Isotropic or anisotropic screening in black phosphorous: Can doping tip the balance?
Zhi-Min Liu, Ye Yang, Yue-Shao Zheng, Qin-Jun Chen, Ye-Xin Feng
Isotropic or anisotropic screening in black phosphorous: Can doping tip the balance?
Black phosphorus (BP), a layered van der Waals (vdW) crystal, has unique in-plane band anisotropy and many resulting anisotropy properties such as the effective mass, electron mobility, optical absorption, thermal conductivity and plasmonic dispersion. However, whether anisotropic or isotropic charge screening exist in BP remains a controversial issue. Based on first-principles calculations, we study the screening properties in both of single-layer and bulk BP, especially concerning the role of doping. Without charge doping, the single-layer and bulk-phase BP show slight anisotropic screening. Electron and hole doping can increase the charge screening of BP and significantly change the relative static dielectric tensor elements along two different in-plane directions. We further study the charge density change induced by potassium (K) adatom near the BP surface, under different levels of charge doping. The calculated two-dimensional (2D) charge redistribution patterns also confirm that doping can greatly affect the screening feature and tip the balance between isotropic and anisotropic screening. We corroborate that screening in BP exhibits slight intrinsic anisotropy and doping has significant influence on its screening property.
first-principles calculation / charge screening / black phosphorus / dielectric function / doping
[1] |
L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)
CrossRef
ADS
Google scholar
|
[2] |
X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, Highly anisotropic and robust excitons in monolayer black phosphorus, Nat. Nanotechnol. 10(6), 517 (2015)
CrossRef
ADS
Google scholar
|
[3] |
R. A. Doganov, S. P. Koenig, Y. Yeo, K. Watanabe, T. Taniguchi, and B. Özyilmaz, Transport properties of ultrathin black phosphorus on hexagonal boron nitride, Appl. Phys. Lett. 106(8), 083505 (2015)
CrossRef
ADS
Google scholar
|
[4] |
S. W. Kim, H. Jung, H. J. Kim, J. H. Choi, S. H. Wei, and J. H. Cho, Microscopic mechanism of the tunable band gap in potassium-doped few-layer black phosphorus, Phys. Rev. B 96(7), 075416 (2017)
CrossRef
ADS
Google scholar
|
[5] |
A. Chaves, T. Low, P. Avouris, D. Çakır, and F. M. Peeters, Anisotropic exciton Stark shift in black phosphorus, Phys. Rev. B 91(15), 155311 (2015)
CrossRef
ADS
Google scholar
|
[6] |
X. Ling, H. Wang, S. Huang, F. Xia, and M. S. Dresselhaus, The renaissance of black phosphorus, Proc. Natl. Acad. Sci. 112(15), 4523 (2015)
CrossRef
ADS
Google scholar
|
[7] |
F. Xia, H. Wang, and Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics, Nat. Commun. 5, 4458 (2014)
CrossRef
ADS
Google scholar
|
[8] |
R. Wang, X. Ren, Z. Yan, W. E. I. Sha, L. J. Jiang, and G. C. Shan, Graphene based functional devices: A short review, Front. Phys. 14(1), 13603 (2019)
CrossRef
ADS
Google scholar
|
[9] |
K. S. Novoselov, D. Andreeva, W. Ren, and G. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)
CrossRef
ADS
Google scholar
|
[10] |
H. Yuan and Z. Li, Interfacial properties of black phosphorus/ transition metal carbide van der Waals heterostructures, Front. Phys. 13(3), 138103 (2018)
CrossRef
ADS
Google scholar
|
[11] |
M. Hu, N. Zhang, G. Shan, J. Gao, J. Liu, and R. K. Y. Li, Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber, Front. Phys. 13(4), 138113 (2018)
CrossRef
ADS
Google scholar
|
[12] |
Z. Ma, J. Zhuang, X. Zhang, and Z. Zhou, SiP monolayers: New 2D structures of group IV–V compounds for visible-light photohydrolytic catalysts, Front. Phys. 13(3), 138104 (2018)
CrossRef
ADS
Google scholar
|
[13] |
S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. C. Neto, and B. Özyilmaz, Electric field effect in ultrathin black phosphorus, Appl. Phys. Lett. 104(10), 103106 (2014)
CrossRef
ADS
Google scholar
|
[14] |
X. Liu, C. R. Ryder, S. A. Wells, and M. C. Hersam, Resolving the in-plane anisotropic properties of black phosphorus, Small Methods 1(6), 1700143 (2017)
CrossRef
ADS
Google scholar
|
[15] |
H. Tian, J. Tice, R. Fei, V. Tran, X. Yan, L. Yang, and H. Wang, Low-symmetry two-dimensional materials for electronic and photonic applications, Nano Today 11(6), 763 (2016)
CrossRef
ADS
Google scholar
|
[16] |
Z. Tian, Y. Gan, T. Zhang, B. Wang, H. Ji, Y. Feng, and J. Xue, Isotropic charge screening of anisotropic black phosphorus revealed by potassium adatoms, Phys. Rev. B 100(8), 085440 (2019)
CrossRef
ADS
Google scholar
|
[17] |
T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, Plasmons and screening in monolayer and multilayer black phosphorus, Phys. Rev. Lett. 113(10), 106802 (2014)
CrossRef
ADS
Google scholar
|
[18] |
B. Smith, B. Vermeersch, J. Carrete, E. Ou, J. Kim, N. Mingo, D. Akinwande, and L. Shi, Temperature and thickness dependences of the anisotropic in-plane thermal conductivity of black phosphorus, Adv. Mater. 29(5), 1603756 (2017)
CrossRef
ADS
Google scholar
|
[19] |
X. J. Li, J. H. Yu, Z. H. Wu, and W. Yang, Tuning the electrical and optical anisotropy of a monolayer black phosphorus magnetic superlattice, Nanotechnology 29(17), 174001 (2018)
CrossRef
ADS
Google scholar
|
[20] |
Y. M. Qing, H. F. Ma, and T. J. Cui, Strong coupling between magnetic plasmons and surface plasmons in a black phosphorus-spacer-metallic grating hybrid system, Opt. Lett. 43(20), 4985 (2018)
CrossRef
ADS
Google scholar
|
[21] |
Q. Fo, L. Pan, X. Chen, Q. Xu, C. Ouyang, X. Zhang, Z. Tian, J. Gu, L. Liu, J. Han, and W. Zhang, Anisotropic plasmonic response of black phosphorus nanostrips in terahertz metamaterials, IEEE Photonics J. 10(3), 1 (2018)
CrossRef
ADS
Google scholar
|
[22] |
Y. Abate, S. Gamage, L. Zhen, S. B. Cronin, H. Wang, V. Babicheva, M. H. Javani, and M. I. Stockman, Nanoscopy reveals surface-metallic black phosphorus, Light Sci. Appl. 5(10), e16162 (2016)
CrossRef
ADS
Google scholar
|
[23] |
D. A. Prishchenko, V. G. Mazurenko, M. I. Katsnelson, and A. N. Rudenko, Coulomb interactions and screening effects in few-layer black phosphorus: A tight-binding consideration beyond the long-wavelength limit, 2D Mater. 4, 025064 (2017)
CrossRef
ADS
Google scholar
|
[24] |
B. Kiraly, E. J. Knol, K. Volckaert, D. Biswas, A. N. Rudenko, D. A. Prishchenko, V. G. Mazurenko, M. I. Katsnelson, P. Hofmann, D. Wegner, and A. A. Khajetoorians, Anisotropic two-dimensional screening at the surface of black phosphorus, Phys. Rev. Lett. 123(21), 216403 (2019)
CrossRef
ADS
Google scholar
|
[25] |
K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, K. Murakami, and Y. Igasaki, Doping effects on optical propert ies of epitaxial ZnO layers determined by spectroscopic ellipsometry, Appl. Surf. Sci. 175–176, 543 (2001)
CrossRef
ADS
Google scholar
|
[26] |
P. Gava, M. Lazzeri, A. M. Saitta, and F. Mauri, Ab initio study of gap opening and screening effects in gated bilayer graphene, Phys. Rev. B 79(16), 165431 (2009)
CrossRef
ADS
Google scholar
|
[27] |
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, QUANTUM ESPRESSO: a modular and opensource software project for quantum simulations of materials, J. Phys.: Condens. Matter 21(39), 395502 (2009)
CrossRef
ADS
Google scholar
|
[28] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[29] |
A. Brown and S. Rundqvist, Refinement of the crystal structure of black phosphorus, Acta Crystallogr. 19(4), 684 (1965)
CrossRef
ADS
Google scholar
|
[30] |
J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen, and S. G. Louie, BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures, Comput. Phys. Commun. 183(6), 1269 (2012)
CrossRef
ADS
Google scholar
|
[31] |
G. Kresse and J. Hafner, Ab initiomolecular dynamics for open-shell transition metals, Phys. Rev. B 48(17), 13115 (1993)
CrossRef
ADS
Google scholar
|
[32] |
G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef
ADS
Google scholar
|
[33] |
A. N. Rudenko and M. I. Katsnelson, Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus, Phys. Rev. B 89(20), 201408 (2014)
CrossRef
ADS
Google scholar
|
[34] |
H. Asahina and A. Morita, Band structure and optical properties of black phosphorus, J. Phys. C Solid State Phys. 17(11), 1839 (1984)
CrossRef
ADS
Google scholar
|
[35] |
E. Gaufrès, F. Fossard, V. Gosselin, L. Sponza, F. Ducastelle, Z. Li, S. G. Louie, R. Martel, M. Côté, and A. Loiseau, Momentum-resolved dielectric response of free-standing mono-, Bi-, and tri-layer black phosphorus, Nano Lett. 19(11), 8303 (2019)
CrossRef
ADS
Google scholar
|
[36] |
D. C. Reynolds, B. Jogai, P. W. Yu, K. R. Evans, and C. E. Stutz, Increased screening of the hydrogenic donor due to modulation doping in quantum wells, Phys. Rev. B 46(23), 15274 (1992)
CrossRef
ADS
Google scholar
|
[37] |
T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. C. Neto, Tunable optical properties of multilayer black phosphorus thin films, Phys. Rev. B 90(7), 075434 (2014)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |