
Talbot effect in nonparaxial self-accelerating beams with electromagnetically induced transparency
Jing-Min Ru, Zhen-Kun Wu, Ya-Gang Zhang, Feng Wen, Yu-Zong Gu
Front. Phys. ›› 2020, Vol. 15 ›› Issue (5) : 52503.
Talbot effect in nonparaxial self-accelerating beams with electromagnetically induced transparency
In this study, we report on the fractional Talbot effect of nonparaxial self-accelerating beams in a multilevel electromagnetically induced transparency (EIT) atomic configuration, which, to the best of our knowledge, is the first study on this subject. The Talbot effect originates from superposed eigenmodes of the Helmholtz equation and forms in the EIT window in the presence of both linear and cubic susceptibilities. The Talbot effect can be realized by appropriately selecting the coefficients of the beam components. Our results indicate that the larger the radial difference between beam components, the stronger the interference between them, the smaller the Talbot angle is. The results of this study can be useful when studying optical imaging, optical measurements, and optical computing.
multilevel atomic configuration / nonparaxial self-accelerating beam / Talbot effect / electromagnetically induced transparency
[1] |
S. E. Harris, Electromagnetically induced transparency, Phys. Today 50(7), 36 (1997)
CrossRef
ADS
Google scholar
|
[2] |
M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys. 77(2), 633 (2005)
CrossRef
ADS
Google scholar
|
[3] |
M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence, Phys. Rev. Lett. 82(9), 1847 (1999)
CrossRef
ADS
Google scholar
|
[4] |
H. Kang, G. Hernandez, and Y. Zhu, Resonant four-wave mixing with slow light, Phys. Rev. A 70(6), 061804 (2004)
CrossRef
ADS
Google scholar
|
[5] |
L. Jin, C. Hang, Y. Y. Jiang, C. J. Zhu, Z. Zheng, Y. Yao, G. X. Huang, and L. Ma, Towards generation of millihertz-linewidth laser light with 10−18 frequency instability via four-wave mixing, Appl. Phys. Lett. 114(5), 051104 (2019)
CrossRef
ADS
Google scholar
|
[6] |
Y. F. Zhang, Z. P. Wang, J. Qiu, Y. Hong, and B. L. Yu, Spatially dependent four-wave mixing in semiconductor quantum wells, Appl. Phys. Lett. 115(17), 171905 (2019)
CrossRef
ADS
Google scholar
|
[7] |
P. R. Hemmer, D. P. Katz, J. Donoghue, M. S. Shahriar, P. Kumar, and M. Cronin-Golomb, Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium, Opt. Lett. 20(9), 982 (1995)
CrossRef
ADS
Google scholar
|
[8] |
M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, Efficient nonlinear frequency conversion with maximal atomic coherence, Phys. Rev. Lett. 77(21), 4326 (1996)
CrossRef
ADS
Google scholar
|
[9] |
Y. P. Zhang, A. W. Brown, and M. Xiao, Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows, Phys. Rev. Lett. 99(12), 123603 (2007)
CrossRef
ADS
Google scholar
|
[10] |
Y. Q. Zhang, Z. K. Wu, X. Yao, Z. Y. Zhang, H. X. Chen, H. B. Zhang, and Y. P. Zhang, Controlling multi-wave mixing signals via photonic band gap of electromagnetically induced absorption grating in atomic media, Opt. Express 21(24), 29338 (2013)
CrossRef
ADS
Google scholar
|
[11] |
Z. Y. Zhang, R. Wang, Y. Q. Zhang, Y. V. Kartashov, F. Li, H. Zhong, H. Guan, K. L. Gao, F. L. Li, Y. P. Zhang, and M. Xiao, Observation of edge solitons in photonic graphene, Nat. Commun. 11(1), 1902 (2020)
CrossRef
ADS
Google scholar
|
