ADS Google scholar
[7]
E. Arimondo, M. Inguscio, and P. Violino, Experimental determinations of the hyperfine structure in the alkali atoltls, Rev. Mod. Phys. 49(1), 31 (1977)
CrossRef ADS Google scholar
[8]
J. Yuan, C. Wu, L. Wang, G. Chen, and S. Jia, Observation of diffraction pattern in two-dimensional optically induced atomic lattice, Opt. Lett. 44(17), 4123 (2019)
CrossRef ADS Google scholar
[9]
J. Kirkbride, A. R. Dalton, and G. A. D. Ritchie, Polarization spectroscopy of a velocity-selected molecular sample, Opt. Lett. 39(9), 2645 (2014)
CrossRef ADS Google scholar
[10]
J. Yuan, S. Dong, C. Wu, L. Wang, L. Xiao, and S. Jia, Optically tunable grating in a V+ Ξ configuration involving a Rydberg state, Opt. Express 28(16), 23820 (2020)
CrossRef ADS Google scholar
[11]
T. Ray, R. K. Gupta, V. Gokhroo, J. L. Everett, T. Nieddu, K. S. Rajasree, and S. N. Chormaic, Observation of the 87Rb 5S1/2 to 4D3/2 electric quadrupole transition at 516.6 nm mediated via an optical nanofibre, New J. Phys. 22, 062001 (2020)
CrossRef ADS Google scholar
[12]
M. S. Safronova, U. I. Safronova, and C. W. Clark, Magic wavelengths, matrix elements, polarizabilities, and lifetimes of Cs, Phy. Rev. A 94(1), 012505 (2016)
CrossRef ADS Google scholar
[13]
K. Heshamia, D. G. Englanda, P. C. Humphreysb, P. J. Bustarda, V. M. Acostac, J. Nunnb, and B. J. Sussmana, Quantum memories: Emerging applications and recent advances, J. Mod. Opt. 63(20), 2005 (2016)
CrossRef ADS Google scholar
[14]
M. Auzinsh, K. Blushs, R. Ferber, F. Gahbauer, A. Jarmola, and M. Tamanis, Electric field induced hyperfine level-crossings in (nD) Cs at two-step laser excitation: Experiment and theory, Opt. Commun. 264(2), 333 (2006)
CrossRef ADS Google scholar
[15]
M. Auzinsh, K. Bluss, R. Ferber, F. Gahbauer, A. Jarmola, M. S. Safronova, U. I. Safronova, and M. Tamanis, Level crossing spectroscopy of the 7, 9, and 10D5/2 states of 133Cs and validation of relativistic many-body calculations of the polarizabilities and hyperfine constants, Phys. Rev. A 75(2), 022502 (2007)
CrossRef ADS Google scholar
[16]
A. Kortyna, V. Fiore, and J. Farrar, Measurement of the cesium 7d2D3/2 hyperfine coupling constants in a thermal beam using two-photon fluorescence spectroscopy, Phys. Rev. A 77(6), 062505 (2008)
CrossRef ADS Google scholar
[17]
J. E. Stalnaker, V. Mbele, V. Gerginov, T. M. Fortier, S. A. Diddams, L. Hollberg, and C. E. Tanner, Femtosecond frequency comb measurement of absolute frequencies and hyperfine coupling constants in cesium vapor, Phys. Rev. A 81(4), 043840 (2010)
CrossRef ADS Google scholar
[18]
Y. Lee, Y. Chang, Y. Chang, Y. Chen, C. Tsai, and H. C. Chui, Hyperfine coupling constants of cesium 7Dstates using two-photon spectroscopy, Appl. Phys. B 105(2), 391 (2011)
CrossRef ADS Google scholar
[19]
P. V. Kiran Kumar, M. Sankari, and M. V. Suryanarayana, Hyperfine structure of the 7d2D3/2 level in cesium measured by Doppler-free two-photon spectroscopy, Phys. Rev. A 87(1), 012503 (2013)
CrossRef ADS Google scholar
[20]
W. Demtröder, Laser Spectroscopy, Vol. 2, Experimental Techniques, 4th Ed., Springer, Berlin, 2008
[21]
L. Wang, Y. Zhang, S. Xiang, S. Cao, L. Xiao, and S. Jia, Two-photon spectrum of 87Rb using optical frequency comb, Chin. Phys. B 24(6), 063201 (2015)
CrossRef ADS Google scholar
[22]
H. Cheng, H. Wang, S. Zhang, P. Xin, J. Luo, and H. Liu, Electromagnetically induced transparency of 87Rb in a buffer gas cell with magnetic field, J. Phys. B 50(9), 095401 (2017)
CrossRef ADS Google scholar
[23]
I. I. Sobelman, Atomic Spectra and Radiative Transitions, Springer, Berlin, 1996
[24]
Z. He, J. Tsai, Y. Chang, C. Liao, and C. Tsai, Laddertype electromagnetically induced transparency with optical pumping effect, Phys. Rev. A 87(3), 033402 (2013)
CrossRef ADS Google scholar
[25]
R. E. Ryan, L. A. Westling, and H. J. Metcalf, Two-photon spectroscopy in rubidium with a diode laser, J. Opt. Soc. Am. B 10(9), 1643 (1993)
CrossRef ADS Google scholar
[26]
S. Wang, J. Yuan, L. Wang, L. Xiao, and S. Jia, A stable frequency standard based on the one-color two-photon 5S– 7Stransition of rubidium at 760 nm, Laser Phys. Lett. 16(12), 125204 (2019)
CrossRef ADS Google scholar
[27]
S. Dai, W. Xia, Y. Zhang, J. Zhao, D. Zhou, Q. Wang, Q. Yu, K. Li, X. Qi, and X. Chen, Polarization dependence of the direct two photon transitions of 87Rb atoms by erbium: Fiber laser frequency comb, Opt. Commun. 378, 35 (2016)
CrossRef ADS Google scholar
[28]
D. McGloin, M. H. Dunn, and D. J. Fulton, Polarization effects in electromagnetically induced transparency, Phys. Rev. A 62(5), 053802 (2000)
CrossRef ADS Google scholar
[29]
J. Wang, H. Liu, G. Yang, B. Yang, and J. Wang, Determination of the hyperfine structure constants of the 87Rb and 85Rb 4D5/2 state and the isotope hyperfine anomaly, Phys. Rev. A 90(5), 052505 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1321 KB)

Accesses

Citations

Detail

Sections
Recommended

/