Talbot effect in nonparaxial self-accelerating beams with electromagnetically induced transparency

Jing-Min Ru, Zhen-Kun Wu, Ya-Gang Zhang, Feng Wen, Yu-Zong Gu

Front. Phys. ›› 2020, Vol. 15 ›› Issue (5) : 52503.

PDF(2337 KB)
PDF(2337 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (5) : 52503. DOI: 10.1007/s11467-020-0984-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Talbot effect in nonparaxial self-accelerating beams with electromagnetically induced transparency

Author information +
History +

Abstract

In this study, we report on the fractional Talbot effect of nonparaxial self-accelerating beams in a multilevel electromagnetically induced transparency (EIT) atomic configuration, which, to the best of our knowledge, is the first study on this subject. The Talbot effect originates from superposed eigenmodes of the Helmholtz equation and forms in the EIT window in the presence of both linear and cubic susceptibilities. The Talbot effect can be realized by appropriately selecting the coefficients of the beam components. Our results indicate that the larger the radial difference between beam components, the stronger the interference between them, the smaller the Talbot angle is. The results of this study can be useful when studying optical imaging, optical measurements, and optical computing.

Keywords

multilevel atomic configuration / nonparaxial self-accelerating beam / Talbot effect / electromagnetically induced transparency

Cite this article

Download citation ▾
Jing-Min Ru, Zhen-Kun Wu, Ya-Gang Zhang, Feng Wen, Yu-Zong Gu. Talbot effect in nonparaxial self-accelerating beams with electromagnetically induced transparency. Front. Phys., 2020, 15(5): 52503 https://doi.org/10.1007/s11467-020-0984-2

References

[1]
S. E. Harris, Electromagnetically induced transparency, Phys. Today 50(7), 36 (1997)
CrossRef ADS Google scholar
[2]
M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys. 77(2), 633 (2005)
CrossRef ADS Google scholar
[3]
M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence, Phys. Rev. Lett. 82(9), 1847 (1999)
CrossRef ADS Google scholar
[4]
H. Kang, G. Hernandez, and Y. Zhu, Resonant four-wave mixing with slow light, Phys. Rev. A 70(6), 061804 (2004)
CrossRef ADS Google scholar
[5]
L. Jin, C. Hang, Y. Y. Jiang, C. J. Zhu, Z. Zheng, Y. Yao, G. X. Huang, and L. Ma, Towards generation of millihertz-linewidth laser light with 10−18 frequency instability via four-wave mixing, Appl. Phys. Lett. 114(5), 051104 (2019)
CrossRef ADS Google scholar
[6]
Y. F. Zhang, Z. P. Wang, J. Qiu, Y. Hong, and B. L. Yu, Spatially dependent four-wave mixing in semiconductor quantum wells, Appl. Phys. Lett. 115(17), 171905 (2019)
CrossRef ADS Google scholar
[7]
P. R. Hemmer, D. P. Katz, J. Donoghue, M. S. Shahriar, P. Kumar, and M. Cronin-Golomb, Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium, Opt. Lett. 20(9), 982 (1995)
CrossRef ADS Google scholar
[8]
M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, Efficient nonlinear frequency conversion with maximal atomic coherence, Phys. Rev. Lett. 77(21), 4326 (1996)
CrossRef ADS Google scholar
[9]
Y. P. Zhang, A. W. Brown, and M. Xiao, Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows, Phys. Rev. Lett. 99(12), 123603 (2007)
CrossRef ADS Google scholar
[10]
Y. Q. Zhang, Z. K. Wu, X. Yao, Z. Y. Zhang, H. X. Chen, H. B. Zhang, and Y. P. Zhang, Controlling multi-wave mixing signals via photonic band gap of electromagnetically induced absorption grating in atomic media, Opt. Express 21(24), 29338 (2013)
CrossRef ADS Google scholar
[11]
Z. Y. Zhang, R. Wang, Y. Q. Zhang, Y. V. Kartashov, F. Li, H. Zhong, H. Guan, K. L. Gao, F. L. Li, Y. P. Zhang, and M. Xiao, Observation of edge solitons in photonic graphene, Nat. Commun. 11(1), 1902 (2020)
CrossRef ADS Google scholar
[12]
Y. Q. Zhang, Z. K. Wu, M. R. Belić, H. B. Zheng, Z. G. Wang, M. Xiao, and Y. P. Zhang, Photonic Floquet topological insulators in atomic ensembles, Laser Photon Rev. 9(3), 331 (2015)
CrossRef ADS Google scholar
[13]
C. Hang, G. Huang, and V. V. Konotop, PT symmetry with a system of three-level atoms, Phys. Rev. Lett. 110(8), 083604 (2013)
CrossRef ADS Google scholar
[14]
P. Peng, W. Cao, C. Shen, W. Qu, J. Wen, L. Jiang, and Y. Xiao, Anti-parity–time symmetry with flying atoms, Nat. Phys. 12(12), 1139 (2016)
CrossRef ADS Google scholar
[15]
Z. Y. Zhang, Y. Q. Zhang, J. T. Sheng, L. Yang, M. A. Miri, D. N. Christodoulides, B. He, Y. P. Zhang, and M. Xiao, Observation of parity–time symmetry in optically induced atomic lattices, Phys. Rev. Lett. 117(12), 123601 (2016)
CrossRef ADS Google scholar
[16]
Y. Q. Zhang, D. Zhang, Z. Y. Zhang, C. B. Li, Y. P. Zhang, F. L. Li, M. R. Belić, and M. Xiao, Optical Bloch oscillation and Zener tunneling in an atomic system, Optica 4(5), 571 (2017)
CrossRef ADS Google scholar
[17]
D. Wei, Y. Yu, M. T. Cao, L. Y. Zhang, F. J. Ye, W. G. Guo, S. G. Zhang, H. Gao, and F. L. Li, Generation of Airy beams by four-wave mixing in Rubidium vapor cell, Opt. Lett. 39(15), 4557 (2014)
CrossRef ADS Google scholar
[18]
H. Zhong, Y. Q. Zhang, Z. Y. Zhang, C. B. Li, D. Zhang, Y. P. Zhang, and M. R. Belić, Nonparaxial selfaccelerating beams in an atomic vapor with electromagnetically induced transparency, Opt. Lett. 41(24), 5644 (2016)
CrossRef ADS Google scholar
[19]
H. F. Talbot, Facts relating to optical science, Philos. Mag. 9, 401 (1836)
CrossRef ADS Google scholar
[20]
L. Rayleigh, On copying diffraction-gratings, and on some phenomena connected therewith, Philos. Mag. 11(67), 196 (1881)
CrossRef ADS Google scholar
[21]
J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, Electromagnetically induced Talbot effect, Appl. Phys. Lett. 98(8), 081108 (2011)
CrossRef ADS Google scholar
[22]
Y. Q. Zhang, X. Yao, C. Z. Yuan, P. Y. Li, J. M. Yuan, W. K. Feng, S. Q. Jia, and Y. P. Zhang, Controllable multiwave mixing Talbot effect, IEEE Photonics J. 4, 2957 (2012)
CrossRef ADS Google scholar
[23]
Z. Y. Zhang, X. Liu, D. Zhang, J. T. Sheng, Y. Q. Zhang, Y. P. Zhang, and M. Xiao, Observation of electromagnetically induced Talbot effect in an atomic system, Phys. Rev. A 97(1), 013603 (2018)
CrossRef ADS Google scholar
[24]
R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, Discrete Talbot effect in waveguide arrays, Phys. Rev. Lett. 95(5), 053902 (2005)
CrossRef ADS Google scholar
[25]
H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, PT-symmetric Talbot effects, Phys. Rev. Lett. 109(3), 033902 (2012)
CrossRef ADS Google scholar
[26]
C. Ryu, M. F. Andersen, A. Vaziri, M. B. d’Arcy, J. M. Grossman, K. Helmerson, and W. D. Phillips, High-order quantum resonances observed in a periodically kicked Bose–Einstein condensate, Phys. Rev. Lett. 96(16), 160403 (2006)
CrossRef ADS Google scholar
[27]
Y. Lumer, L. Drori, Y. Hazan, and M. Segev, Accelerating self-imaging: The Airy–Talbot effect, Phys. Rev. Lett. 115(1), 013901 (2015)
CrossRef ADS Google scholar
[28]
Y. Q. Zhang, H. Zhong, M. R. Belić, X. Liu, W. P. Zhong, Y. P. Zhang, and M. Xiao, Dual accelerating Airy–Talbot recurrence effect, Opt. Lett. 40(24), 5742 (2015)
CrossRef ADS Google scholar
[29]
Y. Q. Zhang, H. Zhong, M. R. Belić, C. B. Li, Z. Y. Zhang, F. Wen, Y. P. Zhang, and M. Xiao, Fractional nonparaxial accelerating Talbot effect, Opt. Lett. 41(14), 3273 (2016)
CrossRef ADS Google scholar
[30]
Y. Zhang, J. M. Wen, S. N. Zhu, and M. Xiao, Nonlinear talbot effect, Phys. Rev. Lett. 104(18), 183901 (2010)
CrossRef ADS Google scholar
[31]
T. Gao, E. Estrecho, G. Li, O. A. Egorov, X. Ma, K. Winkler, M. Kamp, C. Schneider, S. Höfling, A. G. Truscott, and E. A. Ostrovskaya, Talbot effect for exciton polaritons, Phys. Rev. Lett. 117(9), 097403 (2016)
CrossRef ADS Google scholar
[32]
Y. Q. Zhang, M. R. Belić, H. B. Zheng, H. Chen, C. B. Li, J. P. Song, and Y. P. Zhang, Nonlinear Talbot effect from rogue waves, Phys. Rev. E 89(3), 032902 (2014)
CrossRef ADS Google scholar
[33]
Y. Q. Zhang, M. R. Belić, M. S. Petrović, H. B. Zheng, H. X. Chen, C. B. Li, K. Q. Lu, and Y. P. Zhang, Twodimensional linear and nonlinear Talbot effect from rogue waves, Phys. Rev. E 91(3), 032916 (2015)
CrossRef ADS Google scholar
[34]
K. Y. Zhan, Z. D. Yang, and B. Liu, Trajectory engineering of Airy–Talbot effect via dynamic linear potential, J. Opt. Soc. Am. B 35(12), 3044 (2018)
CrossRef ADS Google scholar
[35]
K. Y. Zhan, J. Wang, R. Y. Jiao, Z. D. Yang, and B. Liu, self‐imaging effect based on circular airy beams, Ann. Phys. 531(11), 1900293 (2019)
CrossRef ADS Google scholar
[36]
Y. Lumer, Y. Liang, R. Schley, I. Kaminer, E. Greenfield, D. H. Song, X. Z. Zhang, J. J. Xu, Z. G. Chen, and M. Segev, Incoherent self-accelerating beams, Optica 2(10), 886 (2015)
CrossRef ADS Google scholar
[37]
Z. K. Wu and Y. Z. Gu, Laguerre–Gaussian, Hermite– Gaussian, Bessel–Gaussian, and finite-Energy airy beams carrying orbital angular momentum in strongly nonlocal nonlinear media, J. Phys. Soc. Jpn. 85(12), 124402 (2016)
[38]
Z. K. Wu, Q. Zhang, H. Guo, and Y. Z. Gu, Microwavecontrolled airy beam propagation in multilevel atomic vapors, Optik 164, 465 (2018)
CrossRef ADS Google scholar
[39]
Z. K. Wu, Z. P. Wang, H. Guo, and Y. Z. Gu, Selfaccelerating Airy–Laguerre–Gaussian light bullets in a two-dimensional strongly nonlocal nonlinear medium, Opt. Express 25(24), 30468 (2017)
CrossRef ADS Google scholar
[40]
D. A. Steck, http://steck.us/alkalidata (2000)
[41]
M. D. Lukin, and A. Imamoğlu, Controlling photons using electromagnetically induced transparency, Nature 413(6853), 273 (2001)
CrossRef ADS Google scholar
[42]
R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, Y. Lumer, and M. Segev, Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories, Nat. Commun. 5(1), 5189 (2014)
CrossRef ADS Google scholar
[43]
I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, Nondiffracting accelerating wave packets of Maxwell’s equations, Phys. Rev. Lett. 108(16), 163901 (2012)
CrossRef ADS Google scholar
[44]
Z. K. Wu, H. Guo, W. Wang, and Y. Z. Gu, Evolution of finite energy Airy beams in cubic–quintic atomic vapor system, Front. Phys. 13(1), 134201 (2018)
CrossRef ADS Google scholar
[45]
Z. K. Wu, P. Li, and Y. Z. Gu, Propagation dynamics of finite-energy Airy beams in nonlocal nonlinear media, Front. Phys. 12(5), 124203 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(2337 KB)

Accesses

Citations

Detail

Sections
Recommended

/