Spin-1 pyrochlore antiferromagnets: Theory, model, and materials’ survey
Yong-Hao Gao, Xu-Ping Yao, Fei-Ye Li, Gang Chen
Spin-1 pyrochlore antiferromagnets: Theory, model, and materials’ survey
Pyrochlore magnets can be a unique platform to demonstrate numerous important concepts and applications of frustrated magnetic physics in modern condensed matter physics. Most works on pyrochlore magnets deal with the interacting spin-1/2 local moments, while much less works have studied the spin-1 systems. We here review the physics with interacting spin-1 local moments on the pyrochlore lattice to illustrate the potentially interesting physics associated with spin-1 magnets. The generic pyrochlore spin-1 model includes the antiferromagnetic Heisenberg interaction, the Dzyaloshinskii– Moriya interaction and the single-ion spin anisotropy. The global phase diagram of this generic spin model is reviewed, and the relation between different quantum phases in the phase diagram is clarified. The critical properties of the transition from the parent quantum paramagnet to the proximate orders are discussed. The presence of quantum order by disorder in the parts of the ordered phases is analyzed. The elementary excitations with respect to the ground states are further reviewed, and the topological natures of these excitations are carefully addressed. The materials’ relevance of the spin-1 pyrochlore magnets are finally reviewed. This review may provide insights about the interesting spin-1 local moments on frustrated systems.
topological magnon / quantum order by disorder / Dzyaloshinskii–Moriya interaction / flavor wave theory
[1] |
F. D. M. Haldane, Nonlinear field theory of large-spin Heisenberg antiferromagnets: Semiclassically quantized solitons of the one-dimensional easy-axis Néel state, Phys. Rev. Lett. 50(15), 1153 (1983)
CrossRef
ADS
Google scholar
|
[2] |
F. Haldane, Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model, Phys. Lett. A 93(9), 464 (1983)
CrossRef
ADS
Google scholar
|
[3] |
I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Rigorous results on valence-bond ground states in antiferromagnets, Phys. Rev. Lett. 59(7), 799 (1987)
CrossRef
ADS
Google scholar
|
[4] |
X. Chen, Z. C. Gu, and X. G. Wen, Classification of gapped symmetric phases in one-dimensional spin systems, Phys. Rev. B 83(3), 035107 (2011)
CrossRef
ADS
Google scholar
|
[5] |
C. Wang, A. Nahum, and T. Senthil, Topological paramagnetism in frustrated spin-1 Mott insulators, Phys. Rev. B 91(19), 195131 (2015)
CrossRef
ADS
Google scholar
|
[6] |
G. Chen, Quantum paramagnet and frustrated quantum criticality in a spin-one diamond lattice antiferromagnet, Phys. Rev. B 96(2), 020412 (2017)
CrossRef
ADS
Google scholar
|
[7] |
L. Savary, Quantum loop states in spin–orbital models on the honeycomb lattice, arXiv: 1511.01505 (2015)
|
[8] |
Z. Wang, A. E. Feiguin, W. Zhu, O. A. Starykh, A. V. Chubukov, and C. D. Batista, Chiral liquid phase of simple quantum magnets, Phys. Rev. B 96(18), 184409 (2017)
CrossRef
ADS
Google scholar
|
[9] |
F. L. Buessen, M. Hering, J. Reuther, and S. Trebst, Quantum spin liquids in frustrated spin-1 diamond antiferromagnets, arXiv: 1706.06299 (2017)
CrossRef
ADS
Google scholar
|
[10] |
J. R. Chamorro, L. Ge, J. Flynn, M. A. Subramanian, M. Mourigal, and T. M. McQueen, Frustrated spin one on a diamond lattice in NiRh2O4, Phys. Rev. Mater. 2(3), 034404 (2018)
CrossRef
ADS
Google scholar
|
[11] |
J. G. Cheng, G. Li, L. Balicas, J. S. Zhou, J. B. Goodenough, C. Xu, and H. D. Zhou, High-pressure sequence of Ba3NiSb2O9 structural phases: New S= 1 quantum spin liquids based on Ni2+, Phys. Rev. Lett. 107(19), 197204 (2011)
CrossRef
ADS
Google scholar
|
[12] |
M. Serbyn, T. Senthil, and P. A. Lee, Exotic S= 1 spinliquid state with fermionic excitations on the triangular lattice, Phys. Rev. B 84(18), 180403 (2011)
CrossRef
ADS
Google scholar
|
[13] |
S. Bieri, M. Serbyn, T. Senthil, and P. A. Lee, Paired chiral spin liquid with a Fermi surface in S= 1 model on the triangular lattice, Phys. Rev. B 86(22), 224409 (2012)
CrossRef
ADS
Google scholar
|
[14] |
C. Xu, F. Wang, Y. Qi, L. Balents, and M. P. A. Fisher, Spin liquid phases for spin-1 systems on the triangular lattice, Phys. Rev. Lett. 108(8), 087204 (2012)
CrossRef
ADS
Google scholar
|
[15] |
G. Chen, M. Hermele, and L. Radzihovsky, Frustrated quantum critical theory of putative spin-liquid phenomenology in 6H-B-Ba3NiSb2O9, Phys. Rev. Lett. 109(1), 016402 (2012)
CrossRef
ADS
Google scholar
|
[16] |
K. Hwang, T. Dodds, S. Bhattacharjee, and Y. B. Kim, Three-dimensional nematic spin liquid in a stacked triangular lattice 6H-B structure, Phys. Rev. B 87(23), 235103 (2013)
CrossRef
ADS
Google scholar
|
[17] |
J. A. Quilliam, F. Bert, A. Manseau, C. Darie, C. Guillot-Deudon, C. Payen, C. Baines, A. Amato, and P. Mendels, Gapless quantum spin liquid ground state in the spin-1 antiferromagnet 6HB-Ba3NiSb2O9, Phys. Rev. B 93(21), 214432 (2016)
CrossRef
ADS
Google scholar
|
[18] |
J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Magnetic pyrochlore oxides, Rev. Mod. Phys. 82(1), 53 (2010)
CrossRef
ADS
Google scholar
|
[19] |
S. T. Bramwell and M. J. P. Gingras, Spin ice state in frustrated magnetic pyrochlore materials, Science 294(5546), 1495 (2001)
CrossRef
ADS
Google scholar
|
[20] |
R. G. Melko, B. C. den Hertog, and M. J. P. Gingras, Long-range order at low temperatures in dipolar spin ice, Phys. Rev. Lett. 87(6), 067203 (2001)
CrossRef
ADS
Google scholar
|
[21] |
C. Castelnovo, R. Moessner, and S. L. Sondhi, Magnetic monopoles in spin ice, Nature 451(7174), 42 (2008)
CrossRef
ADS
Google scholar
|
[22] |
H. R. Molavian, M. J. P. Gingras, and B. Canals, Dynamically induced frustration as a route to a quantum spin ice state in Tb2Ti2O7 via virtual crystal field excitations and quantum many-body effects, Phys. Rev. Lett. 98(15), 157204 (2007)
CrossRef
ADS
Google scholar
|
[23] |
M. J. P. Gingras and P. A. McClarty, Quantum spin ice: A search for gapless quantum spin liquids in pyrochlore magnets, Rep. Prog. Phys. 77(5), 056501 (2014)
CrossRef
ADS
Google scholar
|
[24] |
L. Savary and L. Balents, Quantum spin liquids: A review, Rep. Prog. Phys. 80(1), 016502 (2017)
CrossRef
ADS
Google scholar
|
[25] |
S. Onoda and Y. Tanaka, Quantum melting of spin ice: Emergent cooperative quadrupole and chirality, Phys. Rev. Lett. 105(4), 047201 (2010)
CrossRef
ADS
Google scholar
|
[26] |
L. Savary and L. Balents, Coulombic quantum liquids in spin-1/2 pyrochlores, Phys. Rev. Lett. 108(3), 037202 (2012)
CrossRef
ADS
Google scholar
|
[27] |
S. Lee, S. Onoda, and L. Balents, Generic quantum spin ice, Phys. Rev. B 86(10), 104412 (2012)
CrossRef
ADS
Google scholar
|
[28] |
L. Savary and L. Balents, Spin liquid regimes at nonzero temperature in quantum spin ice, Phys. Rev. B 87(20), 205130 (2013)
CrossRef
ADS
Google scholar
|
[29] |
H. Fukazawa, R. G. Melko, R. Higashinaka, Y. Maeno, and M. J. P. Gingras, Magnetic anisotropy of the spin-ice compound Dy2Ti2O7, Phys. Rev. B 65(5), 054410 (2002)
CrossRef
ADS
Google scholar
|
[30] |
S. T. Bramwell, M. J. Harris, B. C. den Hertog, M. J. P. Gingras, J. S. Gardner, D. F. McMorrow, A. R. Wildes, A. L. Cornelius, J. D. M. Champion, R. G. Melko, and T. Fennell, Spin correlations in Ho2Ti2O7: A dipolar spin ice system, Phys. Rev. Lett. 87(4), 047205 (2001)
CrossRef
ADS
Google scholar
|
[31] |
K. A. Ross, J. P. C. Ruff, C. P. Adams, J. S. Gardner, H. A. Dabkowska, Y. Qiu, J. R. D. Copley, and B. D. Gaulin, Two-dimensional Kagome correlations and field induced order in the ferromagnetic XY pyrochlore Yb2Ti2O7, Phys. Rev. Lett. 103(22), 227202 (2009)
CrossRef
ADS
Google scholar
|
[32] |
Y. P. Huang, G. Chen, and M. Hermele, Quantum spin ices and topological phases from dipolar–octupolar doublets on the pyrochlore lattice, Phys. Rev. Lett. 112(16), 167203 (2014)
CrossRef
ADS
Google scholar
|
[33] |
G. Chen, “Magnetic monopole” condensation of the pyrochlore ice U(1) quantum spin liquid: Application to Pr2Ir2O7 and Yb2Ti2O7, Phys. Rev. B 94(20), 205107 (2016)
CrossRef
ADS
Google scholar
|
[34] |
Y. Wan and O. Tchernyshyov, Quantum strings in quantum spin ice, Phys. Rev. Lett. 108(24), 247210 (2012)
CrossRef
ADS
Google scholar
|
[35] |
Y. D. Li and G. Chen, Symmetry enriched U(1) topological orders for dipole–octupole doublets on a pyrochlore lattice, Phys. Rev. B 95(4), 041106 (2017)
CrossRef
ADS
Google scholar
|
[36] |
H. Yan, O. Benton, L. Jaubert, and N. Shannon, Theory of multiple-phase competition in pyrochlore magnets with anisotropic exchange with application to Yb2Ti2O7, Er2Ti2O7, and Er2Sn2O7, Phys. Rev. B 95(9), 094422 (2017)
CrossRef
ADS
Google scholar
|
[37] |
L. Savary, X. Wang, H. Y. Kee, Y. B. Kim, Y. Yu, and G. Chen, Quantum spin ice on the breathing pyrochlore lattice, Phys. Rev. B 94(7), 075146 (2016)
CrossRef
ADS
Google scholar
|
[38] |
T. Fennell, M. Kenzelmann, B. Roessli, M. K. Haas, and R. J. Cava, Power-law spin correlations in the pyrochlore antiferromagnet Tb2Ti2O7, Phys. Rev. Lett. 109(1), 017201 (2012)
CrossRef
ADS
Google scholar
|
[39] |
Y. Yasui, M. Kanada, M. Ito, H. Harashina, M. Sato, H. Okumura, K. Kakurai, and H. Kadowaki, Static correlation and dynamical properties of Tb3+-moments in Tb2Ti2O7 – neutron scattering study, J. Phys. Soc. Jpn. 71(2), 599 (2002)
CrossRef
ADS
Google scholar
|
[40] |
J. S. Gardner, B. D. Gaulin, A. J. Berlinsky, P. Waldron, S. R. Dunsiger, N. P. Raju, and J. E. Greedan, Neutron scattering studies of the cooperative paramagnet pyrochlore Tb2Ti2O7, Phys. Rev. B 64(22), 224416 (2001)
CrossRef
ADS
Google scholar
|
[41] |
Z. Hao, A. G. R. Day, and M. J. P. Gingras, Bosonic many-body theory of quantum spin ice, Phys. Rev. B 90(21), 214430 (2014)
CrossRef
ADS
Google scholar
|
[42] |
L. J. Chang, S. Onoda, Y. Su, Y. J. Kao, K. D. Tsuei, Y. Yasui, K. Kakurai, and M. R. Lees, Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb2Ti2O7, Nat. Commun. 3(1), 992 (2012)
CrossRef
ADS
Google scholar
|
[43] |
K. Kimura, K. Nakatsuji, J. J. Wen, C. Broholm, M. Stone, E. Nishibori, and H. Sawa, Quantum fluctuations in spin-ice-like Pr2Zr2O7, Nat. Commun. 4(1), 1934 (2013)
CrossRef
ADS
Google scholar
|
[44] |
E. Lhotel, S. R. Giblin, M. R. Lees, G. Balakrishnan, L. J. Chang, and Y. Yasui, First-order magnetic transition in Yb2Ti2O7, Phys. Rev. B 89(22), 224419 (2014)
CrossRef
ADS
Google scholar
|
[45] |
L.J. Chang, M. R. Lees, I. Watanabe, A. D. Hillier, Y. Yasui, and S. Onoda, Static magnetic moments revealed by muon spin relaxation and thermodynamic measurements in the quantum spin ice Yb2Ti2O7, Phys. Rev. B 89(18), 184416 (2014)
CrossRef
