Observation of pseudogap in SnSe2 atomic layers grown on graphite

Ya-Hui Mao , Huan Shan , Jin-Rong Wu , Ze-Jun Li , Chang-Zheng Wu , Xiao-Fang Zhai , Ai-Di Zhao , Bing Wang

Front. Phys. ›› 2020, Vol. 15 ›› Issue (4) : 43501

PDF (2037KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (4) : 43501 DOI: 10.1007/s11467-020-0977-1
RESEARCH ARTICLE

Observation of pseudogap in SnSe2 atomic layers grown on graphite

Author information +
History +
PDF (2037KB)

Abstract

Superconducting metal dichalcogenides (MDCs) present several similarities to the other layered superconductors like cuprates. The superconductivity in atomically thin MDCs has been demonstrated by recent experiments, however, the investigation of the superconductivity intertwined with other orders are scarce. Investigating the pseudogap in atomic layers of MDCs may help to understand the superconducting mechanism for these true two-dimensional (2D) superconducting systems. Herein we report a pseudogap opening in the tunneling spectra of thin layers of SnSe2 epitaxially grown on highly oriented pyrolytic graphite (HOPG) with scanning tunneling microscopy/spectroscopy (STM/STS). A significant V-shaped pseudogap was observed to open near the Fermi level (EF) in the STS. And at elevated temperatures, the gap gradually evolves to a shallow dip. Our experimental observations provide direct evidence of a pseudogap state in the electron-doped SnSe2 atomic layers on the HOPG surface, which may stimulate further exploration of the mechanism of superconductivity at 2D limit in MDCs.

Keywords

scanning tunneling microscopy / pseudogap / metal dichalcogenides / SnSe2 / van der Waals epitaxy

Cite this article

Download citation ▾
Ya-Hui Mao, Huan Shan, Jin-Rong Wu, Ze-Jun Li, Chang-Zheng Wu, Xiao-Fang Zhai, Ai-Di Zhao, Bing Wang. Observation of pseudogap in SnSe2 atomic layers grown on graphite. Front. Phys., 2020, 15(4): 43501 DOI:10.1007/s11467-020-0977-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353(6298), 461 (2016)

[2]

P. Chen, Y. H. Chan, X. Y. Fang, Y. Zhang, M. Y. Chou, S. K. Mo, Z. Hussain, A. V. Fedorov, and T. C. Chiang, Charge density wave transition in single-layer titanium diselenide, Nat. Commun. 6(1), 1 (2015)

[3]

P. Chen, W. W. Pai, Y. H. Chan, A. Takayama, C. Z. Xu, A. Karn, S. Hasegawa, M. Y. Chou, S. K. Mo, A. V. Fedorov, and T. C. Chiang, Emergence of charge density waves and a pseudogap in single-layer TiTe2, Nat. Commun. 8(1), 1 (2017)

[4]

M. M. Ugeda, A. J. Bradley, Y. Zhang, S. Onishi, Y. Chen, W. Ruan, C. Ojeda-Aristizabal, H. Ryu, M. T. Edmonds, H. Z. Tsai, A. Riss, S. K. Mo, D. H. Lee, A. Zettl, Z. Hussain, Z. X. Shen, and M. F. Crommie, Characterization of collective ground states in single-layer NbSe2, Nat. Phys. 12(1), 92 (2016)

[5]

X. X. Xi, Z. F. Wang, W. W. Zhao, J. H. Park, K. T. Law, H. Berger, L. Forró, J. Shan, and K. F. Mak, Ising pairing in superconducting NbSe2 atomic layers, Nat. Phys. 12(2), 139 (2016)

[6]

Y. Cao, A. Mishchenko, G. L. Yu, E. Khestanova, A. P. Rooney, E. Prestat, A. V. Kretinin, P. Blake, M. B. Shalom, C. Woods, J. Chapman, G. Balakrishnan, I. V. Grigorieva, K. S. Novoselov, B. A. Piot, M. Potemski, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, and R. V. Gorbachev, Quality heterostructures from twodimensional crystals unstable in air by their assembly in inert atmosphere, Nano Lett. 15(8), 4914 (2015)

[7]

E. Navarro-Moratalla, J. O. Island, S. Mañas-Valero, E. Pinilla-Cienfuegos, A. Castellanos-Gomez, J. Quereda, G. Rubio-Bollinger, L. Chirolli, J. A. Silva-Guillén, N. Agraït, G. A. Steele, F. Guinéa, H. S. van der Zant, and E. Coronado, Enhanced superconductivity in atomically thin TaS2, Nat. Commun. 7(1), 1 (2016)

[8]

J. T. Ye, Y. J. Zhang, R. Akashi, M. S. Bahramy, R. Arita, and Y. Iwasa, Superconducting dome in a gatetuned band insulator, Science 338(6111), 1193 (2012)

[9]

J. M. Lu, O. Zheliuk, I. Leermakers, N. F. Q. Yuan, U. Zeitler, K. T. Law, and J. T. Ye, Evidence for twodimensional Ising superconductivity in gated MoS2, Science 350(6266), 1353 (2015)

[10]

Y. Saito, Y. Nakamura, M. S. Bahramy, Y. Kohama, J. T. Ye, Y. Kasahara, Y. Nakagawa, M. Onga, M. Tokunaga, T. Nojima, Y. Yanase, and Y. Iwasa, Superconductivity protected by spin-valley locking in ion-gated MoS2, Nat. Phys. 12(2), 144 (2016)

[11]

C. Pépin, V. S. de Carvalho, T. Kloss, and X. Montiel, Pseudogap, charge order, and pairing density wave at the hot spots in cuprate superconductors, Phys. Rev. B. 90(19), 195207 (2014)

[12]

T. Wu, H. Mayaffre, S. Krämer, M. Horvatić, C. Berthier, W. N. Hardy, R. X. Liang, D. A. Bonn, and M. H. Julien, Incipient charge order observed by NMR in the normal state of YBa2Cu3Oy, Nat. Commun. 6(1), 6438 (2014)

[13]

J. J. Wen, H. Huang, S. J. Lee, H. Jang, J. Knight, Y. S. Lee, M. Fujita, K. M. Suzuki, S. Asano, S. A. Kivelson, C. C. Kao, and J. S. Lee, Observation of two types of chargedensity- wave orders in superconducting La2−xSrxCuO4, Nat. Commun. 10(1), 3269 (2019)

[14]

B. Loret, N. Auvray, Y. Gallais, M. Cazayous, A. Forget, D. Colson, M. H. Julien, I. Paul, M. Civelli, and A. Sacuto, Intimate link between charge density wave, pseudogap and superconducting energy scales in cuprates, Nat. Phys. 15(8), 15771 (2019)

[15]

S. V. Borisenko, A. A. Kordyuk, A. N. Yaresko, V. B. Zabolotnyy, D. S. Inosov, R. Schuster, B. Büchner, R. Weber, R. Follath, L. Patthey, and H. Berger, Pseudogap and charge density waves in two dimensions, Phys. Rev. Lett. 100(19), 196402 (2008)

[16]

D. V. Evtushinsky, A. A. Kordyuk, V. B. Zabolotnyy, D. S. Inosov, B. Büchner, H. Berger, L. Patthey, R. Follath, and S. V. Borisenko, Pseudogap-driven sign reversal of the Hall effect,Phys. Rev. Lett. 100(23), 236402 (2008)

[17]

S. V. Borisenko, A. A. Kordyuk, V. B. Zabolotnyy, D. S. Inosov, D. Evtushinsky, B. Büchner, A. N. Yaresko, A. Varykhalov, R. Follath, W. Eberhardt, L. Patthey, and H. Berger, Two energy gaps and Fermi-surface “arcs” in NbSe2, Phys. Rev. Lett. 102(16), 166402 (2009)

[18]

A. Soumyanarayanan, M. M. Yee, Y. He, J. van Wezel, D. J. Rahn, K. Rossnagel, E. W. Hudson, M. R. Norman, and J. E. Hoffman, Quantum phase transition from triangular to stripe charge order in NbSe2, Proc. Natl. Acad. Sci. USA 110(5), 1623 (2013)

[19]

Y. Umemoto, K. Sugawara, Y. Nakata, T. Takahashi, and T. Sato, Pseudogap, Fermi arc, and Peierls-insulating phase induced by 3D–2D crossover in monolayer VSe2, Nano Res. 12(1), 165 (2019)

[20]

Z. J. Li, Y. C. Zhao, K. J. Mu, H. Shan, Y. Q. Guo, J. J. Wu, Y. Q. Su, Q. R. Wu, Z. Sun, A. D. Zhao, X. F. Cui, C. Z. Wu, and Y. Xie, Molecule-confined engineering toward superconductivity and ferromagnetism in two-dimensional superlattice, J. Am. Chem. Soc. 139(45), 16398 (2017)

[21]

Y. H. Zhou, B. W. Zhang, X. L. Chen, C. C. Gu, C. An, Y. Zhou, K. M. Cai, Y. F. Yuan, C. H. Chen, H. Wu, R. R. Zhang, C. Y. Park, Y. M. Xiong, X. W. Zhang, K. Y. Wang, and Z. R. Yang, Pressure-induced metallization and robust superconductivity in pristine 1T-SnSe2, Adv. Electron. Mater. 4(8), 1800155 (2018)

[22]

J. W. Zeng, E. Liu, Y. J. Fu, Z. Y. Chen, C. Pan, C. Y. Wang, M. Wang, Y. J. Wang, K. Xu, S. H. Cai, X. X. Yan, Y. Wang, X. W. Liu, P. Wang, S. J. Liang, Y. Cui, H. Y. Hwang, H. T. Yuan, and F. Miao, Gate-induced interfacial superconductivity in 1T-SnSe2, Nano Lett. 18(2), 1410 (2018)

[23]

Y. M. Zhang, J. Q. Fan, W. L. Wang, D. Zhang, L. L. Wang, W. Li, K. He, C. L. Song, X. C. Ma, and Q. K. Xue, Observation of interface superconductivity in a SnSe2/epitaxial graphene van der Waals heterostructure, Phys. Rev. B 98(22), 220508 (2018)

[24]

Z. B. Shao, Z. G. Fu, S. J. Li, Y. Cao, Q. Bian, H. G. Sun, Z. Y. Zhang, H. Gedeon, X. Zhang, L. J. Liu, Z. W. Cheng, F. W. Zheng, P. Zhang, and M. H. Pan, Strongly compressed few-layered SnSe2 films grown on a SrTiO3 substrate: The coexistence of charge ordering and enhanced interfacial superconductivity, Nano Lett. 19(8), 5304 (2019)

[25]

P. Yu, X. C. Yu, W. L. Lu, H. Lin, L. F. Sun, K. Z. Du, F. C. Liu, W. Fu, Q. S. Zeng, Z. X. Shen, C. H. Jin, Q. J. Wang, and Z. Liu, Fast photoresponse from 1T tin diselenide atomic layers, Adv. Funct. Mater. 26(1), 137 (2016)

[26]

Y. B. Zhang, V. W. Brar, F. Wang, C. Girit, Y. Yayon, M. Panlasigui, A. Zettl, and M. F. Crommie, Giant phononinduced conductance in scanning tunnelling spectroscopy of gate-tunable graphene, Nat. Phys. 4(8), 627 (2008)

[27]

D. W. Shen, Y. Zhang, L. X. Yang, J. Wei, H. W. Ou, J. K. Dong, B. P. Xie, C. He, J. F. Zhao, B. Zhou, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, J. Shi, and D. L. Feng, Primary role of the barely occupied states in the charge density wave formation of NbSe2, Phys. Rev. Lett. 101(22), 226406 (2008)

[28]

K. C. Rahnejat, C. A. Howard, N. E. Shuttleworth, S. R. Schofield, K. Iwaya, C. F. Hirjibehedin, C. Renner, G. Aeppli, and M. Ellerby, Charge density waves in the graphene sheets of the superconductor CaC6, Nat. Commun. 2(1), 1 (2011)

[29]

Ø. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Renner, Scanning tunneling spectroscopy of hightemperature superconductors, Rev. Mod. Phys. 79(1), 353 (2007)

[30]

T. Kondo, R. Khasanov, T. Takeuchi, J. Schmalian, and A. Kaminski, Competition between the pseudogap and superconductivity in the high-Tccopper oxides, Nature 457(7227), 296 (2009)

[31]

M. J. Lawler, K. Fujita, J. Lee, A. R. Schmidt, Y. Kohsaka, C. K. Kim, H. Eisaki, S. Uchida, J. C. Davis, J. P. Sethna, and E. A. Kim, Intra-unit-cell electronic nematicity of the high-Tccopper-oxide pseudogap states, Nature 466(7304), 347 (2010)

[32]

K. W. Zhang, C. L. Yang, B. Lei, P. C. Lu, X. B. Li, Z. Y. Jia, Y. H. Song, J. Sun, X. H. Chen, J. X. Li, and S. C. Li, Unveiling the charge density wave inhomogeneity and pseudogap state in 1T-TiSe2, Sci. Bull. 63(7), 426 (2018)

[33]

A. Damascelli, Z. Hussain, and Z. X. Shen, Angleresolved photoemission studies of the cuprate superconductors, Rev. Mod. Phys. 75(2), 473 (2003)

[34]

M. Hashimoto, I. M. Vishik, R. H. He, T. P. Devereaux, and Z. X. Shen, Energy gaps in high-transitiontemperature cuprate superconductors, Nat. Phys. 10(7), 483 (2014)

[35]

X. Montiel, T. Kloss, C. Pépin, S. Benhabib, Y. Gallais, and A. Sacuto, ηcollective mode as A1g Raman resonance in cuprate superconductors, Phys. Rev. B 93(2), 024515 (2016)

[36]

T. Shimada, F. S. Ohuchi, and B. A. Parkinson, Work function and photothreshold of layered metal dichalcogenides, Jpn. J. Appl. Phys. 1(33), 2696 (1994)

[37]

H. Ago, T. Kugler, F. Cacialli, K. Petritsch, R. H. Friend, W. R. Salaneck, Y. Ono, T. Yamabe, and K. Tanaka, Work function of purified and oxidised carbon nanotubes, Synth. Met. 103(1–3), 2494 (1999)

[38]

Y. Saito, T. Nojima, and Y. Iwasa, Highly crystalline 2D superconductors, Nat. Rev. Mater. 2(1), 1 (2017)

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2037KB)

1211

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/