[12] |
Y. Q. Zhang, Z. K. Wu, M. R. Belić, H. B. Zheng, Z. G. Wang, M. Xiao, and Y. P. Zhang, Photonic Floquet topological insulators in atomic ensembles, Laser Photon Rev. 9(3), 331 (2015)
CrossRef
ADS
Google scholar
|
[13] |
C. Hang, G. Huang, and V. V. Konotop, PT symmetry with a system of three-level atoms, Phys. Rev. Lett. 110(8), 083604 (2013)
CrossRef
ADS
Google scholar
|
[14] |
P. Peng, W. Cao, C. Shen, W. Qu, J. Wen, L. Jiang, and Y. Xiao, Anti-parity–time symmetry with flying atoms, Nat. Phys. 12(12), 1139 (2016)
CrossRef
ADS
Google scholar
|
[15] |
Z. Y. Zhang, Y. Q. Zhang, J. T. Sheng, L. Yang, M. A. Miri, D. N. Christodoulides, B. He, Y. P. Zhang, and M. Xiao, Observation of parity–time symmetry in optically induced atomic lattices, Phys. Rev. Lett. 117(12), 123601 (2016)
CrossRef
ADS
Google scholar
|
[16] |
Y. Q. Zhang, D. Zhang, Z. Y. Zhang, C. B. Li, Y. P. Zhang, F. L. Li, M. R. Belić, and M. Xiao, Optical Bloch oscillation and Zener tunneling in an atomic system, Optica 4(5), 571 (2017)
CrossRef
ADS
Google scholar
|
[17] |
D. Wei, Y. Yu, M. T. Cao, L. Y. Zhang, F. J. Ye, W. G. Guo, S. G. Zhang, H. Gao, and F. L. Li, Generation of Airy beams by four-wave mixing in Rubidium vapor cell, Opt. Lett. 39(15), 4557 (2014)
CrossRef
ADS
Google scholar
|
[18] |
H. Zhong, Y. Q. Zhang, Z. Y. Zhang, C. B. Li, D. Zhang, Y. P. Zhang, and M. R. Belić, Nonparaxial selfaccelerating beams in an atomic vapor with electromagnetically induced transparency, Opt. Lett. 41(24), 5644 (2016)
CrossRef
ADS
Google scholar
|
[19] |
H. F. Talbot, Facts relating to optical science, Philos. Mag. 9, 401 (1836)
CrossRef
ADS
Google scholar
|
[20] |
L. Rayleigh, On copying diffraction-gratings, and on some phenomena connected therewith, Philos. Mag. 11(67), 196 (1881)
CrossRef
ADS
Google scholar
|
[21] |
J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, Electromagnetically induced Talbot effect, Appl. Phys. Lett. 98(8), 081108 (2011)
CrossRef
ADS
Google scholar
|
[22] |
Y. Q. Zhang, X. Yao, C. Z. Yuan, P. Y. Li, J. M. Yuan, W. K. Feng, S. Q. Jia, and Y. P. Zhang, Controllable multiwave mixing Talbot effect, IEEE Photonics J. 4, 2957 (2012)
CrossRef
ADS
Google scholar
|
[23] |
Z. Y. Zhang, X. Liu, D. Zhang, J. T. Sheng, Y. Q. Zhang, Y. P. Zhang, and M. Xiao, Observation of electromagnetically induced Talbot effect in an atomic system, Phys. Rev. A 97(1), 013603 (2018)
CrossRef
ADS
Google scholar
|
[24] |
R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, Discrete Talbot effect in waveguide arrays, Phys. Rev. Lett. 95(5), 053902 (2005)
CrossRef
ADS
Google scholar
|
[25] |
H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, PT-symmetric Talbot effects, Phys. Rev. Lett. 109(3), 033902 (2012)
CrossRef
ADS
Google scholar
|
[26] |
C. Ryu, M. F. Andersen, A. Vaziri, M. B. d’Arcy, J. M. Grossman, K. Helmerson, and W. D. Phillips, High-order quantum resonances observed in a periodically kicked Bose–Einstein condensate, Phys. Rev. Lett. 96(16), 160403 (2006)
CrossRef
ADS
Google scholar
|
[27] |
Y. Lumer, L. Drori, Y. Hazan, and M. Segev, Accelerating self-imaging: The Airy–Talbot effect, Phys. Rev. Lett. 115(1), 013901 (2015)
CrossRef
ADS
Google scholar
|
[28] |
Y. Q. Zhang, H. Zhong, M. R. Belić, X. Liu, W. P. Zhong, Y. P. Zhang, and M. Xiao, Dual accelerating Airy–Talbot recurrence effect, Opt. Lett. 40(24), 5742 (2015)
CrossRef
ADS
Google scholar
|
[29] |
Y. Q. Zhang, H. Zhong, M. R. Belić, C. B. Li, Z. Y. Zhang, F. Wen, Y. P. Zhang, and M. Xiao, Fractional nonparaxial accelerating Talbot effect, Opt. Lett. 41(14), 3273 (2016)
CrossRef
ADS
Google scholar
|
[30] |
Y. Zhang, J. M. Wen, S. N. Zhu, and M. Xiao, Nonlinear talbot effect, Phys. Rev. Lett. 104(18), 183901 (2010)
CrossRef
ADS
Google scholar
|
[31] |
T. Gao, E. Estrecho, G. Li, O. A. Egorov, X. Ma, K. Winkler, M. Kamp, C. Schneider, S. Höfling, A. G. Truscott, and E. A. Ostrovskaya, Talbot effect for exciton polaritons, Phys. Rev. Lett. 117(9), 097403 (2016)
CrossRef
ADS
Google scholar
|
[32] |
Y. Q. Zhang, M. R. Belić, H. B. Zheng, H. Chen, C. B. Li, J. P. Song, and Y. P. Zhang, Nonlinear Talbot effect from rogue waves, Phys. Rev. E 89(3), 032902 (2014)
CrossRef
ADS
Google scholar
|
[33] |
Y. Q. Zhang, M. R. Belić, M. S. Petrović, H. B. Zheng, H. X. Chen, C. B. Li, K. Q. Lu, and Y. P. Zhang, Twodimensional linear and nonlinear Talbot effect from rogue waves, Phys. Rev. E 91(3), 032916 (2015)
CrossRef
ADS
Google scholar
|
[34] |
K. Y. Zhan, Z. D. Yang, and B. Liu, Trajectory engineering of Airy–Talbot effect via dynamic linear potential, J. Opt. Soc. Am. B 35(12), 3044 (2018)
CrossRef
ADS
Google scholar
|
[35] |
K. Y. Zhan, J. Wang, R. Y. Jiao, Z. D. Yang, and B. Liu, self‐imaging effect based on circular airy beams, Ann. Phys. 531(11), 1900293 (2019)
CrossRef
ADS
Google scholar
|
[36] |
Y. Lumer, Y. Liang, R. Schley, I. Kaminer, E. Greenfield, D. H. Song, X. Z. Zhang, J. J. Xu, Z. G. Chen, and M. Segev, Incoherent self-accelerating beams, Optica 2(10), 886 (2015)
CrossRef
ADS
Google scholar
|
[37] |
Z. K. Wu and Y. Z. Gu, Laguerre–Gaussian, Hermite– Gaussian, Bessel–Gaussian, and finite-Energy airy beams carrying orbital angular momentum in strongly nonlocal nonlinear media, J. Phys. Soc. Jpn. 85(12), 124402 (2016)
|
[38] |
Z. K. Wu, Q. Zhang, H. Guo, and Y. Z. Gu, Microwavecontrolled airy beam propagation in multilevel atomic vapors, Optik 164, 465 (2018)
CrossRef
ADS
Google scholar
|
[39] |
Z. K. Wu, Z. P. Wang, H. Guo, and Y. Z. Gu, Selfaccelerating Airy–Laguerre–Gaussian light bullets in a two-dimensional strongly nonlocal nonlinear medium, Opt. Express 25(24), 30468 (2017)
CrossRef
ADS
Google scholar
|
[40] |
D. A. Steck, http://steck.us/alkalidata (2000)
|
[41] |
M. D. Lukin, and A. Imamoğlu, Controlling photons using electromagnetically induced transparency, Nature 413(6853), 273 (2001)
CrossRef
ADS
Google scholar
|
[42] |
R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, Y. Lumer, and M. Segev, Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories, Nat. Commun. 5(1), 5189 (2014)
CrossRef
ADS
Google scholar
|
[43] |
I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, Nondiffracting accelerating wave packets of Maxwell’s equations, Phys. Rev. Lett. 108(16), 163901 (2012)
CrossRef
ADS
Google scholar
|
[44] |
Z. K. Wu, H. Guo, W. Wang, and Y. Z. Gu, Evolution of finite energy Airy beams in cubic–quintic atomic vapor system, Front. Phys. 13(1), 134201 (2018)
CrossRef
ADS
Google scholar
|
[45] |
Z. K. Wu, P. Li, and Y. Z. Gu, Propagation dynamics of finite-energy Airy beams in nonlocal nonlinear media, Front. Phys. 12(5), 124203 (2017)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |