Laser ablation assisted spark induced breakdown spectroscopy and its application

Wei-Dong Zhou, Yu-Hui Guo, Ran-Ran Zhang

Front. Phys. ›› 2020, Vol. 15 ›› Issue (5) : 52201.

PDF(1087 KB)
PDF(1087 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (5) : 52201. DOI: 10.1007/s11467-020-0969-1
TOPICAL REVIEW
TOPICAL REVIEW

Laser ablation assisted spark induced breakdown spectroscopy and its application

Author information +
History +

Abstract

Recently, laser ablation assisted spark induced breakdown spectroscopy (LA-SIBS) has been growing rapidly and continue to be extended to a broad range of materials analysis. Characterized by employing a specifically designed high voltage and pulse discharge circuit to generate a spark and used to enhance plasma emission produced by laser ablation, allows direct analysis of materials without prior sample preparation. This paper reviews recent development and application of laser ablation assisted spark induced breakdown spectroscopy for material analysis. Following a summary of fundamentals and instrumentation of the LA-SIBS analytical technique, the development and applications of laser ablation assisted spark induced breakdown spectroscopy for the analysis of conducting materials and insulating materials is described.

Keywords

laser induced breakdown spectroscopy / laser ablation assisted spark induced breakdown spectroscopy / discharge circuit charactor

Cite this article

Download citation ▾
Wei-Dong Zhou, Yu-Hui Guo, Ran-Ran Zhang. Laser ablation assisted spark induced breakdown spectroscopy and its application. Front. Phys., 2020, 15(5): 52201 https://doi.org/10.1007/s11467-020-0969-1

References

[1]
F. Brech and L. Cross, Optical microemission stimulated by a ruby laser, Appl. Spectrosc. 16(2), 59 (1962)
CrossRef ADS Google scholar
[2]
S. D. Rasberry, B. F. Scribner and M. Margoshes, Laser probe excitation in spectrochemical analysis (I): Characteristics of the source, Appl. Opt. 6(1), 81 (1967)
CrossRef ADS Google scholar
[3]
A. Bengtson, Laser Induced Breakdown Spectroscopy compared with conventional plasma optical emission techniques for the analysis of metals — A review of applications and analytical performance, Spectrochim. Acta B At. Spectrosc. 134, 123 (2017)
CrossRef ADS Google scholar
[4]
Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown Spectroscopy in China, Front. Phys. 9(4), 419 (2014)
CrossRef ADS Google scholar
[5]
A. Cremers and L. Radziemski, Handbook of Laserinduced Breakdown Spectroscopy, London: John Wiley & Sons, 2006
CrossRef ADS Google scholar
[6]
Z. Wang, F. Dong, and W. Zhou, A rising force for the development of laser-induced breakdown spectroscopy, Plasma. Sci. Technol. 17(8), 617 (2015)
CrossRef ADS Google scholar
[7]
V. I. Babushok, F. C. Jr DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement, Spectrochim. Acta B At. Spectrosc. 61(9), 999 (2006)
CrossRef ADS Google scholar
[8]
J. P. Walters, Historical advances in spark emission spectroscopy, Appl. Spectrosc. 23(4), 317 (1969)
CrossRef ADS Google scholar
[9]
F. R. Doucet, T. F. Belliveau, J. L. Fortier, and J. Hubert, Comparative study of laser induced plasma spectroscopy and spark-optical emission spectroscopy for quantitative analysis of aluminium alloys, J. Anal. At. Spectrom. 19(4), 499 (2004)
CrossRef ADS Google scholar
[10]
M. Hemmerlin, R. Meilland, H. Falk, P. Wintjens, and L. Paulard, Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis-comparison with spark-optical emission spectrometry figures of merit, Spectrochim. Acta B At. Spectrosc. 56(6), 661 (2001)
CrossRef ADS Google scholar
[11]
A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale, Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples, Spectrochim. Acta B At. Spectrosc. 63(7), 805 (2008)
CrossRef ADS Google scholar
[12]
X. Su, W. Zhou, and H. Qian, Optical emission character of collinear dual pulse laser plasma with cylindrical cavity confinement, J. Anal. At. Spectrom. 29(12), 2356 (2014)
CrossRef ADS Google scholar
[13]
Y. Yu, W. Zhou, and X. Su, Detection of Cu in solution with double pulse laser-induced breakdown spectroscopy, Opt. Commun. 333, 62 (2014)
CrossRef ADS Google scholar
[14]
O. A. Nassef and H. E. Elsayed-Ali, Spark discharge assisted laser induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 60(12), 1564 (2005)
CrossRef ADS Google scholar
[15]
K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, Laser ablation assisted spark induced breakdown spectroscopy on soil samples, J. Anal. At. Spectrom. 25(9), 1475 (2010)
CrossRef ADS Google scholar
[16]
Y. Q. Chen, Q. A. Zhang, G. A. Li, R. H. Li, and J. Y. Zhou, Laser ignition assisted spark-induced breakdown spectroscopy for the ultra-sensitive detection of trace mercury ions in aqueous solutions, J. Anal. At. Spectrom. 25(12), 1969 (2010)
CrossRef ADS Google scholar
[17]
W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. Xie, and W. Liu, Development of a nanosecond dischargeenhanced laser plasma spectroscopy, Opt. Lett. 36(15), 2961 (2011)
CrossRef ADS Google scholar
[18]
W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, and J. M. Long, Optical emission enhancement using laser ablation combined with fast pulse discharge, Opt. Express 18(3), 2573 (2010)
CrossRef ADS Google scholar
[19]
S. Grünberger, G. Watzl, N. Huber, S. Eschlbock-Fuchs, J. Hofstadler, A. Pissenberger, H. Duchaczek, S. Trautner, and J. D. Pedarnig, Chemical imaging with laser ablation-spark discharge-optical emission spectroscopy (LA-SD-OES) and laser-induced breakdown spectroscopy (LIBS), Opt. Laser Technol. 123, 105944 (2020)
CrossRef ADS Google scholar
[20]
S. Eschlbōck-Fuchs, P. J. Kolmhofer, M. A. Bodea, J. G. Hechenberger, N. Huber, R. Rōssler, and J. D. Pedarnig, Boosting persistence time of laser-induced plasma by electric arc discharge for optical emission spectroscopy, Spectrochim. Acta B At. Spectrosc. 109, 31 (2015)
CrossRef ADS Google scholar
[21]
X. He, B. Dong, Y. Chen, R. Li, F. Wang, J. Li, and Z. Cai, Analysis of magnesium and copper in aluminum alloys with high repetition rate laser-ablation sparkinduced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 141, 34 (2018)
CrossRef ADS Google scholar
[22]
H. Sobral and A. Robledo-Martinez, Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges, Spectrochim. Acta B At. Spectrosc. 124, 67 (2016)
CrossRef ADS Google scholar
[23]
B. H. P. Broks, J. Hendriks, W. J. M. Brok, G. J. H. Brussaard, and J. J. A. M. van der Mullen, Theoretical investigation of a photoconductively switched high-voltage spark gap, J. Appl. Phys. 99(12), 123302 (2006)
CrossRef ADS Google scholar
[24]
W. Zhou, X. Su, H. Qian, K. Li, X. Li, Y. Yu, and Z. Ren, Discharge character and optical emission in a laser ablation nanosecond discharge enhanced silicon plasma, J. Anal. At. Spectrom. 28(5), 702 (2013)
CrossRef ADS Google scholar
[25]
L. I. Kexue, W. D. Zhou, Q. M. Shen, J. Shao, and H. G. Qian, Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge, Spectrochim. Acta B At. Spectrosc. 65(5), 420 (2010)
CrossRef ADS Google scholar
[26]
M. M. Hassanimatin and S. H. Tavassoli, Experimental investigation of effective parameters on signal enhancement in spark assisted laser induced breakdown spectroscopy, Phys. Plasmas 25(5), 053302 (2018)
CrossRef ADS Google scholar
[27]
Y. Jiang, R. Li, and Y. Chen, Elemental analysis of copper alloys with laser-ablation spark-induced breakdown spectroscopy based on a fiber laser operated at 30 kHz pulse repetition rate, J. Anal. At. Spectrom. 34(9), 1838 (2019)
CrossRef ADS Google scholar
[28]
A. Robledo-Martinez, H. Sobral, and A. Garcia-Villarreal, Effect of applied voltage and inter-pulse delay in spark-assisted LIBS, Spectrochim. Acta B At. Spectrosc. 144, 7 (2018)
CrossRef ADS Google scholar
[29]
Y. Wang, Y. Jiang, X. He, Y. Chen, and R. Li, Triggeredparallel discharge in laser-ablation spark-induced breakdown spectroscopy and studies on its analytical performance for aluminum and brass samples, Spectrochim. Acta B At. Spectrosc. 150, 9 (2018)
CrossRef ADS Google scholar
[30]
X. He, R. Li, and Y. Chen, Application of fiber optic high repetition rate laser-ablation spark-induced breakdown spectroscopy on the elemental analysis of aluminum alloys, Appl. Opt. 58(31), 8522 (2019)
CrossRef ADS Google scholar
[31]
Z. Hou, Z. Wang, J. Liu, W. Ni, and Z. Li, Combination of cylindrical confinement and spark discharge for signal improvement using laser induced breakdown spectroscopy, Opt. Express 22(11), 12909 (2014)
CrossRef ADS Google scholar
[32]
M. Pérez-Rodríguez, P. M. Dirchwolf, T. V. Silva, R. N. Villafañe, J. A. G. Neto, R. G. Pellerano, and E. C. Ferreira, Brown rice authenticity evaluation by spark discharge-laser-induced breakdown spectroscopy, Food Chem. 297, 124960 (2019)
CrossRef ADS Google scholar
[33]
X. F. Li, W. D. Zhou, and Z. F. Cui, Temperature and electron density of soil plasma generated by LA-FPDPS, Front. Phys. 7(6), 721 (2012)
CrossRef ADS Google scholar
[34]
W. Zhou, K. Li, H. Qian, Z. Ren, and Y. Yu, Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy, Appl. Opt. 51(7), B42 (2012)
CrossRef ADS Google scholar
[35]
X. Li, W. Zhou, K. Li, H. Qian, and Z. Ren, Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil, Opt. Commun. 285(1), 54 (2012)
CrossRef ADS Google scholar
[36]
A. L. Vieira, T. V. Silva, F. S. I. de Sousa, G. S. Senesi, D. S. Júnior, E. C. Ferreira, and J. A. G. Neto, Determinations of phosphorus in fertilizers by spark discharge-assisted laser-induced breakdown spectroscopy, Microchem. J. 139, 322 (2018)
CrossRef ADS Google scholar
[37]
A. Seifalinezhad, M. Bahreini, M. M. Hassani Matin, and S. H. Tavassoli, Feasibility study on discrimination of neoplastic and non-neoplastic gastric tissues using spark discharge assisted laser induced breakdown spectroscopy, J. Lasers Med. Sci. 10(1), 64 (2018)
CrossRef ADS Google scholar
[38]
A. Jabbar, M. Akhtar, S. Mehmmod, M. Iqbal, R. Ahmed, and M. A. Baig, Quantification of copper remediation in the Allium cepa L. leaves using electric field assisted laser induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 162, 105719 (2019)
CrossRef ADS Google scholar
[39]
M. L. Vinic and M. R. Ivković, Laser ablation initiated fast discharge for spectrochemical applications, Hem. Ind. 68(3), 381 (2014)
CrossRef ADS Google scholar
[40]
P. Liu, J. Liu, D. Wu, L. Sun, R. Hai, and H. Ding, Study of spark discharge assisted to enhancement of laserinduced breakdown spectroscopic detection for metal materials, Plasma Chem. Plasma Process. 38(4), 803 (2018)
CrossRef ADS Google scholar
[41]
X. He, B. Chen, Y. Chen, R. Li, and F. Wang, Femtosecond laser-ablation spark-induced breakdown spectroscopy and its application to the elemental analysis of aluminum alloys, J. Anal. At. Spectrom. 33(12), 2203 (2018)
CrossRef ADS Google scholar
[42]
M. M. Hassanimatin, S. H. Tavassoli, Y. Nosrati, and A. Safi, A combination of electrical spark and laser-induced breakdown spectroscopy on a heated sample, Phys. Plasmas 26(3), 033303 (2019)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(1087 KB)

Accesses

Citations

Detail

Sections
Recommended

/