Talbot effect in nonparaxial self-accelerating beams with electromagnetically induced transparency

Jing-Min Ru , Zhen-Kun Wu , Ya-Gang Zhang , Feng Wen , Yu-Zong Gu

Front. Phys. ›› 2020, Vol. 15 ›› Issue (5) : 52503

PDF (2337KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (5) : 52503 DOI: 10.1007/s11467-020-0984-2
RESEARCH ARTICLE

Talbot effect in nonparaxial self-accelerating beams with electromagnetically induced transparency

Author information +
History +
PDF (2337KB)

Abstract

In this study, we report on the fractional Talbot effect of nonparaxial self-accelerating beams in a multilevel electromagnetically induced transparency (EIT) atomic configuration, which, to the best of our knowledge, is the first study on this subject. The Talbot effect originates from superposed eigenmodes of the Helmholtz equation and forms in the EIT window in the presence of both linear and cubic susceptibilities. The Talbot effect can be realized by appropriately selecting the coefficients of the beam components. Our results indicate that the larger the radial difference between beam components, the stronger the interference between them, the smaller the Talbot angle is. The results of this study can be useful when studying optical imaging, optical measurements, and optical computing.

Keywords

multilevel atomic configuration / nonparaxial self-accelerating beam / Talbot effect / electromagnetically induced transparency

Cite this article

Download citation ▾
Jing-Min Ru, Zhen-Kun Wu, Ya-Gang Zhang, Feng Wen, Yu-Zong Gu. Talbot effect in nonparaxial self-accelerating beams with electromagnetically induced transparency. Front. Phys., 2020, 15(5): 52503 DOI:10.1007/s11467-020-0984-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. E. Harris, Electromagnetically induced transparency, Phys. Today 50(7), 36 (1997)

[2]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys. 77(2), 633 (2005)

[3]

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence, Phys. Rev. Lett. 82(9), 1847 (1999)

[4]

H. Kang, G. Hernandez, and Y. Zhu, Resonant four-wave mixing with slow light, Phys. Rev. A 70(6), 061804 (2004)

[5]

L. Jin, C. Hang, Y. Y. Jiang, C. J. Zhu, Z. Zheng, Y. Yao, G. X. Huang, and L. Ma, Towards generation of millihertz-linewidth laser light with 10−18 frequency instability via four-wave mixing, Appl. Phys. Lett. 114(5), 051104 (2019)

[6]

Y. F. Zhang, Z. P. Wang, J. Qiu, Y. Hong, and B. L. Yu, Spatially dependent four-wave mixing in semiconductor quantum wells, Appl. Phys. Lett. 115(17), 171905 (2019)

[7]

P. R. Hemmer, D. P. Katz, J. Donoghue, M. S. Shahriar, P. Kumar, and M. Cronin-Golomb, Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium, Opt. Lett. 20(9), 982 (1995)

[8]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, Efficient nonlinear frequency conversion with maximal atomic coherence, Phys. Rev. Lett. 77(21), 4326 (1996)

[9]

Y. P. Zhang, A. W. Brown, and M. Xiao, Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows, Phys. Rev. Lett. 99(12), 123603 (2007)

[10]

Y. Q. Zhang, Z. K. Wu, X. Yao, Z. Y. Zhang, H. X. Chen, H. B. Zhang, and Y. P. Zhang, Controlling multi-wave mixing signals via photonic band gap of electromagnetically induced absorption grating in atomic media, Opt. Express 21(24), 29338 (2013)

[11]

Z. Y. Zhang, R. Wang, Y. Q. Zhang, Y. V. Kartashov, F. Li, H. Zhong, H. Guan, K. L. Gao, F. L. Li, Y. P. Zhang, and M. Xiao, Observation of edge solitons in photonic graphene, Nat. Commun. 11(1), 1902 (2020)

[12]

Y. Q. Zhang, Z. K. Wu, M. R. Belić, H. B. Zheng, Z. G. Wang, M. Xiao, and Y. P. Zhang, Photonic Floquet topological insulators in atomic ensembles, Laser Photon Rev. 9(3), 331 (2015)

[13]

C. Hang, G. Huang, and V. V. Konotop, PT symmetry with a system of three-level atoms, Phys. Rev. Lett. 110(8), 083604 (2013)

[14]

P. Peng, W. Cao, C. Shen, W. Qu, J. Wen, L. Jiang, and Y. Xiao, Anti-parity–time symmetry with flying atoms, Nat. Phys. 12(12), 1139 (2016)

[15]

Z. Y. Zhang, Y. Q. Zhang, J. T. Sheng, L. Yang, M. A. Miri, D. N. Christodoulides, B. He, Y. P. Zhang, and M. Xiao, Observation of parity–time symmetry in optically induced atomic lattices, Phys. Rev. Lett. 117(12), 123601 (2016)

[16]

Y. Q. Zhang, D. Zhang, Z. Y. Zhang, C. B. Li, Y. P. Zhang, F. L. Li, M. R. Belić, and M. Xiao, Optical Bloch oscillation and Zener tunneling in an atomic system, Optica 4(5), 571 (2017)

[17]

D. Wei, Y. Yu, M. T. Cao, L. Y. Zhang, F. J. Ye, W. G. Guo, S. G. Zhang, H. Gao, and F. L. Li, Generation of Airy beams by four-wave mixing in Rubidium vapor cell, Opt. Lett. 39(15), 4557 (2014)

[18]

H. Zhong, Y. Q. Zhang, Z. Y. Zhang, C. B. Li, D. Zhang, Y. P. Zhang, and M. R. Belić, Nonparaxial selfaccelerating beams in an atomic vapor with electromagnetically induced transparency, Opt. Lett. 41(24), 5644 (2016)

[19]

H. F. Talbot, Facts relating to optical science, Philos. Mag. 9, 401 (1836)

[20]

L. Rayleigh, On copying diffraction-gratings, and on some phenomena connected therewith, Philos. Mag. 11(67), 196 (1881)

[21]

J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, Electromagnetically induced Talbot effect, Appl. Phys. Lett. 98(8), 081108 (2011)

[22]

Y. Q. Zhang, X. Yao, C. Z. Yuan, P. Y. Li, J. M. Yuan, W. K. Feng, S. Q. Jia, and Y. P. Zhang, Controllable multiwave mixing Talbot effect, IEEE Photonics J. 4, 2957 (2012)

[23]

Z. Y. Zhang, X. Liu, D. Zhang, J. T. Sheng, Y. Q. Zhang, Y. P. Zhang, and M. Xiao, Observation of electromagnetically induced Talbot effect in an atomic system, Phys. Rev. A 97(1), 013603 (2018)

[24]

R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, Discrete Talbot effect in waveguide arrays, Phys. Rev. Lett. 95(5), 053902 (2005)

[25]

H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, PT-symmetric Talbot effects, Phys. Rev. Lett. 109(3), 033902 (2012)

[26]

C. Ryu, M. F. Andersen, A. Vaziri, M. B. d’Arcy, J. M. Grossman, K. Helmerson, and W. D. Phillips, High-order quantum resonances observed in a periodically kicked Bose–Einstein condensate, Phys. Rev. Lett. 96(16), 160403 (2006)

[27]

Y. Lumer, L. Drori, Y. Hazan, and M. Segev, Accelerating self-imaging: The Airy–Talbot effect, Phys. Rev. Lett. 115(1), 013901 (2015)

[28]

Y. Q. Zhang, H. Zhong, M. R. Belić, X. Liu, W. P. Zhong, Y. P. Zhang, and M. Xiao, Dual accelerating Airy–Talbot recurrence effect, Opt. Lett. 40(24), 5742 (2015)

[29]

Y. Q. Zhang, H. Zhong, M. R. Belić, C. B. Li, Z. Y. Zhang, F. Wen, Y. P. Zhang, and M. Xiao, Fractional nonparaxial accelerating Talbot effect, Opt. Lett. 41(14), 3273 (2016)

[30]

Y. Zhang, J. M. Wen, S. N. Zhu, and M. Xiao, Nonlinear talbot effect, Phys. Rev. Lett. 104(18), 183901 (2010)

[31]

T. Gao, E. Estrecho, G. Li, O. A. Egorov, X. Ma, K. Winkler, M. Kamp, C. Schneider, S. Höfling, A. G. Truscott, and E. A. Ostrovskaya, Talbot effect for exciton polaritons, Phys. Rev. Lett. 117(9), 097403 (2016)

[32]

Y. Q. Zhang, M. R. Belić, H. B. Zheng, H. Chen, C. B. Li, J. P. Song, and Y. P. Zhang, Nonlinear Talbot effect from rogue waves, Phys. Rev. E 89(3), 032902 (2014)

[33]

Y. Q. Zhang, M. R. Belić, M. S. Petrović, H. B. Zheng, H. X. Chen, C. B. Li, K. Q. Lu, and Y. P. Zhang, Twodimensional linear and nonlinear Talbot effect from rogue waves, Phys. Rev. E 91(3), 032916 (2015)

[34]

K. Y. Zhan, Z. D. Yang, and B. Liu, Trajectory engineering of Airy–Talbot effect via dynamic linear potential, J. Opt. Soc. Am. B 35(12), 3044 (2018)

[35]

K. Y. Zhan, J. Wang, R. Y. Jiao, Z. D. Yang, and B. Liu, self‐imaging effect based on circular airy beams, Ann. Phys. 531(11), 1900293 (2019)

[36]

Y. Lumer, Y. Liang, R. Schley, I. Kaminer, E. Greenfield, D. H. Song, X. Z. Zhang, J. J. Xu, Z. G. Chen, and M. Segev, Incoherent self-accelerating beams, Optica 2(10), 886 (2015)

[37]

Z. K. Wu and Y. Z. Gu, Laguerre–Gaussian, Hermite– Gaussian, Bessel–Gaussian, and finite-Energy airy beams carrying orbital angular momentum in strongly nonlocal nonlinear media, J. Phys. Soc. Jpn. 85(12), 124402 (2016)

[38]

Z. K. Wu, Q. Zhang, H. Guo, and Y. Z. Gu, Microwavecontrolled airy beam propagation in multilevel atomic vapors, Optik 164, 465 (2018)

[39]

Z. K. Wu, Z. P. Wang, H. Guo, and Y. Z. Gu, Selfaccelerating Airy–Laguerre–Gaussian light bullets in a two-dimensional strongly nonlocal nonlinear medium, Opt. Express 25(24), 30468 (2017)

[40]

D. A. Steck, 2000)

[41]

M. D. Lukin, and A. Imamoğlu, Controlling photons using electromagnetically induced transparency, Nature 413(6853), 273 (2001)

[42]

R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, Y. Lumer, and M. Segev, Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories, Nat. Commun. 5(1), 5189 (2014)

[43]

I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, Nondiffracting accelerating wave packets of Maxwell’s equations, Phys. Rev. Lett. 108(16), 163901 (2012)

[44]

Z. K. Wu, H. Guo, W. Wang, and Y. Z. Gu, Evolution of finite energy Airy beams in cubic–quintic atomic vapor system, Front. Phys. 13(1), 134201 (2018)

[45]

Z. K. Wu, P. Li, and Y. Z. Gu, Propagation dynamics of finite-energy Airy beams in nonlocal nonlinear media, Front. Phys. 12(5), 124203 (2017)

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2337KB)

644

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/