ADS
Google scholar
|
[46] |
Y. Yasui, M. Soda, S. Iikubo, M. Ito, M. Sato, N. Hamaguchi, T. Matsushita, N. Wada, T. Takeuchi, N. Aso, and K. Kakurai, Ferromagnetic transition of pyrochlore compound Yb2Ti2O7, J. Phys. Soc. Jpn. 72(11), 3014 (2003)
CrossRef
ADS
Google scholar
|
[47] |
K. Ross, L. Savary, B. Gaulin, and L. Balents, Quantum excitations in quantum spin ice, Phys. Rev. X 1(2), 021002 (2011)
CrossRef
ADS
Google scholar
|
[48] |
N. Shannon, O. Sikora, F. Pollmann, K. Penc, and P. Fulde, Quantum ice: A quantum Monte Carlo study, Phys. Rev. Lett. 108(6), 067204 (2012)
CrossRef
ADS
Google scholar
|
[49] |
P. Goswami, B. Roy, and S. Das Sarma, Itinerant spin ice order, Weyl metal, and anomalous Hall effect in Pr2Ir2O7, arXiv: 1603.02273 (2016)
|
[50] |
K. E. Arpino, B. A. Trump, A. O. Scheie, T. M. Mc-Queen, and S. M. Koohpayeh, Impact of stoichiometry of Yb2Ti2O7 on its physical properties, Phys. Rev. B 95(9), 094407 (2017)
CrossRef
ADS
Google scholar
|
[51] |
J. J. Wen, S. M. Koohpayeh, K. A. Ross, B. A. Trump, T. M. McQueen, K. Kimura, S. Nakatsuji, Y. Qiu, D. M. Pajerowski, J. R. D. Copley, and C. L. Broholm, Disordered route to the Coulomb quantum spin liquid: Random transverse fields on spin ice in Pr2Zr2O7, Phys. Rev. Lett. 118(10), 107206 (2017)
CrossRef
ADS
Google scholar
|
[52] |
D. E. MacLaughlin, O. O. Bernal, L. Shu, J. Ishikawa, Y. Matsumoto, J. J. Wen, M. Mourigal, C. Stock, G. Ehlers, C. L. Broholm, Y. Machida, K. Kimura, S. Nakatsuji, Y. Shimura, and T. Sakakibara, Unstable spin-ice order in the stuffed metallic pyrochlore Pr2+xIr2−xO7−δ, Phys. Rev. B 92(5), 054432 (2015)
CrossRef
ADS
Google scholar
|
[53] |
G. Chen, H. Y. Kee, and Y. B. Kim, Fractionalized charge excitations in a spin liquid on partially filled pyrochlore lattices, Phys. Rev. Lett. 113(19), 197202 (2014)
CrossRef
ADS
Google scholar
|
[54] |
J. Fu, J. G. Rau, M. J. Gingras, and N. B. Perkins, Fingerprints of quantum spin ice in Raman scattering, arXiv: 1703.03836 (2017)
|
[55] |
O. Benton, O. Sikora, and N. Shannon, Seeing the light: Experimental signatures of emergent electromagnetism in a quantum spin ice, Phys. Rev. B 86(7), 075154 (2012)
CrossRef
ADS
Google scholar
|
[56] |
L. D. C. Jaubert, O. Benton, J. G. Rau, J. Oitmaa, R. R. P. Singh, N. Shannon, and M. J. P. Gingras, Are multiphase competition and order by disorder the keys to understanding Yb2Ti2O7? Phys. Rev. Lett. 115(26), 267208 (2015)
CrossRef
ADS
Google scholar
|
[57] |
R. Applegate, N. R. Hayre, R. R. P. Singh, T. Lin, A. G. R. Day, and M. J. P. Gingras, Vindication of Yb2Ti2O7 as a model exchange quantum spin ice, Phys. Rev. Lett. 109(9), 097205 (2012)
CrossRef
ADS
Google scholar
|
[58] |
S. R. Dunsiger, A. A. Aczel, C. Arguello, H. Dabkowska, A. Dabkowski, M. H. Du, T. Goko, B. Javanparast, T. Lin, F. L. Ning, H. M. L. Noad, D. J. Singh, T. J. Williams, Y. J. Uemura, M. J. P. Gingras, and G. M. Luke, Spin ice: Magnetic excitations without monopole signatures using muon spin rotation, Phys. Rev. Lett. 107(20), 207207 (2011)
CrossRef
ADS
Google scholar
|
[59] |
R. Sibille, E. Lhotel, V. Pomjakushin, C. Baines, T. Fennell, and M. Kenzelmann, Candidate quantum spin liquid in the Ce3+ pyrochlore stannate Ce2Sn2O7, Phys. Rev. Lett. 115(9), 097202 (2015)
CrossRef
ADS
Google scholar
|
[60] |
M. Taillefumier, O. Benton, H. Yan, L. D. C. Jaubert, and N. Shannon, Competing spin liquids and hidden spinnematic order in spin ice with frustrated transverse exchange, Phys. Rev. X 7(4), 041057 (2017)
CrossRef
ADS
Google scholar
|
[61] |
G. Chen, Spectral periodicity of the spinon continuum in quantum spin ice, Phys. Rev. B 96(8), 085136 (2017)
CrossRef
ADS
Google scholar
|
[62] |
L. Savary and L. Balents, Disorder-induced quantum spin liquid in spin ice pyrochlores, Phys. Rev. Lett. 118(8), 087203 (2017)
CrossRef
ADS
Google scholar
|
[63] |
G. Chen, Dirac’s “magnetic monopoles” in pyrochlore ice U(1) spin liquids: Spectrum and classification,
CrossRef
ADS
Google scholar
|
[64] |
S. H. Curnoe, Structural distortion and the spin liquid state in Tb2Ti2O7, Phys. Rev. B 78(9), 094418 (2008)
CrossRef
ADS
Google scholar
|
[65] |
S. Onoda, Effective quantum pseudospin-1/2 model for Yb pyrochlore oxides, J. Phys.: Conf. Ser. 320, 012065 (2011)
CrossRef
ADS
Google scholar
|
[66] |
J. W. Krizan and R. J. Cava, NaCaNi2F7: A single-crystal high-temperature pyrochlore antiferromagnet with S= 1 Ni2+, Phys. Rev. B 92, 014406 (2015)
CrossRef
ADS
Google scholar
|
[67] |
J. W. Krizan and R. J. Cava, NaCaCo2F7: A singlecrystal high-temperature pyrochlore antiferromagnet, Phys. Rev. B 89(21), 214401 (2014)
CrossRef
ADS
Google scholar
|
[68] |
K. A. Ross, J. M. Brown, R. J. Cava, J. W. Krizan, S. E. Nagler, J. A. Rodriguez-Rivera, and M. B. Stone, Singleion properties of the Seff= 1/2 XY antiferromagnetic pyrochlores NaA′Co2F7 (A′= Ca2+,Sr2+), Phys. Rev. B 95(14), 144414 (2017)
CrossRef
ADS
Google scholar
|
[69] |
M. B. Sanders, J. W. Krizan, K. W. Plumb, T. M. Mc-Queen, and R. J. Cava, NaSrMn2F7, NaCaFe2F7, and NaSrFe2F7: Novel single crystal pyrochlore antiferromagnets, J. Phys.: Condens. Matter 29(4), 045801 (2017)
CrossRef
ADS
Google scholar
|
[70] |
W. Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents, Correlated quantum phenomena in the strong spin–orbit regime, Annu. Rev. Condens. Matter Phys. 5(1), 57 (2014)
CrossRef
ADS
Google scholar
|
[71] |
F. Y. Li and G. Chen, Competing phases and topological excitations of spin-1 pyrochlore antiferromagnets, Phys. Rev. B 98(4), 045109 (2018)
CrossRef
ADS
Google scholar
|
[72] |
M. Elhajal, B. Canals, R. Sunyer, and C. Lacroix, Ordering in the pyrochlore antiferromagnet due to Dzyaloshinsky–Moriya interactions, Phys. Rev. B 71(9), 094420 (2005)
CrossRef
ADS
Google scholar
|
[73] |
S. Maekawa, T. Tohyama, S. Barnes, S. Ishihara, W. Koshibae, and G. Khaliullin, Physics of Transition Metal Oxides, Springer, 2004
CrossRef
ADS
Google scholar
|
[74] |
A. Joshi, M. Ma, F. Mila, D. N. Shi, and F. C. Zhang, Elementary excitations in magnetically ordered systems with orbital degeneracy, Phys. Rev. B 60(9), 6584 (1999)
CrossRef
ADS
Google scholar
|
[75] |
Y. Q. Li, M. Ma, D. N. Shi, and F. C. Zhang, SU(4) theory for spin systems with orbital degeneracy, Phys. Rev. Lett. 81(16), 3527 (1998)
CrossRef
ADS
Google scholar
|
[76] |
S. E. Palmer and J. T. Chalker, Order induced by dipolar interactions in a geometrically frustrated antiferromagnet, Phys. Rev. B 62(1), 488 (2000)
CrossRef
ADS
Google scholar
|
[77] |
A. Poole, A. S. Wills, and E. Lelièvre-Berna, Magnetic ordering in the XY pyrochlore antiferromagnet Er2Ti2O7: A spherical neutron polarimetry study, J. Phys.: Condens. Matter 19(45), 452201 (2007)
CrossRef
ADS
Google scholar
|
[78] |
L. Savary, K. A. Ross, B. D. Gaulin, J. P. C. Ruff, and L. Balents, Order by quantum disorder in Er2Ti2O7, Phys. Rev. Lett. 109(16), 167201 (2012)
CrossRef
ADS
Google scholar
|
[79] |
M. E. Zhitomirsky, M. V. Gvozdikova, P. C. W. Holdsworth, and R. Moessner, Quantum order by disorder and accidental soft mode in Er2Ti2O7, Phys. Rev. Lett. 109(7), 077204 (2012)
CrossRef
ADS
Google scholar
|
[80] |
M. E. Zhitomirsky, P. C. W. Holdsworth, and R. Moessner, Nature of finite-temperature transition in anisotropic pyrochlore Er2Ti2O7, Phys. Rev. B 89(14), 140403 (2014)
CrossRef
ADS
Google scholar
|
[81] |
F. Y. Li, Y. D. Li, Y. B. Kim, L. Balents, Y. Yu, and G. Chen, Weyl magnons in breathing pyrochlore antiferromagnets, Nat. Commun. 7(1), 12691 (2016)
CrossRef
ADS
Google scholar
|
[82] |
A. Mook, J. Henk, and I. Mertig, Tunable magnon Weyl points in ferromagnetic pyrochlores, Phys. Rev. Lett. 117(15), 157204 (2016)
CrossRef
ADS
Google scholar
|
[83] |
F. Y. Li, Y. D. Li, Y. Yu, A. Paramekanti, and G. Chen, Kitaev materials beyond iridates: Order by quantum disorder and Weyl magnons in rare-earth double perovskites, Phys. Rev. B 95(8), 085132 (2017)
CrossRef
ADS
Google scholar
|
[84] |
S. A. Owerre, Magnonic analogs of topological Dirac semimetals, J. Phys. Commun. 1(2), 025007 (2017)
CrossRef
ADS
Google scholar
|
[85] |
S. A. Owerre, Topological magnetic excitations on the distorted Kagomé antiferromagnets: Applications to volborthite, vesignieite, and edwardsite, EPL 117(3), 37006 (2017)
CrossRef
ADS
Google scholar
|
[86] |
J. Fransson, A. M. Black-Schaffer, and A. V. Balatsky, Magnon Dirac materials, Phys. Rev. B 94(7), 075401 (2016)
CrossRef
ADS
Google scholar
|
[87] |
K. Li, C. Li, J. Hu, Y. Li, and C. Fang, Dirac and nodal line magnons in three-dimensional antiferromagnets, Phys. Rev. Lett. 119(24), 247202 (2017)
CrossRef
ADS
Google scholar
|
[88] |
X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83(20), 205101 (2011)
CrossRef
ADS
Google scholar
|
[89] |
A. A. Burkov, M. D. Hook, and L. Balents, Topological nodal semimetals, Phys. Rev. B 84(23), 235126 (2011)
CrossRef
ADS
Google scholar
|
[90] |
R. Moessner and J. T. Chalker, Low-temperature properties of classical geometrically frustrated antiferromagnets, Phys. Rev. B 58(18), 12049 (1998)
CrossRef
ADS
Google scholar
|
[91] |
R. Moessner and J. T. Chalker, Properties of a classical spin liquid: The Heisenberg pyrochlore antiferromagnet, Phys. Rev. Lett. 80(13), 2929 (1998)
CrossRef
ADS
Google scholar
|
[92] |
R. Kmieć, Z. Świątkowska, J. Gurgul, M. Rams, A. Zarzycki, and K. Tomala, Investigation of the magnetic properties of Y2Ru2O7 by 99Ru Mössbauer spectroscopy, Phys. Rev. B 74(10), 104425 (2006)
CrossRef
ADS
Google scholar
|
[93] |
S. Lee, J. G. Park, D. T. Adroja, D. Khomskii, S. Streltsov, K. A. McEwen, H. Sakai, K. Yoshimura, V. I. Anisimov, D. Mori, R. Kanno, and R. Ibberson, Spin gap in Tl2Ru2O7 and the possible formation of Haldane chains in three-dimensional crystals,Nat. Mater. 5(6), 471 (2006)
CrossRef
ADS
Google scholar
|
[94] |
S. M. Perez1, R. Cobas, J. M. Cadogan, J. A. Aguiar, C. Frontera, T. Puig, G. Long, M. DeMarco, D. Coffey, and X. Obradors, Anomalous electronic and magnetic properties of the Eu2Ru2O7 pyrochlore, J. Appl. Phys. 113, 17E102 (2013)
CrossRef
ADS
Google scholar
|
[95] |
M. Tachibanaa, Heat capacity of pyrochlore Pr2Ru2O7, J. Appl. Phys. 101, 09D502 (2007)
CrossRef
ADS
Google scholar
|
[96] |
S. Zouari, R. Ballou, A. Cheikhrouhou, and P. Strobel, Structural and magnetic properties of the (Bi2−xPrx)Ru2O7 pyrochlore solid solution (0≤x≤2), J. Alloys Compd. 476(1–2), 43 (2009)
CrossRef
ADS
Google scholar
|
[97] |
M. W. Gaultois, P. T. Barton, C. S. Birkel, L. M. Misch, E. E. Rodriguez, G. D. Stucky, and R. Seshadri, Structural disorder, magnetism, and electrical and thermoelectric properties of pyrochlore Nd2Ru2O7, J. Phys.: Condens. Matter 25(18), 186004 (2013)
CrossRef
ADS
Google scholar
|
[98] |
J. Gurgul, M. Rams, Z. Świątkowska, R. Kmieć, and K. Tomala, Bulk magnetic measurements and 99Ru and 155Gd Mössbauer spectroscopies of Gd2Ru2O7, Phys. Rev. B 75(6), 064426 (2007)
CrossRef
ADS
Google scholar
|
[99] |
L. J. Chang, M. Prager, J. Perβon, J. Walter, E. Jansen, Y. Y. Chen, and J. S. Gardner, Magnetic order in the double pyrochlore Tb2Ru2O7, J. Phys.: Condens. Matter 22(7), 076003 (2010)
CrossRef
ADS
Google scholar
|
[100] |
Z. C. Xu, M. F. Liu, L. Lin, H. Liu, Z. B. Yan, and J. M. Liu, Experimental observations of ferroelectricity in double pyrochlore Dy2Ru2O7, Front. Phys. 9(1), 82 (2014)
CrossRef
ADS
Google scholar
|
[101] |
C. R. Wiebe, J. S. Gardner, S. J. Kim, G. M. Luke, A. S. Wills, B. D. Gaulin, J. E. Greedan, I. Swainson, Y. Qiu, and C. Y. Jones, Magnetic ordering in the spinice candidate Ho2Ru2O7, Phys. Rev. Lett. 93(7), 076403 (2004)
CrossRef
ADS
Google scholar
|
[102] |
N. Taira, M. Wakeshima, and Y. Hinatsu, Magnetic susceptibility and specific heat studies on heavy rare earth ruthenate pyrochlores R2Ru2O7 (R= Gd–Yb), J. Mater. Chem. 12(5), 1475 (2002)
CrossRef
ADS
Google scholar
|
[103] |
J. S. Gardner and G. Ehlers, Magnetic order and crystal field excitations in Er2Ru2O7: A neutron scattering study, J. Phys.: Condens. Matter 21(43), 436004 (2009)
CrossRef
ADS
Google scholar
|
[104] |
N. Taira, M. Wakeshima, Y. Hinatsu, A. Tobo, and K. Ohoyama, Magnetic structure of pyrochlore-type Er2Ru2O7, J. Solid State Chem. 176(1), 165 (2003)
CrossRef
ADS
Google scholar
|
[105] |
A. Keren and J. S. Gardner, Frustration driven lattice distortion: An NMR investigation of Y2Mo2O7, Phys. Rev. Lett. 87(17), 177201 (2001)
CrossRef
ADS
Google scholar
|
[106] |
P. M. M. Thygesen, J. A. M. Paddison, R. Zhang, K. A. Beyer, K. W. Chapman, H. Y. Playford, M. G. Tucker, D. A. Keen, M. A. Hayward, and A. L. Goodwin, Orbital dimer model for the spin-glass state in Y2Mo2O7, Phys. Rev. Lett. 118(6), 067201 (2017)
CrossRef
ADS
Google scholar
|
[107] |
H. J. Silverstein, K. Fritsch, F. Flicker, A. M. Hallas, J. S. Gardner, Y. Qiu, G. Ehlers, A. T. Savici, Z. Yamani, K. A. Ross, B. D. Gaulin, M. J. P. Gingras, J. A. M. Paddison, K. Foyevtsova, R. Valenti, F. Hawthorne, C. R. Wiebe, and H. D. Zhou, Liquidlike correlations in single-crystalline Y2Mo2O7: An unconventional spin glass,Phys. Rev. B 89(5), 054433 (2014)
CrossRef
ADS
Google scholar
|
[108] |
S. R. Dunsiger, R. F. Kiefl, K. H. Chow, B. D. Gaulin, M. J. P. Gingras, J. E. Greedan, A. Keren, K. Kojima, G. M. Luke, W. A. MacFarlane, N. P. Raju, J. E. Sonier, Y. J. Uemura, and W. D. Wu, Muon spin relaxation investigation of the spin dynamics of geometrically frustrated antiferromagnets Y2Mo2O7 and Tb2Mo2O7, Phys. Rev. B 54(13), 9019 (1996)
CrossRef
ADS
Google scholar
|
[109] |
L. Clark, G. J. Nilsen, E. Kermarrec, G. Ehlers, K. S. Knight, A. Harrison, J. P. Attfield, and B. D. Gaulin, From spin glass to quantum spin liquid ground states in molybdate pyrochlores, Phys. Rev. Lett. 113(11), 117201 (2014)
CrossRef
ADS
Google scholar
|
[110] |
Y. Jiang, A. Huq, C. H. Booth, G. Ehlers, J. E. Greedan, and J. S. Gardner, Order and disorder in the local and long-range structure of the spin-glass pyrochlore, Tb2Mo2O7, J. Phys.: Condens. Matter 23(16), 164214 (2011)
CrossRef
ADS
Google scholar
|
[111] |
G. Ehlers, J. E. Greedan, J. R. Stewart, K. C. Rule, P. Fouquet, A. L. Cornelius, C. Adriano, P. G. Pagliuso, Y. Qiu, and J. S. Gardner, High-resolution neutron scattering study of Tb2Mo2O7: A geometrically frustrated spin glass, Phys. Rev. B 81(22), 224405 (2010)
CrossRef
ADS
Google scholar
|
[112] |
D. K. Singh, J. S. Helton, S. Chu, T. H. Han, C. J. Bonnoit, S. Chang, H. J. Kang, J. W. Lynn, and Y. S. Lee, Spin correlations in the geometrically frustrated pyrochlore Tb2Mo2O7, Phys. Rev. B78(22), 220405 (2008)
CrossRef
ADS
Google scholar
|
[113] |
K. W. Plumb, H. J. Changlani, A. Scheie, S. Zhang, J. W. Krizan, J. A. Rodriguez-Rivera, Y. Qiu, B. Winn, R. J. Cava, and C. L. Broholm, Continuum of quantum fluctuations in a three-dimensional s= 1 heisenberg magnet, arXiv: 1711.07509 (2017)
CrossRef
ADS
Google scholar
|
[114] |
T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev. 120(1), 91 (1960)
CrossRef
ADS
Google scholar
|
[115] |
D. L. Bergman, R. Shindou, G. A. Fiete, and L. Balents, Models of degeneracy breaking in pyrochlore antiferromagnets, Phys. Rev. B 74(13), 134409 (2006)
CrossRef
ADS
Google scholar
|
[116] |
K. Penc, N. Shannon, and H. Shiba, Half-magnetization plateau stabilized by structural distortion in the antiferromagnetic Heisenberg model on a pyrochlore lattice, Phys. Rev. Lett. 93(19), 197203 (2004)
CrossRef
ADS
Google scholar
|
[117] |
G. Chen and L. Balents, Spin–orbit coupling in d2 ordered double perovskites, Phys. Rev. B 84(9), 094420 (2011)
CrossRef
ADS
Google scholar
|
[118] |
Z. Y. Zhao, S. Calder, A. A. Aczel, M. A. McGuire, B. C. Sales, D. G. Mandrus, G. Chen, N. Trivedi, H. D. Zhou, and J. Q. Yan, Fragile singlet ground-state magnetism in the pyrochlore osmates R2Os2O7 (R= Y and Ho), Phys. Rev. B 93(13), 134426 (2016)
CrossRef
ADS
Google scholar
|
[119] |
G. Khaliullin, Excitonic magnetism in Van Vleck–type d4 Mott insulators, Phys. Rev. Lett. 111(19), 197201 (2013)
CrossRef
ADS
Google scholar
|
[120] |
A. Georges, L. Medici, and J. Mravlje, Strong correlations from Hund’s coupling, Annu. Rev. Condens. Matter Phys. 4(1), 137 (2013)
CrossRef
ADS
Google scholar
|
[121] |
K. I. Kugel and D. I. Khomskii, The Jahn–Teller effect and magnetism: Transition metal compounds, Sov. Phys. Usp. 25(4), 231 (1982)
CrossRef
ADS
Google scholar
|
[122] |
S. H. Lee, D. Louca, H. Ueda, S. Park, T. J. Sato, M. Isobe, Y. Ueda, S. Rosenkranz, P. Zschack, J. Íñiguez, Y. Qiu, and R. Osborn, Orbital and spin chains in ZnV2O4, Phys. Rev. Lett. 93(15), 156407 (2004)
CrossRef
ADS
Google scholar
|
[123] |
T. Maitra and R. Valentí, Orbital order in ZnV2O4, Phys. Rev. Lett. 99(12), 126401 (2007)
CrossRef
ADS
Google scholar
|
[124] |
G. Giovannetti, A. Stroppa, S. Picozzi, D. Baldomir, V. Pardo, S. Blanco-Canosa, F. Rivadulla, S. Jodlauk, D. Niermann, J. Rohrkamp, T. Lorenz, S. Streltsov, D. I. Khomskii, and J. Hemberger, Dielectric properties and magnetostriction of the collinear multiferroic spinel CdV2O4, Phys. Rev. B 83(6), 060402 (2011)
CrossRef
ADS
Google scholar
|
[125] |
D. I. Khomskii and T. Mizokawa, Orbitally induced peierls state in spinels, Phys. Rev. Lett. 94(15), 156402 (2005)
CrossRef
ADS
Google scholar
|
[126] |
S. Niitaka, H. Ohsumi, K. Sugimoto, S. Lee, Y. Oshima, K. Kato, D. Hashizume, T. Arima, M. Takata, and H. Takagi, A-type antiferro-orbital ordering with I41/asymmetry and geometrical frustration in the spinel vanadate MgV2O4, Phys. Rev. Lett. 111(26), 267201 (2013)
CrossRef
ADS
Google scholar
|
[127] |
E. M. Wheeler, B. Lake, A. T. M. N. Islam, M. Reehuis, P. Steffens, T. Guidi, and A. H. Hill, Spin and orbital order in the vanadium spinel MgV2O4, Phys. Rev. B 82(14), 140406 (2010)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |