Progress of quantum molecular dynamics model and its applications in heavy ion collisions

Ying-Xun Zhang, Ning Wang, Qing-Feng Li, Li Ou, Jun-Long Tian, Min Liu, Kai Zhao, Xi-Zhen Wu, Zhu-Xia Li

PDF(11044 KB)
PDF(11044 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (5) : 54301. DOI: 10.1007/s11467-020-0961-9
REVIEW ARTICLE
REVIEW ARTICLE

Progress of quantum molecular dynamics model and its applications in heavy ion collisions

Author information +
History +

Abstract

In this review article, we first briefly introduce the transport theory and quantum molecular dynamics model applied in the study of the heavy ion collisions from low to intermediate energies. The developments of improved quantum molecular dynamics model (ImQMD) and ultra-relativistic quantum molecular dynamics model (UrQMD), are reviewed. The reaction mechanism and phenomena related to the fusion, multinucleon transfer, fragmentation, collective flow and particle production are reviewed and discussed within the framework of the two models. The constraints on the isospin asymmetric nuclear equation of state and in-medium nucleon–nucleon cross sections by comparing the heavy ion collision data with transport models calculations in last decades are also discussed, and the uncertainties of these constraints are analyzed as well. Finally, we discuss the future direction of the development of the transport models for improving the understanding of the reaction mechanism, the descriptions of various observables, the constraint on the nuclear equation of state, as well as for the constraint on in-medium nucleon–nucleon cross sections.

Keywords

quantum molecular dynamics model / low energy heavy ion collisions / low-intermediate energy heavy ion collisions / fusion / multinucleon transfer reaction / multifragmentation / collective flow / isospin asymmetric equation of state / in-medium nucleon–nucleon cross sections

Cite this article

Download citation ▾
Ying-Xun Zhang, Ning Wang, Qing-Feng Li, Li Ou, Jun-Long Tian, Min Liu, Kai Zhao, Xi-Zhen Wu, Zhu-Xia Li. Progress of quantum molecular dynamics model and its applications in heavy ion collisions. Front. Phys., 2020, 15(5): 54301 https://doi.org/10.1007/s11467-020-0961-9

References

[1]
J. A. Gaidos, L. J. Gutay, A. S. Hirsch, R. Mitchell, T. V. Ragland, R. P. Scharenberg, F. Turkot, R. B. Willmann, and C. L. Wilson, Nuclear fragment emission in highenergy p–Xe and p–Kr collisions and a description of their production mechanism, Phys. Rev. Lett. 42(2), 82 (1979)
CrossRef ADS Google scholar
[2]
R. W. Minich, S. Agarwal, A. Bujak, J. Chuang, J. E. Finn, L. J. Gutay, A. S. Hirsch, N. T. Porile, R. P. Scharenberg, B. C. Stringfellow, and F. Turkot, Critical phenomena in hadronic matter and experimental isotopic yields in high energy proton–nucleus collisions, Phys. Lett. B 118(4–6), 458 (1982)
CrossRef ADS Google scholar
[3]
J. E. Finn, S. Agarwal, A. Bujak, J. Chuang, L. J. Gutay, A. S. Hirsch, R. W. Minich, N. T. Porile, R. P. Scharenberg, B. C. Stringfellow, and F. Turkot, Nuclear fragment mass yields from high-energy proton–nucleus interactions, Phys. Rev. Lett. 49(18), 1321 (1982)
CrossRef ADS Google scholar
[4]
L. D. Landau and E. M. Lifshitz, Fluid Mechanics, London: Pergamon Press, 1959
[5]
W. Scheid, R. Ligensa, and W. Greiner, Ion–ion potentials and the compressibility of nuclear matter, Phys. Rev. Lett. 21(21), 1479 (1968)
CrossRef ADS Google scholar
[6]
J. Hofmann, H. Stöcker, U. Heinz, W. Scheid, and W. Greiner, Possibility of detecting density isomers in highdensity nuclear mach shock waves, Phys. Rev. Lett. 36(2), 88 (1976)
CrossRef ADS Google scholar
[7]
P. J. Siemens, Heavy ion collisions, Nucl. Phys. A 335(1– 2), 491 (1980)
CrossRef ADS Google scholar
[8]
H. A. Gustafsson, H. H. Gutbrod, B. Kolb, H. Löhner, B. Ludewigt, A. M. Poskanzer, T. Renner, H. Riedesel, H. G. Ritter, A. Warwick, F. Weik, and H. Wieman, Collective flow observed in relativistic nuclear collisions, Phys. Rev. Lett. 52(18), 1590 (1984)
CrossRef ADS Google scholar
[9]
H. Stöcker and W. Greiner, High energy heavy ion collisions — probing the equation of state of highly excited hardronic matter, Phys. Rep. 137(5–6), 277 (1986)
CrossRef ADS Google scholar
[10]
R. B. Clare and D. Strottman, Relativistic hydrodynamics and heavy ion reactions, Phys. Rep. 141(4), 177 (1986)
CrossRef ADS Google scholar
[11]
H. Stöcker, J. A. Maruhn, and W. Greiner, Collective sideward flow of nuclear matter in violent high-energy heavy-ion collisions, Phys. Rev. Lett. 44(11), 725 (1980)
CrossRef ADS Google scholar
[12]
R. E. Renfordt, D. Schall, R. Bock, R. Brockmann, J. W. Harris, A. Sandoval, R. Stock, H. Ströbele, D. Bangert, W. Rauch, G. Odyniec, H. G. Pugh, and L. S. Schroeder, Stopping power and collective flow of nuclear matter in the reaction Ar+Pb at 0.8 GeV/u, Phys. Rev. Lett. 53(8), 763 (1984)
CrossRef ADS Google scholar
[13]
H. Ströbele, R. Brockmann, J. W. Harris, F. Riess, A. Sandoval, R. Stock, K. L. Wolf, H. G. Pugh, L. S. Schroeder, R. E. Renfordt, K. Tittel, and M. Maier, Charged-particle exclusive analysis of central Ar+ KCl and Ar+ Pb reactions at 1.8 and 0.8 GeV/nucleon, Phys. Rev. C 27(3), 1349 (1983)
CrossRef ADS Google scholar
[14]
A. Baden, H. H. Gutbrod, H. Löhner, M. R. Maier, A. M. Poskanzer, T. Renner, H. Riedesel, H. G. Ritter, H. Spieler, A. Warwick, F. Weik, and H. Wieman, The plastic ball spectrometer: An electronic 4τ detector with particle identification, Nucl. Instrum. Methods 203(1–3), 189 (1982)
CrossRef ADS Google scholar
[15]
G. Buchwald, G. Graebner, J. Theis, J. Maruhn, W. Greiner, and H. Stöcker, Kinetic energy flow in Nb(400 AMeV) + Nb: Evidence for hydrodynamic compression of nuclear matter, Phys. Rev. Lett. 52(18), 1594 (1984)
CrossRef ADS Google scholar
[16]
W. Reisdorf and H. G. Ritter, Collective flow in heavy-ion collisions, Annu. Rev. Nucl. Part. Sci. 47(1), 663 (1997)
CrossRef ADS Google scholar
[17]
N. Herrmann, J. P. Wessels, and T. Wienold, Collective flow in heavy-ion collisions, Annu. Rev. Nucl. Part. Sci. 49(1), 581 (1999)
CrossRef ADS Google scholar
[18]
R. Wada, K. D. Hildenbrand, U. Lynen, W. F. J. Müller, H. J. Rabe, ., Isotopic-yield ratios of complex fragments from intermediate-energy heavy-ion reactions, Phys. Rev. Lett. 58(18), 1829 (1987)
CrossRef ADS Google scholar
[19]
H. Johnston, T. White, J. Winger, D. Rowland, B. Hurst, F. Gimeno-Nogues, D. O’Kelly, and S. J. Yennello, Isospin equilibration in the reaction 40Ar, 40Ca+58Fe, 58Ni, Phys. Lett. B 371(3–4), 186 (1996)
CrossRef ADS Google scholar
[20]
M. Veselsky, R. W. Ibbotson, R. Laforest, E. Ramakrishnan, D. J. Rowland, A. Ruangma, E. M. Winchester, E. Martin, and S. J. Yennello, Inhomogeneous isospin distribution in the reactions of 28Si+112Sn and 124Sn at 30 and 50 MeV/nucleon, Phys. Rev. C 62(4), 041605 (2000)
CrossRef ADS Google scholar
[21]
A. Z. Mekjian, Explosive nucleosynthesis, equilibrium thermodynamics, and relativistic heavy-ion collisions, Phys. Rev. C 17(3), 1051 (1978)
CrossRef ADS Google scholar
[22]
M. B. Tsang, W. A. Friedman, C. K. Gelbke, W. G. Lynch, G. Verde, and H. S. Xu, Isotopic scaling in nuclear reactions, Phys. Rev. Lett. 86(22), 5023 (2001)
CrossRef ADS Google scholar
[23]
H. Xu, R. Alfaro, B. Davin, L. Beaulieu, Y. Larochelle, ., Fragment isospin as a probe of heavy-ion collisions, Phys. Rev. C 65, 061602(R) (2002)
CrossRef ADS Google scholar
[24]
P. Danielewicz, R. Lacey, and W. G. Lynch, Determination of the equation of state of dense matter, Science 298(5598), 1592 (2002)
CrossRef ADS Google scholar
[25]
G. G. Adamian, N. V. Antonenko, and W. Scheid, Model of competition between fusion and quasifission in reactions with heavy nuclei, Nucl. Phys. A 618(1–2), 176 (1997)
CrossRef ADS Google scholar
[26]
A. Diaz-Torres, G. G. Adamian, N. V. Antonenko, and W. Scheid, Quasifission process in a transport model for a dinuclear system, Phys. Rev. C 64(2), 024604 (2001)
CrossRef ADS Google scholar
[27]
N. Wang, E. G. Zhao, W. Scheid, and S.-G. Zhou, Theoretical study of the synthesis of superheavy nuclei with Z=119 and 120 in heavy-ion reactions with transuranium targets, Phys. Rev. C 85, 041601(R) (2012)
CrossRef ADS Google scholar
[28]
V. Zagrebaev and W. Greiner, Unified consideration of deep inelastic, quasi-fission and fusion-fission phenomena, J. Phys. G 31(7), 825 (2005)
CrossRef ADS Google scholar
[29]
A. K. Nasirov, G. Mandaglio, G. Giardina, A. Sobiczewski, and A. I. Muminov, Effects of the entrance channel and fission barrier in the synthesis of superheavy element Z=120, Phys. Rev. C 84(4), 044612 (2011)
CrossRef ADS Google scholar
[30]
S. Hofmann and G. Münzenberg, The discovery of the heaviest elements, Rev. Mod. Phys. 72(3), 733 (2000)
CrossRef ADS Google scholar
[31]
Yu. Ts. Oganessian, F. S. Abdullin, P. D. Bailey, D. E. Benker, M. E. Bennett, ., Synthesis of a new element with atomic number Z=117, Phys. Rev. Lett. 104(14), 142502 (2010)
CrossRef ADS Google scholar
[32]
R. K. Gupta, M. Manhas, G. Münzenberg, and W. Greiner, Theory of the compactness of the hot fusion reaction 48Ca+244Pu→292114*, Phys. Rev. C 72, 014607 (2005)
CrossRef ADS Google scholar
[33]
G. G. Adamian, N. V. Antonenko, A. Diaz-Torres, and W. Scheid, Dynamical restriction for a growing neck due to mass parameters in a dinuclear system, Nucl. Phys. A 671(1–4), 233 (2000)
CrossRef ADS Google scholar
[34]
B. N. Lu, E. G. Zhao, and S. G. Zhou, Potential energy surfaces of actinide nuclei from a multidimensional constrained covariant density functional theory: Barrier heights and saddle point shapes, Phys. Rev. C 85, 011301(R) (2012)
CrossRef ADS Google scholar
[35]
N. Wang, J. L. Tian and W. Scheid, Systematics of fusion probability in “hot” fusion reactions, Phys. Rev. C 84, 061601(R) (2011)
CrossRef ADS Google scholar
[36]
V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, W. Scheid, and H. Q. Zhang, Effects of nuclear deformation and neutron transfer in capture processes, and fusion hindrance at deep sub-barrier energies, Phys. Rev. C 84(6), 064614 (2011)
CrossRef ADS Google scholar
[37]
M. Dasgupta, D. J. Hinde, A. Diaz-Torres, B. Bouriquet, C. I. Low, G. J. Milburn, and J. O. Newton, Beyond the coherent coupled channels description of nuclear fusion, Phys. Rev. Lett. 99(19), 192701 (2007)
CrossRef ADS Google scholar
[38]
J. R. Leigh, M. Dasgupta, D. J. Hinde, J. C. Mein, C. R. Morton, R. C. Lemmon, J. P. Lestone, J. O. Newton, H. Timmers, J. X. Wei, and N. Rowley, Barrier distributions from the fusion of oxygen ions with 144,148,154Sm and 186W, Phys. Rev. C 52(6), 3151 (1995)
CrossRef ADS Google scholar
[39]
H. Timmers, D. Ackermann, S. Beghini, L. Corradi, J. H. He, G. Montagnoli, F. Scarlassara, A. M. Stefanini, and N. Rowley, A case study of collectivity, transfer and fusion enhancement, Nucl. Phys. A 633 (3), 421 (1998)
CrossRef ADS Google scholar
[40]
H. Q. Zhang, C. J. Lin, F. Yang, H. M. Jia, X. X. Xu, Z. D. Wu, F. Jia, S. T. Zhang, Z. H. Liu, A. Richard, and C. Beck, Near-barrier fusion of 32S+90,96Zr: The effect of multi-neutron transfers in sub-barrier fusion reactions, Phys. Rev. C 82(5), 054609 (2010)
CrossRef ADS Google scholar
[41]
A. Sobiczewski and K. Pomorski, Description of structure and properties of superheavy nuclei, Prog. Part. Nucl. Phys. 58(1), 292 (2007)
CrossRef ADS Google scholar
[42]
W. D. Myers and W. J. Swiatecki, Nucleus–nucleus proximity potential and superheavy nuclei, Phys. Rev. C 62(4), 044610 (2000)
CrossRef ADS Google scholar
[43]
M. Liu, N. Wang, Z. Li, X. Wu, and E. Zhao, Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers, Nucl. Phys. A 768(1–2), 80 (2006)
CrossRef ADS Google scholar
[44]
N. Wang, M. Liu, and Y. X. Yang, Heavy-ion fusion and scattering with Skyrme energy density functional, Sci. China G: Phys. Mech. Astron. 52(10), 1554 (2009))
CrossRef ADS Google scholar
[45]
N. Wang, K. Zhao, W. Scheid, and X. Wu, Fusion-fission reactions with a modified Woods–Saxon potential, Phys. Rev. C 77(1), 014603 (2008)
CrossRef ADS Google scholar
[46]
V. Zagrebaev and W. Greiner, Synthesis of superheavy nuclei: A search for new production reactions, Phys. Rev. C 78(3), 034610 (2008)
CrossRef ADS Google scholar
[47]
T. Cap, K. Siwek-Wilczyńska, and J. Wilczyński, Nucleus–nucleus cold fusion reactions analyzed with the l-dependent “fusion by diffusion” model, Phys. Rev. C 83(5), 054602 (2011)
CrossRef ADS Google scholar
[48]
K. Hagino, N. Rowley, and A. T. Kruppa, A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions, Comput. Phys. Commun. 123(1–3), 143 (1999)
CrossRef ADS Google scholar
[49]
C. Y. Wong, Interaction barrier in charged-particle nuclear reactions, Phys. Rev. Lett. 31(12), 766 (1973)
CrossRef ADS Google scholar
[50]
R. K. Puri and R. K. Gupta, Fusion barriers using the energy-density formalism: Simple analytical formula and the calculation of fusion cross sections, Phys. Rev. C 45(4), 1837 (1992)
CrossRef ADS Google scholar
[51]
B. Wang, K. Wen, W. J. Zhao, E. G. Zhao, and S. G. Zhou, Systematics of capture and fusion dynamics in heavy-ion collisions, At. Data Nucl. Data Tables 114, 281 (2017)
CrossRef ADS Google scholar
[52]
V. I. Zagrebaev, Yu. Ts. Oganessian, M. G. Itkis, and W. Greiner, Superheavy nuclei and quasi-atoms produced in collisions of transuranium ions, Phys. Rev. C 73, 031602(R) (2006)
CrossRef ADS Google scholar
[53]
V. Zagrebaev and W. Greiner, Low-energy collisions of heavy nuclei: Dynamics of sticking, mass transfer and fusion, J. Phys. G 34(1), 1 (2007)
CrossRef ADS Google scholar
[54]
V. Zagrebaev and W. Greiner, Shell effects in damped collisions: A new way to superheavies, J. Phys. G 34(11), 2265 (2007)
CrossRef ADS Google scholar
[55]
F. Zhang, C. Li, L. Zhu, and P. Wen, Production cross sections for exotic nuclei with multinucleon transfer reactions, Front. Phys. 13(6), 132113 (2018)
CrossRef ADS Google scholar
[56]
A. S. Umar and V. E. Oberacker, Heavy-ion interaction potential deduced from density-constrained timedependent Hartree–Fock calculation, Phys. Rev. C 74, 021601(R) (2006)
CrossRef ADS Google scholar
[57]
A. S. Umar, V. E. Oberacker, J. A. Maruhn, and P. G. Reinhard, Microscopic composition of ion–ion interaction potentials, Phys. Rev. C 85(1), 017602 (2012)
CrossRef ADS Google scholar
[58]
T. Nakatsukasa and K. Yabana, Linear response theory in the continuum for deformed nuclei: Green’s function vs time-dependent Hartree–Fock with the absorbing boundary condition, Phys. Rev. C 71(2), 024301 (2005)
CrossRef ADS Google scholar
[59]
J. A. Maruhn, P. G. Reinhard, P. D. Stevenson, and M. R. Strayer, Spin-excitation mechanisms in Skyrme-force time-dependent Hartree–Fock calculations, Phys. Rev. C 74(2), 027601 (2006)
CrossRef ADS Google scholar
[60]
L. Guo, J. A. Maruhn, and P. G. Reinhard, Boostinvariant mean field approximation and the nuclear Landau–Zener effect, Phys. Rev. C 76(1), 014601 (2007)
CrossRef ADS Google scholar
[61]
C. Simenel, Nuclear quantum many-body dynamics, Eur. Phys. J. A 48(11), 152 (2012)
CrossRef ADS Google scholar
[62]
B. A. Li, L. W. Chen, and C. M. Ko, Recent progress and new challenges in isospin physics with heavy-ion reactions, Phys. Rep. 464 (4–6), 113 (2008)
CrossRef ADS Google scholar
[63]
B. A. Li, C. M. Ko, and Z. Z. Ren, Equation of state of asymmetric nuclear matter and collisions of neutron-rich nuclei, Phys. Rev. Lett. 78(9), 1644 (1997)
CrossRef ADS Google scholar
[64]
B. A. Li, C. M. Ko, and W. Bauer, Isospin physics in heavy-ion collisions at intermediate energies, Int. J. Mod. Phys. E 07(02), 147 (1998)
CrossRef ADS Google scholar
[65]
L. W. Chen, C. M. Ko, B. A. Li, C. Xu, and J. Xu, Probing isospin- and momentum-dependent nuclear effective interactions in neutron-rich matter, Eur. Phys. J. A 50(2), 29 (2014)
CrossRef ADS Google scholar
[66]
B. A. Li, Probing the high density behavior of the nuclear symmetry energy with high energy heavy-ion collisions, Phys. Rev. Lett. 88(19), 192701 (2002)
CrossRef ADS Google scholar
[67]
B. A. Li, Isospin dependence of the π+ ratio and density dependence of the nuclear symmetry energy, Phys. Rev. C 67(1), 017601 (2003)
CrossRef ADS Google scholar
[68]
V. Baran, M. Colonna, V. Greco, and M. Di Toro, Reaction dynamics with exotic nuclei, Phys. Rep. 410(5–6), 335 (2005)
CrossRef ADS Google scholar
[69]
V. Greco, V. Baran, M. Colonna, M. Di Toro, T. Gaitanos, and H. H. Wolter, Relativistic effects in the search for high density symmetry energy, Phys. Lett. B 562(3–4), 215 (2003)
CrossRef ADS Google scholar
[70]
L. W. Chen, C. M. Ko, and B. A. Li, Determination of the stiffness of the nuclear symmetry energy from isospin diffusion, Phys. Rev. Lett. 94(3), 032701 (2005)
CrossRef ADS Google scholar
[71]
L. W. Chen, V. Greco, C. M. Ko, and B. A. Li, Effects of symmetry energy on two-nucleon correlation functions in heavy-ion collisions induced by neutron-rich nuclei, Phys. Rev. Lett. 90(16), 162701 (2003)
CrossRef ADS Google scholar
[72]
T. Gaitanos, M. Di Toro, S. Type, V. Baran, C. Fuchs, V. Greco, and H. H. Wolter, On the Lorentz structure of the symmetry energy, Nucl. Phys. A 732, 24 (2004)
CrossRef ADS Google scholar
[73]
Q. F. Li, Z. X. Li, S. Soff, R. K. Gupta, M. Bleicher, and H. Stöcker, Probing the density dependence of the symmetry potential at low and high densities, Phys. Rev. C 72(3), 034613 (2005)
CrossRef ADS Google scholar
[74]
Q. F. Li, Z. X. Li, S. Soff, R. K. Gupta, M. Bleicher, and H. Stöcker, Probing the equation of state with pions, J. Phys. G 32(2), 151 (2006)
CrossRef ADS Google scholar
[75]
Q. Li, Z. Li, S. Soff, R. K. Gupta, M. Bleicher, and H. Stöcker, Probing the density dependence of the symmetry potential in intermediate-energy heavy ion collisions, J. Phys. G 31(11), 1359 (2005)
CrossRef ADS Google scholar
[76]
Q. F. Li, Z. X. Li, E. G. Zhao, and R. K. Gupta, Σ+ratio as a candidate for probing the density dependence of the symmetry potential at high nuclear densities, Phys. Rev. C 71(5), 054907 (2005)
CrossRef ADS Google scholar
[77]
Q. Li, Z. Li, S. Soff, M. Bleicher, and H. Stöcker, Medium modifications of the nucleon–nucleon elastic cross section in neutron-rich intermediate energy HICs, J. Phys. G 32(4), 407 (2006)
CrossRef ADS Google scholar
[78]
W. Reisdorf, . (FOPI Collaboration), Systematics of pion emission in heavy ion collisions in the regime, Nucl. Phys. A 781(3–4), 459 (2007)
[79]
G. Ferini, M. Colonna, T. Gaitanos, M. Di Toro, and H. Wolter, Isospin effects on subthreshold Kaon production at intermediate energies, Phys. Rev. Lett. 97(20), 202301 (2006)
CrossRef ADS Google scholar
[80]
M. Di Toro, M. Colonna, G. Ferini, T. Gaitanos, V. Greco, and H. H. Wolter, Heavy ion collisions at relativistic energies: Testing a nuclear matter at high baryon and isospin density, Nucl. Phys. A 782(1–4), 267 (2007)
CrossRef ADS Google scholar
[81]
G. C. Yong, B. A. Li, and L. W. Chen, Double neutronproton differential transverse flow as a probe for the high density behavior of the nuclear symmetry energy, Phys. Rev. C 74(6), 064617 (2006)
CrossRef ADS Google scholar
[82]
Y. Leifels, T. Blaich, T. W. Elze, H. Emling, H. Freiesleben, ., Exclusive studies of neutron and charged particle emission in collisions of 197Au+197Au at 400 MeV/nucleon, Phys. Rev. Lett. 71(7), 963 (1993)
CrossRef ADS Google scholar
[83]
D. Lambrecht, T. Blaich, T. W. Elze, H. Emling, H. Freiesleben, ., Energy dependence of collective flow of neutrons and protons in 197Au+197Au collisions, Z. Phys. A 350(2), 115 (1994)
CrossRef ADS Google scholar
[84]
H. Petersen, Q. Li, X. Zhu, and M. Bleicher, Directed and elliptic flow in heavy-ion collisions from E beam= 90 MeV/nucleon to E c.m. = 200 GeV/nucleon, Phys. Rev. C 74(6), 064908 (2006)
CrossRef ADS Google scholar
[85]
J. C. Yang, J. W. Xia, G. Q. Xiao, H. S. Xu, H. W. Zhao, ., High intensity heavy ion Accelerator Facility (HIAF) in China, Nucl. Instr. Method. B 317, 263 (2013)
CrossRef ADS Google scholar
[86]
G. Q. Xiao, H. S. Xu, and S. C. Wang, HIAF and CiADS national research facilities: Progress and prospect, Nucl. Phys. Rev. 34, 275 (2017)
[87]
X. H. Zhou, Physics opportunities at the new facility HIAF, Nucl. Phys. Rev. 35, 339 (2018)
[88]
https://frib.msu.edu/
[89]
C.-B. Moon, Nuclear physics programs for the future rare isotope beams accelerator facility in Korea, arXiv: 1601.07271 (2016)
[90]
http://www.nishina.riken.jp/RIBF/
[91]
https://www.ganil-spiral2.eu/
[92]
https://fair-center.eu/
[93]
https://web.infn.it/epics/index.php
[94]
http://nica.jinr.ru/
[95]
W. P. Liu, The prospects for accelerator-basednuclear physics facilities, Physics (College Park Md.) 43, 150 (2014) (in Chinese)
[96]
G. G. Adamian, N. V. Antonenko, W. Scheid, and V. V. Volkov, Treatment of competition between complete fusion and quasifission in collisions of heavy nuclei, Nucl. Phys. A 627(2), 361 (1997)
CrossRef ADS Google scholar
[97]
M. H. Huang, Z. G. Gan, X. H. Zhou, J. Q. Li, and W. Scheid, Competing fusion and quasifission reaction mechanisms in the production of superheavy nuclei, Phys. Rev. C 82(4), 044614 (2010)
CrossRef ADS Google scholar
[98]
G. G. Adamian, N. V. Antonenko, and W. Scheid, Characteristics of quasifission products within the dinuclear system model, Phys. Rev. C 68(3), 034601 (2003)
CrossRef ADS Google scholar
[99]
G. G. Adamian, N. V. Antonenko, and W. Scheid, Isotopic trends in the production of superheavy nuclei in cold fusion reactions, Phys. Rev. C 69, 011601(R) (2004)
CrossRef ADS Google scholar
[100]
Z. Q. Feng, G. M. Jin, F. Fu, and J. Q. Li, Production cross sections of superheavy nuclei based on dinuclear system model, Nucl. Phys. A 771, 50 (2006)
CrossRef ADS Google scholar
[101]
G. G. Adamian, N. V. Antonenko, and A. S. Zubov, Production of unknown transactinides in asymmetry-exitchannel quasifission reactions, Phys. Rev. C 71(3), 034603 (2005)
CrossRef ADS Google scholar
[102]
Q. Li, W. Zuo, W. Li, N. Wang, E. Zhao, J. Li, and W. Scheid, Deformation and orientation effects in the driving potential of the dinuclear model, Eur. Phys. J. A 24(2), 223 (2005)
CrossRef ADS Google scholar
[103]
G. G. Adamian, N. V. Antonenko, and D. Lacroix, Production of neutron-rich Ca, Sn, and Xe isotopes in transfer-type reactions with radioactive beams, Phys. Rev. C 82(6), 064611 (2010)
CrossRef ADS Google scholar
[104]
M.-H. Mun, G. G. Adamian, N. V. Antonenko, Y. Oh, and Y. Kim, Production cross section of neutron-rich isotopes with radioactive and stable beams, Phys. Rev. C 89, 034622 (2014)
CrossRef ADS Google scholar
[105]
L. Zhu, Z. Q. Feng, and F. S. Zhang, Production of heavy neutron-rich nuclei in transfer reactions within the dinuclear system model, J. Phys. G 42(8), 085102 (2015)
CrossRef ADS Google scholar
[106]
L. Zhu, J. Su, W. J. Xie, and F. S. Zhang, Production of neutron-rich transcalifornium nuclei in 238U-induced transfer reactions, Phys. Rev. C 94(5), 054606 (2016)
CrossRef ADS Google scholar
[107]
Z. Q. Feng, Production of neutron-rich isotopes around N= 126 in multinucleon transfer reactions, Phys. Rev. C 95(2), 024615 (2017)
CrossRef ADS Google scholar
[108]
V. Zagrebaev and W. Greiner, New way for the production of heavy neutron-rich nuclei, J. Phys. G 35(12), 125103 (2008)
CrossRef ADS Google scholar
[109]
V. I. Zagrebaev and W. Greiner, New ideas on the production of heavy and superheavy neutron rich nuclei, Nucl. Phys. A 834(1–4), 366c (2010)
CrossRef ADS Google scholar
[110]
V. I. Zagrebaev and W. Greiner, Production of heavy trans-target nuclei in multinucleon transfer reactions, Phys. Rev. C 87(3), 034608 (2013)
CrossRef ADS Google scholar
[111]
V. Zagrebaev and W. Greiner, Production of new heavy isotopes in low-energy multinucleon transfer reactions, Phys. Rev. Lett. 101(12), 122701 (2008)
CrossRef ADS Google scholar
[112]
V. I. Zagrebaev, B. Fornal, S. Leoni, and W. Greiner, Formation of light exotic nuclei in low-energy multinucleon transfer reactions, Phys. Rev. C 89(5), 054608 (2014)
CrossRef ADS Google scholar
[113]
Y. Aritomo, T. Wada, M. Ohta, and Y. Abe, Fluctuationdissipation model for synthesis of superheavy elements, Phys. Rev. C 59(2), 796 (1999)
CrossRef ADS Google scholar
[114]
Y. Aritomo, T. Wada, M. Ohta, and Y. Abe, Diffusion mechanism for synthesis of superheavy elements, Phys. Rev. C 55, R1011(R) (1997)
CrossRef ADS Google scholar
[115]
C. Shen, G. Kosenko, and Y. Abe, Two-step model of fusion for the synthesis of superheavy elements, Phys. Rev. C 66, 061602(R) (2002)
CrossRef ADS Google scholar
[116]
Z. Q. Feng, G. M. Jin, and J. Q. Li, Production of heavy isotopes in transfer reactions by collisions of 238U+238U, Phys. Rev. C 80(6), 067601 (2009)
CrossRef ADS Google scholar
[117]
X. J. Bao, S. Q. Guo, H. F. Zhang, and J. Q. Li, Influence of entrance channel on production cross sections of superheavy nuclei, Phys. Rev. C 96(2), 024610 (2017)
CrossRef ADS Google scholar
[118]
J. Tõke, D. K. Agnihotri, S. P. Baldwin, B. Djerroud, B. Lott, B. M. Quednau, W. Skulski, W. U. Schröder, L. G. Sobotka, R. J. Charity, D. G. Sarantites, and R. T. de Souza, Dynamical fragment production as a mode of energy dissipation in heavy-ion reactions, Phys. Rev. Lett. 77(17), 3514 (1996)
CrossRef ADS Google scholar
[119]
J. P. Bondorf, R. Donangelo, I. N. Mishustin, C. J. Pethick, H. Schulz, and K. Sneppen, Statistical multifragmentation of nuclei, Nucl. Phys. A 443(2), 321 (1985)
CrossRef ADS Google scholar
[120]
J. Bondorf, R. Donangelo, I. N. Mishustin, and H. Schulz, Statistical multifragmentation of nuclei, Nucl. Phys. A 444(3), 460 (1985)
CrossRef ADS Google scholar
[121]
H. W. Barz, J. P. Bondorf, R. Donangelo, and H. Schulz, Connection between the thermodynamical and the percolation models of nuclear fragmentation, Phys. Lett. B 169(4), 318 (1986)
CrossRef ADS Google scholar
[122]
B. H. Sa, Y. M. Zheng, and X. Z. Zhang, Disassembly of hot nuclei and relevant phase transition, Int. J. Mod. Phys. A 05(05), 843 (1990)
CrossRef ADS Google scholar
[123]
J. P. Bondorf, A. S. Botvina, A. S. Iljinov, I. N. Mishustin, and K. Sneppen, Statistical multifragmentation of nuclei, Phys. Rep. 257(3), 133 (1995)
CrossRef ADS Google scholar
[124]
A. S. Botvina and I. N. Mishustin, Statistical evolution of isotope composition of nuclear fragments, Phys. Rev. C 63(6), 061601 (2001)
CrossRef ADS Google scholar
[125]
N. Buyukcizmeci, R. Ogul, and A. S. Botvina, Isospin and symmetry energy effects on nuclear fragment production in liquid-gas-type phase transition region, Eur. Phys. J. A 25(1), 57 (2005)
CrossRef ADS Google scholar
[126]
P. Napolitani and M. Colonna, Bifurcations in Boltzmann–Langevin one body dynamics for fermionic systems, Phys. Lett. B 726(1–3), 382 (2013)
CrossRef ADS Google scholar
[127]
P. Napolitani and M. Colonna, Frustrated fragmentation and re-aggregation in nuclei: A non-equilibrium description in spallation, Phys. Rev. C 92(3), 034607 (2015)
CrossRef ADS Google scholar
[128]
T. Gaitanos, A. B. Larionov, H. Lenske, and U. Mosel, Breathing mode in an improved transport approach, Phys. Rev. C 81(5), 054316 (2010)
CrossRef ADS Google scholar
[129]
A. B. Larionov, T. Gaitanos, and U. Mosel, Kaon and hyperon production in antiproton-induced reactions on nuclei, Phys. Rev. C 85(2), 024614 (2012)
CrossRef ADS Google scholar
[130]
O. Buss, T. Gaitanos, K. Gallmeister, H. van Hees, M. Kaskulov, O. Lalakulich, A. B. Larionov, T. Leitner, J. Weil, and U. Mosel, Transport-theoretical description of nuclear reactions, Phys. Rep. 512(1–2), 1 (2012); see also https://gibuu.hepforge.org
CrossRef ADS Google scholar
[131]
F. S. Zhang and E. Suraud, Analysis of multifragmentation in a Boltzmann–Langevin approach, Phys. Rev. C 51(6), 3201 (1995)
CrossRef ADS Google scholar
[132]
W.-J. Xie, J. Su, L. Zhu, and F.-S. Zhang, Neutronproton effective mass splitting in a Boltzmann–Langevin approach, Phys. Rev. C 88, 061601(R) (2013)
CrossRef ADS Google scholar
[133]
P. Danielewicz, Determination of the mean-field momentum-dependence using elliptic flow, Nucl. Phys. A 673(1–4), 375 (2000)
CrossRef ADS Google scholar
[134]
P. Danielewicz and G. F. Bertsch, Production of deuterons and pions in a transport model of energetic heavy-ion reactions, Nucl. Phys. A 533(4), 712 (1991)
CrossRef ADS Google scholar
[135]
C. Fuchs and H. H. Wolter, The relativistic Landau- Vlasov method in heavy-ion collisions, Nucl. Phys. A 589(4), 732 (1995)
CrossRef ADS Google scholar
[136]
T. Gaitanos, M. Di Toro, S. Typel, V. Baran, C. Fuchs, V. Greco, and H. H. Wolter, On the Lorentz structure of the symmetry energy, Nucl. Phys. A 732, 24 (2004)
CrossRef ADS Google scholar
[137]
C. M. Ko and Q. Li, Relativistic Vlasov–Uehling- Uhlenbeck model for heavy-ion collisions, Phys. Rev. C 37(5), 2270 (1988)
CrossRef ADS Google scholar
[138]
C. M. Ko and Q. Li, Medium effects in high energy heavyion collisions, J. Phys. G 22(12), 1673 (1996)
CrossRef ADS Google scholar
[139]
T. Song and C. M. Ko, Modifications of the pionproduction threshold in the nuclear medium in heavy ion collisions and the nuclear symmetry energy, Phys. Rev. C 91(1), 014901 (2015)
CrossRef ADS Google scholar
[140]
M. Colonna, M. Di Toro, A. Guarnera, S. Maccarone, M. Zielinska-Pfabé, and H. H. Wolter, Fluctuations and dynamical instabilities in heavy-ion reactions, Nucl. Phys. A 642(3–4), 449 (1998)
CrossRef ADS Google scholar
[141]
A. Guarnera, M. Colonna, and Ph. Chomaz, 3D stochastic mean-field simulations of the spinodal fragmentation of dilute nuclei, Phys. Lett. B 373(4), 267 (1996)
CrossRef ADS Google scholar
[142]
M. Colonna, Fluctuations and symmetry energy in nuclear fragmentation dynamics, Phys. Rev. Lett. 110(4), 042701 (2013)
CrossRef ADS Google scholar
[143]
A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi, Antisymmetrized version of molecular dynamics with twonucleon collisions and its application to heavy ion reactions, Prog. Theor. Phys. 87(5), 1185 (1992)
CrossRef ADS Google scholar
[144]
A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi, Momentum distribution of fragments in heavy-ion reactions: Dependence on the stochastic collision process, Phys. Rev. C 47(6), 2652 (1993)
CrossRef ADS Google scholar
[145]
J. Su, F. S. Zhang, and B. A. Bian, Odd-even effect in heavy-ion collisions at intermediate energies, Phys. Rev. C 83(1), 014608 (2011)
CrossRef ADS Google scholar
[146]
J. Su and F. S. Zhang, Non-equilibrium and residual memory in momentum space of fragmenting sources in central heavy-ion collisions, Phys. Rev. C 87(1), 017602 (2013)
CrossRef ADS Google scholar
[147]
J. Su, K. Cherevko, W. J. Xie, and F. S. Zhang, Nonisotropic and nonsingle explosion in central 129Xe+120Sn collisions at 50–125 MeV/nucleon, Phys. Rev. C 89(1), 014619 (2014)
CrossRef ADS Google scholar
[148]
J. Aichelin and G. Bertsch, Numerical simulation of medium energy heavy ion reactions, Phys. Rev. C 31(5), 1730 (1985)
CrossRef ADS Google scholar
[149]
C. Hartnack, L. Zhuxia, L. Neise, G. Peilert, A. Rosenhauer, H. Sorge, J. Aichelin, H. Stöcker, and W. Greiner, Quantum molecular dynamics a microscopic model from UNILAC to CERN energies, Nucl. Phys. A 495(1–2), 303 (1989)
CrossRef ADS Google scholar
[150]
J. Aichelin, “Quantum” molecular dynamics — a dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions, Phys. Rep. 202(5–6), 233 (1991)
CrossRef ADS Google scholar
[151]
C. Hartnack, R. K. Puri, J. Aichelin, J. Konopka, S. A. Bass, H. Stöcker, and W. Greiner, Modelling the manybody dynamics of heavy ion collisions: Present status and future perspective, Eur. Phys. J. A 1(2), 151 (1998)
CrossRef ADS Google scholar
[152]
M. Papa, T. Maruyama, and A. Bonasera, Constrained molecular dynamics approach to fermionic systems, Phys. Rev. C 64(2), 024612 (2001)
CrossRef ADS Google scholar
[153]
M. Papa, Many-body correlations in semiclassical molecular dynamics and Skyrme interaction, Phys. Rev. C 87(1), 014001 (2013)
CrossRef ADS Google scholar
[154]
M. Papa, G. Giuliani, and A. Bonasera, Constrained molecular dynamics II: An N-body approach to nuclear systems, J. Comput. Phys. 208(2), 403 (2005)
CrossRef ADS Google scholar
[155]
N. Wang, Z. Li, and X. Wu, Improved quantum molecular dynamics model and its applications to fusion reaction near barrier, Phys. Rev. C 65(6), 064608 (2002)
CrossRef ADS Google scholar
[156]
Y. X. Zhang and Z. X. Li, Elliptic flow and system size dependence of transition energies at intermediate energies, Phys. Rev. C 74(1), 014602 (2006)
CrossRef ADS Google scholar
[157]
Y. X. Zhang, Z. X. Li, and P. Danielewicz, In-medium NN cross sections determined from the nuclear stopping and collective flow in heavy-ion collisions at intermediate energies, Phys. Rev. C 75(3), 034615 (2007)
CrossRef ADS Google scholar
[158]
Y. X. Zhang, P. Danielewicz, M. Famiano, Z. Li, W. G. Lynch, and M. B. Tsang, The influence of cluster emission and the symmetry energy on neutron–proton spectral double ratios, Phys. Lett. B 664(1–2), 145 (2008)
CrossRef ADS Google scholar
[159]
Y. X. Zhang, Z. X. Li, C. S. Zhou, and M. B. Tsang, Effect of isospin-dependent cluster recognition on the observables in heavy ion collisions, Phys. Rev. C 85, 051602(R) (2012)
CrossRef ADS Google scholar
[160]
Y. Zhang, D. D. S. Coupland, P. Danielewicz, Z. Li, H. Liu, F. Lu, W. G. Lynch, and M. B. Tsang, Influence of in-medium NNcross sections, symmetry potential, and impact parameter on isospin observables, Phys. Rev. C 85(2), 024602 (2012)
CrossRef ADS Google scholar
[161]
Y. Zhang, M. Tsang, and Z. Li, Covariance analysis of symmetry energy observables from heavy ion collision, Phys. Lett. B 749, 262 (2015)
CrossRef ADS Google scholar
[162]
N. Wang, Z. Li, X. Wu, J. Tian, Y. Zhang, and M. Liu, Further development of the improved quantum molecular dynamics model and its application to fusion reactions near the barrier, Phys. Rev. C 69(3), 034608 (2004)
CrossRef ADS Google scholar
[163]
Z. Q. Feng, Momentum dependence of the symmetry potential and its influence on nuclear reactions, Phys. Rev. C 84(2), 024610 (2011)
CrossRef ADS Google scholar
[164]
Z. Q. Feng, Nuclear in-medium effects and collective flows in heavy-ion collisions at intermediate energies, Phys. Rev. C 85(1), 014604 (2012)
CrossRef ADS Google scholar
[165]
X. G. Cao, G. Q. Zhang, X. Z. Cai, Y. G. Ma, W. Guo, J. G. Chen, W. D. Tian, D. Q. Fang, and H. W. Wang, Roles of deformation and orientation in heavy-ion collisions induced by light deformed nuclei at intermediate energy, Phys. Rev. C 81(6), 061603 (2010)
CrossRef ADS Google scholar
[166]
G. Q. Zhang, Y. G. Ma, X. G. Cao, C. L. Zhou, X. Z. Cai, D. Q. Fang, W. D. Tian, and H. W. Wang, Unified description of nuclear stopping in central heavy-ion collisions from 10AMeV to 1.2AGeV, Phys. Rev. C 84, 034612 (2011)
CrossRef ADS Google scholar
[167]
W. B. He, Y. G. Ma, X. G. Cao, X. Z. Cai, and G. Q. Zhang, Giant dipole resonance as a fingerprint of α clustering configurations in 12C and 16O, Phys. Rev. Lett. 113(3), 032506 (2014)
CrossRef ADS Google scholar
[168]
D. T. Khoa, N. Ohtsuka, M. A. Matin, A. Faessler, S. W. Huang, E. Lehmann, and R. K. Puri, In-medium effects in the description of heavy-ion collisions with realistic NN interactions, Nucl. Phys. A 548(1), 102 (1992)
CrossRef ADS Google scholar
[169]
V. Uma Maheswari, C. Fuchs, A. Faessler, L. Sehn, D. S. Kosov, and Z. Wang, In-medium dependence and Coulomb effects of the pion production in heavy ion collisions, Nucl. Phys. A 628(4), 669 (1998)
CrossRef ADS Google scholar
[170]
K. Shekhter, C. Fuchs, A. Faessler, M. Krivoruchenko, and B. Martemyanov, Dilepton production in heavy-ion collisions at intermediate energies, Phys. Rev. C 68(1), 014904 (2003)
CrossRef ADS Google scholar
[171]
M. D. Cozma, Y. Leifels, W. Trautmann, Q. Li, and P. Russotto, Toward a model-independent constraint of the high-density dependence of the symmetry energy, Phys. Rev. C 88(4), 044912 (2013)
CrossRef ADS Google scholar
[172]
Q. Li, C. Shen, C. Guo, Y. Wang, Z. Li, J. Lukasik, and W. Trautmann, Nonequilibrium dynamics in heavy-ion collisions at low energies available at the GSI Schwerionen Synchrotron, Phys. Rev. C 83(4), 044617 (2011)
CrossRef ADS Google scholar
[173]
S. A. Bass, M. Belkacem, M. Bleicher, ., Microscopic models for ultrarelativistic heavy ion collisions, Prog. Part. Nucl. Phys. 41, 255 (1998)
CrossRef ADS Google scholar
[174]
H. Sorge, H. Stocker, and W. Greiner, Poincaré invariant Hamiltonian dynamics: Modelling multi-hadronic interactions in a phase space approach, Ann. Phys. 192(2), 266 (1989)
CrossRef ADS Google scholar
[175]
C.-Y. Wong, Dynamics of nuclear fluid (VIII): Timedependent Hartree–Fock approximation from a classical point of view, Phys. Rev. C 25, 1460 (1982)
CrossRef ADS Google scholar
[176]
Ph. Chomaz, G. F. Burgio, and J. Randrup, Inclusion of fluctuations in nuclear dynamics, Phys. Lett. B 254(3–4), 340 (1991)
CrossRef ADS Google scholar
[177]
F. Chapelle, G. F. Burgio, Ph. Chomaz, and J. Randrup, Fluctuations in nuclear dynamics: Comparison of different methods, Nucl. Phys. A 540(1–2), 227 (1992)
CrossRef ADS Google scholar
[178]
F. S. Zhang and E. Suraud, Boltzmann-Langevin equation, dynamical instability and multifragmentation, Phys. Lett. B 319(1–3), 35 (1993)
CrossRef ADS Google scholar
[179]
Y. Abe, S. Ayik, P. G. Reinhard, and E. Suraud, On stochastic approaches of nuclear dynamics, Phys. Rep. 275(2–3), 49 (1996)
CrossRef ADS Google scholar
[180]
A. Guarnera, M. Colonna, and Ph. Chomaz, 3D stochastic mean-field simulations of the spinodal fragmentation of dilute nuclei, Phys. Lett. B 373(4), 267 (1996)
CrossRef ADS Google scholar
[181]
M. Colonna, Fluctuations and symmetry energy in nuclear fragmentation dynamics, Phys. Rev. Lett. 10(4), 042701 (2013)
CrossRef ADS Google scholar
[182]
S. Gavin, G. Moschelli, and C. Zin, Boltzmann–Langevin approach to pre-equilibrium correlations in nuclear collisions, Phys. Rev. C 95(6), 064901 (2017)
CrossRef ADS Google scholar
[183]
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, B864 (1964)
CrossRef ADS Google scholar
[184]
W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. A 140, 1133 (1965)
CrossRef ADS Google scholar
[185]
R. M. Dreizler and E. K. U. Gross, Density Functional Theory: An Approach to the Quantum Many-Body Problem, Springer-Verlag, Berlin, 1990
[186]
R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Clarendon, Oxford, 1989
[187]
W. Kohn, Electronic structure of matter — wave functions and density functionals, Rev. Mod. Phys. 71(5), 1253 (1999)
CrossRef ADS Google scholar
[188]
E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40(5), 749 (1932)
CrossRef ADS Google scholar
[189]
P. Carruthers and F. Zachariasen, Relativistic quantum transport theory approach to multiparticle production, Phys. Rev. D 13(4), 950 (1976)
CrossRef ADS Google scholar
[190]
L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics, Benjamin, New York, 1962
[191]
P. C. Martin and J. Schwinger, Theory of many-particle systems (I), Phys. Rev. 115(6), 1342 (1959)
CrossRef ADS Google scholar
[192]
J. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. (N.Y.) 2(3), 407 (1961)
CrossRef ADS Google scholar
[193]
P. Danielewicz, Quantum theory of nonequilibrium processes (I), Ann. Phys. 152(2), 239 (1984)
CrossRef ADS Google scholar
[194]
G. J. Mao, Z. X. Li, Y. Z. Zhuo, and Y. L. Han, Medium effects on the NNinelastic cross section in relativistic heavy-ion collisions, Phys. Lett. B 327(3-4), 183 (1994)
CrossRef ADS Google scholar
[195]
G. Mao, Z. Li, Y. Zhuo, and Z. Yu, Medium effects on the NNinelastic cross section in relativistic heavy-ion collisions, Phys. Lett. B 327(3–4), 183 (1994)
CrossRef ADS Google scholar
[196]
Y. Han, G. Mao, Z. Li, and Y. Zhuo, Effective nucleonnucleon cross sections based on Skyrme interactions, Phys. Rev. C 50(2), 961 (1994)
CrossRef ADS Google scholar
[197]
G. Mao, Z. Li, and Y. Zhuo, Self-consistent relativistic Boltzmann–Uehling–Uhlenbeck equation for the Δ distribution function, Phys. Rev. C 53 (6), 2933 (1996)
CrossRef ADS Google scholar
[198]
G. Mao, L. Neise, H. Stoecker, W. Greiner, and Z. Li, Relativistic transport theory of N,Δ, and N (1440) interacting through σ, ω, and π mesons, Phys. Rev. C 57(4), 1938 (1998)
CrossRef ADS Google scholar
[199]
Q. Li, Z. Li, and G. Mao, Isospin dependence of nucleonnucleon elastic cross section, Phys. Rev. C 62(1), 014606 (2000)
CrossRef ADS Google scholar
[200]
Q. Li, Z. Li, and E. Zhao, Density and temperature dependence of nucleon-nucleon elastic cross section, Phys. Rev. C 69(1), 017601 (2004)
CrossRef ADS Google scholar
[201]
W. Cassing and S. Juchem, Semiclassical transport of particles with dynamical spectral functions, Nucl. Phys. A 665(3–4), 377 (2000)
CrossRef ADS Google scholar
[202]
G. F. Bertsch and S. Das Gupta, A guide to microscopic models for intermediate energy heavy ion collisions, Phys. Rep. 160(4), 189 (1988)
CrossRef ADS Google scholar
[203]
J. Aichelin, A. Rosenhauer, G. Peilert, H. Stoecker, and W. Greiner, Importance of momentum-dependent interactions for the extraction of the nuclear equation of state from high-energy heavy-ion collisions, Phys. Rev. Lett. 58(19), 1926 (1987)
CrossRef ADS Google scholar
[204]
C. Hartnack and J. Aichelin, New parametrization of the optical potential, Phys. Rev. C 49(5), 2801 (1994)
CrossRef ADS Google scholar
[205]
C. Gale, G. Bertsch, and S. Das Gupta, Heavy-ion collision theory with momentum-dependent interactions, Phys. Rev. C 35(5), 1666 (1987)
CrossRef ADS Google scholar
[206]
M. Isse, A. Ohnishi, N. Otuka, P. K. Sahu, and Y. Nara, Mean-field effects on collective flow in high-energy heavyion collisions at 2–158A GeV energies, Phys. Rev. C 72(6), 064908 (2005)
CrossRef ADS Google scholar
[207]
S. Hama, B. C. Clark, E. D. Cooper, H. S. Sherif, and R. L. Mercer, Global Dirac optical potentials for elastic proton scattering from heavy nuclei, Phys. Rev. C 41(6), 2737 (1990)
CrossRef ADS Google scholar
[208]
J. Cugnon, Monte Carlo calculation of high-energy heavyion interactions, Phys. Rev. C 22(5), 1885 (1980)
CrossRef ADS Google scholar
[209]
J. J. Molitoris, J. B. Hoffer, H. Kruse, and H. Stöcker, Microscopic calculations of collective flow probing the shortrange nature of the nuclear force, Phys. Rev. Lett. 53(9), 899 (1984)
CrossRef ADS Google scholar
[210]
H. Kruse, B. V. Jacak, J. J. Molitoris, G. D. Westfall, and H. Stöcker, Vlasov–Uehling–Uhlenbeck theory of medium energy heavy ion reactions: Role of mean field dynamics and two body collisions, Phys. Rev. C 31(5), 1770 (1985)
CrossRef ADS Google scholar
[211]
G. F. Bertsch, H. Kruse, and S. D. Gupta, Boltzmann equation for heavy ion collisions, Phys. Rev. C 29(2), 673 (1984)
CrossRef ADS Google scholar
[212]
C. Grégoire, B. Remaud, F. Sebille, L. Vinet, and Y. Raffray, Semi-classical dynamics of heavy-ion reactions, Nucl. Phys. A 465(2), 317 (1987)
CrossRef ADS Google scholar
[213]
J. Aichelin, C. Hartnack, A. Bohnet, L. Zhuxia, G. Peilert, H. Stöcker, and W. Greiner, QMD versus BUU/VUU: Same results from different theories, Phys. Lett. B 224(1– 2), 34 (1989)
CrossRef ADS Google scholar
[214]
H. Feldmeier, Fermionic molecular dynamics, Nucl. Phys. A 515(1), 147 (1990)
CrossRef ADS Google scholar
[215]
H. Feldmeier and J. Schnack, Fermionic molecular dynamics SCV252SCV133 V2, Prog. Part. Nucl. Phys. 39, 393 (1997)
CrossRef ADS Google scholar
[216]
T. Maruyama, K. Niita, and A. Iwamoto, Extension of quantum molecular dynamics and its application to heavy-ion collisions, Phys. Rev. C 53(1), 297 (1996)
CrossRef ADS Google scholar
[217]
L. Wilets, E. M. Henley, M. Kraft, and A. D. Mackellar, Classical many-body model for heavy-ion collisions incorporating the Pauli principle, Nucl. Phys. A 282(2), 341 (1977)
CrossRef ADS Google scholar
[218]
L. Wilets, Y. Yariv, and R. Chestnut, Classical manybody model for heavy-ion collisions (II), Nucl. Phys. A 301(2), 359 (1978)
CrossRef ADS Google scholar
[219]
J. C. Dorso and J. Randrup, Classical simulation of nuclear systems, Phys. Lett. B 215(4), 611 (1988)
CrossRef ADS Google scholar
[220]
Z. X. Li, C. Hartnack, H. Stoeker, and W. Greiner, Transition from binary processes to multifragmentation in quantum molecular dynamics for intermediate energy heavy ion collisions, Phys. Rev. C 44, 824 (1990)
CrossRef ADS Google scholar
[221]
N. Wang, L. Ou, Y. Zhang, and Z. Li, Microscopic dynamics simulations of heavy-ion fusion reactions induced by neutron-rich nuclei, Phys. Rev. C 89(6), 064601 (2014)
CrossRef ADS Google scholar
[222]
H. Yao and N. Wang, Microscopic dynamics simulations of multinucleon transfer in 86Kr+64Ni at 25 MeV/nucleon, Phys. Rev. C 95(1), 014607 (2017)
CrossRef ADS Google scholar
[223]
Y. Y. Jiang, N. Wang, Z. X. Li, and W. Scheid, Dynamical nucleus–nucleus potential at short distances, Phys. Rev. C 81(4), 044602 (2010)
CrossRef ADS Google scholar
[224]
N. Wang, K. Zhao, and Z. X. Li, Systematic study of 16O-induced fusion with the improved quantum molecular dynamics model, Phys. Rev. C 90(5), 054610 (2014)
CrossRef ADS Google scholar
[225]
J. Tian, X. Wu, K. Zhao, Y. Zhang, and Z. Li, Properties of the composite systems formed in the reactions of 238U+238U and 232Th+250Cf, Phys. Rev. C 77(6), 064603 (2008)
CrossRef ADS Google scholar
[226]
K. Zhao, X. Wu, and Z. Li, Quantum molecular dynamics study of the mass distribution of products in 7.0AMeV 238U+238U collisions, Phys. Rev. C 80(5), 054607 (2009)
CrossRef ADS Google scholar
[227]
Y. X. Zhang, M. B. Tsang, Z. X. Li, and H. Liu, Constraints on nucleon effective mass splitting with heavy ion collisions, Phys. Lett. B 732, 186 (2014)
CrossRef ADS Google scholar
[228]
J. J. Cugnon, D. L’Hôte, and J. Vandermeulen, Simple parametrization of cross-sections for nuclear transport studies up to the GeV range, Nucl. Instrum. Methods B 111(3–4), 215 (1996)
CrossRef ADS Google scholar
[229]
A. Ono, J. Xu, M. Colonna, P. Danielewicz, C. M. Ko, ., Comparison of heavy-ion transport simulations: Collision integral with pions and Δ resonances in a box, Phys. Rev. C 100(4), 044617 (2019)
CrossRef ADS Google scholar
[230]
N. Wang and T. Li, Shell and isospin effects in nuclear charge radii, Phys. Rev. C 88, 011301(R) (2013)
CrossRef ADS Google scholar
[231]
A. Trzcińska, J. Jastrzebski, P. Lubiński, F. J. Hartmann, R. Schmidt, T. von Egidy, and B. Kłos, Neutron density distributions deduced from antiprotonic atoms, Phys. Rev. Lett. 87(8), 082501 (2001)
CrossRef ADS Google scholar
[232]
J. Bartel, P. Quentin, M. Brack, C. Guet, and H. B. Håkansson, Towards a better parametrisation of Skyrmelike effective forces: A critical study of the SkM force, Nucl. Phys. A 386 (1), 79 (1982)
CrossRef ADS Google scholar
[233]
K. Wen, F. Sakata, Z. X. Li, X. Z. Wu, Y. X. Zhang, and S. G. Zhou, Non-Gaussian fluctuations and non- Markovian effects in the nuclear fusion process: Langevin dynamics emerging from quantum molecular dynamics simulations, Phys. Rev. Lett. 111(1), 012501 (2013)
CrossRef ADS Google scholar
[234]
R. Nebauer, J. Aichelin, M. Assenard, G. Auger, C. O. Bacri, ., Multifragmentation in Xe(50AMeV) + Sn: Confrontation of theory and data, Nucl. Phys. A 658(1), 67 (1999)
CrossRef ADS Google scholar
[235]
T. X. Liu, M. J. van Goethem, X. D. Liu, W. G. Lynch, R. Shomin, ., Isotope yields from central 112,124Sn+112,124Sn collisions: Dynamical emission? Phys. Rev. C 69(1), 014603 (2004)
CrossRef ADS Google scholar
[236]
P. Russotto, E. De Filippo, A. Pagano, E. Piasecki, F. Amorini, ., Strong enhancement of dynamical emission of heavy fragments in the neutron-rich 124Sn+64Ni reaction at 35AMeV, Phys. Rev. C 81(6), 064605 (2010)
[237]
Z. Kohley, L. W. May, S. Wuenschel, M. Colonna, M. Di Toro, ., Transverse collective flow and midrapidity emission of isotopically identified light charged particles, Phys. Rev. C 83(4), 044601 (2011)
CrossRef ADS Google scholar
[238]
S. Hudan, A. Chbihi, J. D. Frankland, A. Mignon, J. P. Wieleczko, ., Characteristics of the fragments produced in central collisions of 129Xe+natSn from 32Ato 50AMeV, Phys. Rev. C 67(6), 064613 (2003)
[239]
C. O. Dorso and J. Randrup, Early recognition of clusters in molecular dynamics, Phys. Lett. B 301(4), 328 (1993)
CrossRef ADS Google scholar
[240]
R. K. Puri and J. Aichelin, Simulated annealing clusterization algorithm for studying the multifragmentation, J. Comput. Phys. 162(1), 245 (2000)
CrossRef ADS Google scholar
[241]
P. B. Gossiaux, R. K. Puri, C. Hartnack, and J. Aichelin, The multifragmentation of spectator matter, Nucl. Phys. A 619(3–4), 379 (1997)
CrossRef ADS Google scholar
[242]
S. Goyal and R. K. Puri, Formation of fragments in heavy-ion collisions using a modified clusterization method, Phys. Rev. C 83(4), 047601 (2011)
CrossRef ADS Google scholar
[243]
M. Bleicher, E. Zabrodin, C. Spieles, S. A. Bass, C. Ernst, S. Soff, L. Bravina, M. Belkacem, H. Weber, H. Stöcker, and W. Greiner, Relativistic hadron–hadron collisions inthe ultra-relativistic quantum molecular dynamics model, J. Phys. G 25(9), 1859 (1999)
CrossRef ADS Google scholar
[244]
Q. Li, G. Graf, and M. Bleicher, Ultrarelativistic quantum molecular dynamics calculations of two-pion Hanbury–Brown–Twiss correlations in central Pb–Pb collisions at s N N= 2.76 TeV, Phys. Rev. C 85(3), 034908 (2012)
CrossRef ADS Google scholar
[245]
https://urqmd.org/
[246]
Q. Li, M. Bleicher, and H. Stöcker, The effect of “preformed” hadron potentials on the dynamics of heavy ion collisions and the HBT puzzle, Phys. Lett. B 659(3), 525 (2008)
CrossRef ADS Google scholar
[247]
H. Petersen, J. Steinheimer, G. Burau, M. Bleicher, and H. Stocker, Fully integrated transport approach to heavy ion reactions with an intermediate hydrodynamic stage, Phys. Rev. C 78(4), 044901 (2008)
CrossRef ADS Google scholar
[248]
Q. Li, J. Steinheimer, H. Petersen, M. Bleicher, and H. Stocker, Effects of a phase transition on HBT correlations in an integrated Boltzmann+hydrodynamics approach, Phys. Lett. B 674(2), 111 (2009)
CrossRef ADS Google scholar
[249]
P. Russotto, S. Gannon, S. Kupny, P. Lasko, L. Acosta, ., Results of the ASY-EOS experiment at GSI: The symmetry energy at suprasaturation density, Phys. Rev. C 94(3), 034608 (2016)
[250]
C. Guo, Y. Wang, Q. Li, and F. S. Zhang, Effect of the spin–orbit interaction on flows in heavy-ion collisions at intermediate energies, Phys. Rev. C 90(3), 034606 (2014)
CrossRef ADS Google scholar
[251]
Y. Sun, Y. Wang, Q. Li, and F. Wang, Effect of internal magnetic field on collective flow in heavy ion collisions at intermediate energies, Phys. Rev. C 99(6), 064607 (2019)
CrossRef ADS Google scholar
[252]
Y. Liu, Y. Wang, Q. Li, and L. Liu, Collective flows of pions in Au+Au collisions at energies 1.0 and 1.5 GeV/nucleon, Phys. Rev. C 97, 034602 (2018)
CrossRef ADS Google scholar
[253]
Y. Du, Y. Wang, Q. Li, and L. Liu, The effect of Lorentzlike force on collective flows of K+ in Au+Au collisions at 1.5 GeV/nucleon, Sci. China Phys. Mech. Astron. 61(6), 062011 (2018)
CrossRef ADS Google scholar
[254]
Y. Wang, Q. Li, Y. Leifels, and A. Le Fevre, Study of the nuclear symmetry energy from the rapidity-dependent elliptic flow in heavy-ion collisions around 1 GeV/nucleon regime, Phys. Lett. B 802, 135249 (2020)
CrossRef ADS Google scholar
[255]
Y. Wang, C. Guo, Q. Li, H. Zhang, Z. Li, and W. Trautmann, Collective flow of light particles in Au+Au collisions at intermediate energies, Phys. Rev. C 89(3), 034606 (2014)
CrossRef ADS Google scholar
[256]
P. C. Li, Y. J. Wang, Q. F. Li, and H. F. Zhang, Effects of the in-medium nucleon–nucleon cross section on collective flow and nuclear stopping in heavy-ion collisions in the Fermi-energy domain, Phys. Rev. C 97(4), 044620 (2018)
CrossRef ADS Google scholar
[257]
X. Wu, J. Tian, W. Ning, Z. Kai, and Z. Li, Microscopic study on dynamic barrier in fusion reactions, Chin. Phys. C 12, 1317 (2004)
[258]
V. Yu. Denisov and W. Nörenberg, Entrance channel potentials in the synthesis of the heaviest nuclei, Eur. Phys. J. A 15(3), 375 (2002)
CrossRef ADS Google scholar
[259]
V. Zanganeh, N. Wang, and O. N. Ghodsi, Dynamical nucleus–nucleus potential and incompressibility of nuclear matter, Phys. Rev. C 85(3), 034601 (2012)
CrossRef ADS Google scholar
[260]
E. F. Aguilera, J. J. Kolata, and R. J. Tighe, Nuclear structure effects in the sub-barrier fusion of 16O+70,72,73,74,76Ge, Phys. Rev. C 52(6), 3103 (1995)
CrossRef ADS Google scholar
[261]
T. Kurtukian-Nieto, J. Benlliure, K. H. Schmidt, L. Audouin, F. Becker, ., Production cross sections of heavy neutron-rich nuclei approaching the nucleosynthesis r-process path around A= 195, Phys. Rev. C 89(2), 024616 (2014)
CrossRef ADS Google scholar
[262]
K. D. Hildenbrand, H. Freiesleben, F. Pühlhofer, W. F. W. Schneider, R. Bock, D. Harrach, and H. J. Specht, Reaction between 238U and 238U at 7.42 MeV/nucleon, Phys. Rev. Lett. 39(17), 1065 (1977)
CrossRef ADS Google scholar
[263]
M. Schädel, J. V. Kratz, H. Ahrens, W. Brächle, G. Franz, H. Gäggeler, I. Warnecke, G. Wirth, G. Herrmann, N. Trautmann, and M. Weis, Isotope distributions in the reaction of 238U with 238U, Phys. Rev. Lett. 41(7), 469 (1978)
CrossRef ADS Google scholar
[264]
H. Essel, K. Hartel, W. Henning, P. Kienle, ., Charge and mass transfer in the reaction 136Xe+208Pb at energies close to the coulomb barrier, Z. Phys. A At. Nucl. 289(3), 265 (1979)
CrossRef ADS Google scholar
[265]
H. Freiesleben, K. D. Hildenbrand, F. Pühlhofer, W. F. W. Schneider, R. Bock, D. Harrach, and H. J. Specht, The reaction 238U+238U at 7.42 MeV/u, Z. Phys. A At. Nucl. 292(2), 171 (1979)
[266]
M. Schädel, W. Brüchle, H. Güggeler, J. V. Kratz, K. Sümmerer, ., Actinide production in collisions of 238U with 248Cm, Phys. Rev. Lett.48(13), 852 (1982)
CrossRef ADS Google scholar
[267]
K. J. Moody, D. Lee, R. B. Welch, K. E. Gregorich, G. T. Seaborg, R. W. Lougheed, and E. K. Hulet, Actinide production in reactions of heavy ions with 248Cm, Phys. Rev. C 33(4), 1315 (1986)
CrossRef ADS Google scholar
[268]
J. V. Kratz, M. Schädel, and H. W. Gäggeler, Reexamining the heavy-ion reactions 238U+238U and 238U+248Cm and actinide production close to the barrier, Phys. Rev. C 88(5), 054615 (2013)
CrossRef ADS Google scholar
[269]
C. Golabek, A. C. C. Villari, S. Heinz, W. Mittig, S. Bhattacharyya, ., Search for a long living giant system in 238U+238U collisions near the coulomb barrier, Int. J. Mod. Phys. E 17(10), 2235 (2008)
CrossRef ADS Google scholar
[270]
T. Mijatović, S. Szilner, L. Corradi, D. Montanari, G. Pollarolo, ., Multinucleon transfer reactions in the 40Ar+208Pb system, Phys. Rev. C 94, 064616 (2016)
CrossRef ADS Google scholar
[271]
J. S. Barrett, W. Loveland, R. Yanez, S. Zhu, A. D. Ayangeakaa, ., 136Xe+208Pb reaction: A test of models of multinucleon transfer reactions, Phys. Rev. C 91(6), 064615 (2015)
CrossRef ADS Google scholar
[272]
W. Loveland, Synthesis of transactinide nuclei using radioactive beams, Phys. Rev. C 76(1), 014612 (2007)
CrossRef ADS Google scholar
[273]
R. Yanez and W. Loveland, Predicting the production of neutron-rich heavy nuclei in multinucleon transfer reactions using a semi-classical model including evaporation and fission competition, GRAZING-F, Phys. Rev. C 91(4), 044608 (2015)
CrossRef ADS Google scholar
[274]
C. Golabek and C. Simenel, Collision dynamics of two 238U atomic nuclei, Phys. Rev. Lett. 103(4), 042701 (2009)
CrossRef ADS Google scholar
[275]
D. J. Kedziora and C. Simenel, New inverse quasifission mechanism to produce neutron-rich transfermium nuclei, Phys. Rev. C 81(4), 044613 (2010)
CrossRef ADS Google scholar
[276]
N. Wang, Z. Li, X. Wu, and E. Zhao, Search for possible way of producing super-heavy elements: Dynamic study on damped reactions of 244Pu+244Pu, 238U+238U and 197Au+197Au, Mod. Phys. Lett. A 20(34), 2619 (2005)
CrossRef ADS Google scholar
[277]
K. Zhao, Z. Li, X. Wu, and Y. Zhang, Production probability of superheavy fragments at various initial deformations and orientations in the 238U+238U reaction, Phys. Rev. C 88(4), 044605 (2013)
CrossRef ADS Google scholar
[278]
K. Zhao, Z. Li, N. Wang, Y. Zhang, Q. Li, Y. Wang, and X. Wu, Production mechanism of neutron-rich transuranium nuclei in 238U+238U collisions at near-barrier energies, Phys. Rev. C 92(2), 024613 (2015)
CrossRef ADS Google scholar
[279]
K. Zhao, Z. Li, Y. Zhang, N. Wang, Q. Li, C. Shen, Y. Wang, and X. Wu, Production of unknown neutron-rich isotopes in 238U+238U collisions at near-barrier energy, Phys. Rev. C 94(2), 024601 (2016)
CrossRef ADS Google scholar
[280]
S. Ayik, B. Yilmaz, O. Yilmaz, A. S. Umar, and G. Turan, Multinucleon transfer in central collisions of 238U+238U, Phys. Rev. C 96(2), 024611 (2017)
CrossRef ADS Google scholar
[281]
K. Sekizawa, and K. Yabana, Time-dependent Hartree- Fock calculations for multinucleon transfer processes in 40,48Ca+124Sn, 40Ca+208Pb, and 58Ni+208Pb reactions, Phys. Rev. C 88(1), 014614 (2013)
CrossRef ADS Google scholar
[282]
A. Ghiorso, D. Lee, L. P. Somerville, W. Loveland, J. M. Nitschke, ., Evidence for the synthesis of 267110 produced by the 59Co+209Bi reaction, Nucl. Phys. A 583, 861 (1995)
CrossRef ADS Google scholar
[283]
Yu. A. Lazarev, Y. V. Lobanov, Y. T. Oganessian, V. K. Utyonkov, F. S. Abdullin, ., α decay of 273110: Shell closure at N= 162, Phys. Rev. C 54(2), 620 (1996)
CrossRef ADS Google scholar
[284]
V. Ninov, K. E. Gregorich, W. Loveland, A. Ghiorso, D. C. Hoffman, ., Observation of superheavy nuclei produced in the reaction of 86Kr with 208Pb, Phys. Rev. Lett. 83(6), 1104 (1999)
[285]
Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. S. Abdullin, A. N. Polyakov, ., Synthesis of superheavy nuclei in the 48Ca+244Pu reaction, Phys. Rev. Lett. 83(16), 3154 (1999)
[286]
Yu. Ts. Oganessian, ., Observation of the decay of 292116, Phys. Rev. C 63, 011301(R) (2000)
[287]
Yu. Ts. Oganessian, V. K. Utyonkoy, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, ., Experiments on the synthesis of element 115 in the reaction 243Am (48Ca, xn)291−x115, Phys. Rev. C 69(2), 021601 (2004)
CrossRef ADS Google scholar
[288]
Yu. Ts. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, ., Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions 233,238U, 242Pu, and 248Cm+48Ca, Phys. Rev. C 70(6), 064609 (2004)
[289]
Yu. Ts. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, ., Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions, Phys. Rev. C 74 (4), 044602 (2006)
[290]
Yu. Ts. Oganessian, V. K. Utyonkov, S. N. Dmitriev, Y. V. Lobanov, M. G. Itkis, ., Synthesis of elements 115 and 113 in the reaction 243Am+48Ca, Phys. Rev. C 72(3), 034611 (2005)
[291]
P. A. Ellison, K. E. Gregorich, J. S. Berryman, D. L. Bleuel, R. M. Clark, ., New superheavy element isotopes: 242Pu (48Ca, 5n)285114, Phys. Rev. Lett. 105(18), 182701 (2010)
CrossRef ADS Google scholar
[292]
Yu. Ts. Oganessian, F. Sh. Abdullin, S. N. Dmitriev, J. M. Gostic, J. H. Hamilton, ., New insights into the 243Am+48Ca reaction products previously observed in the experiments on elements 113, 115, and 117, Phys. Rev. Lett. 108(2), 022502 (2012)
CrossRef ADS Google scholar
[293]
Yu. Ts. Oganessian, F. Sh. Abdullin, C. Alexander, J. Binder, R. A. Boll, ., Production and decay of the heaviest nuclei 293,294117 and 294118, Phys. Rev. Lett. 109(16), 162501 (2012)
CrossRef ADS Google scholar
[294]
W. Reisdorf, F. P. Hessberger, K. D. Hildenbrand, S. Hofmann, G. Münzenberg, ., Fusability and fissionability in 86Kr-induced reactions near and below the fusion barrier, Nucl. Phys. A 444(1), 154 (1985)
CrossRef ADS Google scholar
[295]
R. Charity, M. A. McMahan, G. J. Wozniak, R. J. Mc-Donald, L. G. Moretto, ., Systematics of complex fragment emission in niobium-induced reactions, Nucl. Phys. A 483(2), 371 (1988)
CrossRef ADS Google scholar
[296]
N. Wang, T. Wu, J. Zeng, Y. X. Yang, and L. Ou, Improvement on fermionic properties and new isotope production in molecular dynamics simulations, J. Phys. G 43(6), 065101 (2016)
CrossRef ADS Google scholar
[297]
N. Wang and L. Guo, New neutron-rich isotope production in 154Sm+160Gd, Phys. Lett. B 760, 236 (2016)
CrossRef ADS Google scholar
[298]
G. Audi, F. G. Kondev, M. Wang, B. Pfeiffer, X. Sun, J. Blachot, and M. MacCormick, The Nubase2012 evaluation of nuclear properties, Chin. Phys. C 36(12), 1157 (2012)
CrossRef ADS Google scholar
[299]
I. Skwira-Chalot, K. Siwek-Wilczynska, J. Wilczynski, F. Amorini, A. Anzalone, ., Dynamical evolution of the 197Au+197Au system at 15 MeV/nucleon, Int. J. Mod. Phys. E 15(02), 495 (2006)
CrossRef ADS Google scholar
[300]
I. Skwira-Chalot, K. Siwek-Wilczynska, J. Wilczynski, F. Amorini, A. Anzalone, ., Ternary reactions in 197Au+197Au collisions revisited, Int. J. Mod. Phys. E 16(02), 511 (2007)
CrossRef ADS Google scholar
[301]
I. Skwira-Chalot, K. Siwek-Wilczynska, J. Wilczynski, F. Amorini, A. Anzalone, ., Fast ternary and quaternary breakup of the 197Au+197Au system in collisions at 15 MeV/nucleon, Phys. Rev. Lett. 101(26), 262701 (2008)
[302]
J. Wilczynski, I. Skwira-Chalot, K. Siwek-Wilczynska, J. Wilczynski, ., Observation of fast collinear partitioning of the 197Au+197Au system into three and four fragments of comparable size, Phys. Rev. C 81(2), 024605 (2010)
[303]
J. L. Tian, X. Z. Wu, Z. X. Li, K. Zhao, Y. Zhang, X. Li, and S. Yan, Mechanism of ternary breakup in the reaction 197Au+197Au at 15AMeV, Phys. Rev. C 82(5), 054608 (2010)
CrossRef ADS Google scholar
[304]
X. Li, J. L. Tian, S. W. Yan, J. X. Cheng, and X. Jiang, Angular distributions of fragments produced in ternary reaction of 197Au+197Au at 15AMeV, Mod. Phys. Lett. A 26(06), 449 (2011)
CrossRef ADS Google scholar
[305]
Y. Zhang, C. Zhou, J. Chen, N. Wang, K. Zhao, and Z. X. Li, Correlation between the fragmentation modes and light charged particles emission in heavy ion collisions, Sci. China Phys. Astro. Mech. 58(11), 112002 (2015)
CrossRef ADS Google scholar
[306]
J. B. Natowitz, R. Wada, K. Hagel, T. Keutgen, M. Murray, A. Makeev, L. Qin, P. Smith, and C. Hamilton, Caloric curves and critical behavior in nuclei, Phys. Rev. C 65(3), 034618 (2002)
CrossRef ADS Google scholar
[307]
M. D’Agostino, M. Bruno, F. Gulminelli, R. Bougault, F. Cannata, P. Chomaz, F. Gramegna, N. Le Neidre, A. Moroni, and G. Vannini, Experimental signals of phase transition, Nucl. Phys. A 734, 512 (2004)
CrossRef ADS Google scholar
[308]
J. Richert and P. Wagner, Microscopic model approaches to fragmentation of nuclei and phase transitions in nuclear matter, Phys. Rep. 350(1), 1 (2001)
CrossRef ADS Google scholar
[309]
P. Chomaz, M. Colonna, and J. Randrup, Nuclear spinodal fragmentation, Phys. Rep. 389(5–6), 263 (2004)
CrossRef ADS Google scholar
[310]
A. M. Poskanzer, G. W. Butler, and E. K. Hyde, Fragment production in the interaction of 5.5 GeV protons with uranium, Phys. Rev. C 3(2), 882 (1971)
CrossRef ADS Google scholar
[311]
G. D. Westfall, R. G. Sextro, A. M. Poskanzer, A. M. Zebelman, G. W. Butler, and E. K. Hyde, Energy spectra of nuclear fragments produced by high energy protons, Phys. Rev. C 17(4), l368 (1978)
CrossRef ADS Google scholar
[312]
J. Pochodzalla, T. Möhlenkamp, T. Rubehn, A. Schüttauf, A. Wörner, ., Probing the nuclear liquid-gas phase transition, Phys. Rev. Lett. 75(6), 1040 (1995)
CrossRef ADS Google scholar
[313]
M. Baldo, G. F. Burgio, and A. Rapisarda, Dynamics of fragment formation in the nuclear spinodal region, Phys. Rev. C 51(1), 198 (1995)
CrossRef ADS Google scholar
[314]
S. K. Nayak, R. Ramaswamy, and C. Chakravarty, Maximal Lyapunov exponent in small atomic clusters, Phys. Rev. E 51(4), 3376 (1995)
CrossRef ADS Google scholar
[315]
Y. Zhang, X. Wu, and Z. Li, Connection between the largest Lyapunov exponent, density fluctuation, and multifragmentation in excited nuclear systems, Phys. Rev. C 69(4), 044609 (2004)
CrossRef ADS Google scholar
[316]
J. P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Mod. Phys. 57(3), 617 (1985)
CrossRef ADS Google scholar
[317]
Y. Gu, Evidences of classical and quantum chaos in the time evolution of nonequilibrium ensembles, Phys. Lett. A 149(2–3), 95 (1990)
CrossRef ADS Google scholar
[318]
J. Łukasik, G. Auger, M. L. Begemann-Blaich, N. Bellaize, R. Bittiger, ., Directed and elliptic flow in 197Au+197Au at intermediate energies, Phys. Lett. B 608(3–4), 223 (2005)
CrossRef ADS Google scholar
[319]
C. Pinkenburg, . (E895 Collaboration), Prepared for Centennial Celebration and Meeting of the American Physical Society (Combining Annual APS General Meeting and the Joint Meeting of the APS and the AAPT), Atlanta, Georgia, Mar. 20–26 1999
[320]
P. Chung, . (E895 Collaboration),Centrality and momentum-selected elliptic flow: Tighter constraints for the nuclear equation of state, Phys. Rev. C 66(2), 021901 (2002)
CrossRef ADS Google scholar
[321]
C. Alt, . (NA49 Collaboration), Directed and elliptic flow of charged pions and protons in Pb+Pb collisions at 40Aand 158AGeV, Phys. Rev. C 68(3), 034903 (2003)
[322]
A. Andronic, . (FOPI Collaboration), Excitation function of elliptic flow in Au+Au collisions and the nuclear matter equation of state, Phys. Lett. B 612(3–4), 173 (2005)
[323]
Y. J. Wang, C. C. Guo, Q. F. Li, H. F. Zhang, Y. Leifels, and W. Trautmann, Constraining the high-density nuclear symmetry energy with the transverse-momentumdependent elliptic flow, Phys. Rev. C 89(4), 044603 (2014)
CrossRef ADS Google scholar
[324]
Y. J. Wang, C. C. Guo, Q. F. Li, Z. X. Li, J. Su, and H. F. Zhang, Influence of differential elastic nucleon–nucleon cross section on stopping and collective flow in heavy-ion collisions at intermediate energies, Phys. Rev. C 94(2), 024608 (2016)
CrossRef ADS Google scholar
[325]
P. C. Li, Y. J. Wang, Q. F. Li, and H. F. Zhang, Collective flow and nuclear stopping in heavy ion collisions in Fermi energy domain, Nucl. Sci. Tech. 29(12), 177 (2018)
CrossRef ADS Google scholar
[326]
Y. J. Wang, C. C. Guo, Q. F. Li, A. Le F’evre, Y. Leifels, and W. Trautmann, Determination of the nuclear incompressibility from the rapidity-dependent elliptic flow in heavy-ion collisions at beam energies 0.4A–1.0AGeV, Phys. Lett. B 778, 207 (2018)
CrossRef ADS Google scholar
[327]
W. Gudowski, Accelerator-driven transmutation projects. The importance of nuclear physics research for waste transmutation, Nucl. Phys. A 654(1–2), c436 (1999)
CrossRef ADS Google scholar
[328]
M. Casolino, V. Bidoli, A. Morselli, L. Narici, M. P. De Pascale, ., Dual origins of light flashes seen in space, Nature 422(6933), 680 (2003)
CrossRef ADS Google scholar
[329]
B. Larsson, PhD thesis, Uppsala University, 1962
[330]
J. H. Trainor, Instrument and spacecraft faults associated with nuclear radiation in space, Adv. Space Res. 14(10), 685 (1994)
CrossRef ADS Google scholar
[331]
M. S. Smith and K. E. Rehm, Nuclear astrophysics measurements with radioactive beams, Annu. Rev. Nucl. Part. Sci. 51(1), 91 (2001)
CrossRef ADS Google scholar
[332]
G. S. Bauer, Proceedings of the 2nd International Conference on Accelerator Driven Transmutation Technologies, p.159, Kalmar, Uppsala University, 1996
[333]
Tech. Rep. No. DOE/Er-0705, Department of Energy, 1997
[334]
J. M. Carpenter, Pulsed spallation neutron sources for slow neutron scattering, Nucl. Instrum. Methods 145(1), 91 (1977)
CrossRef ADS Google scholar
[335]
C. D. Bowman, E. D. Arthur, P. W. Lisowski, G. P. Lawrence, R. J. Jensen, ., Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source, Nucl. Instrum. Methods Phys. Res. Sect. A 320(1–2), 336 (1992)
CrossRef ADS Google scholar
[336]
T. Takizuka, Proceedings of the International Conference on Accelerator-driven Transmutation Technologies and Application, p. 64, AIP Press, Woodbury, NY, 1995
[337]
F. Rejmund, B. Mustapha, P. Armbruster, J. Benlliure, M. Bernas, ., Measurement of isotopic cross sections of spallation residues in 800AMeV 197Au+pcollisions, Nucl. Phys. A 683(1–4), 540 (2001)
CrossRef ADS Google scholar
[338]
B. Fernández-Dominguez, P. Armbruster, L. Audouin, J. Benlliure, M. Bernas, ., Nuclide cross–sections of fission fragments in the reaction 208Pb+pat 500AMeV, Nucl. Phys. A 747(2–4), 227 (2005)
CrossRef ADS Google scholar
[339]
L. Audouin, L. Tassan-Got, P. Armbruster, J. Benlliure, M. Bernas, ., Evaporation residues produced in spallation of 208Pb by protons at 500AMeV, Nucl. Phys. A 768(1–2), 1 (2006)
CrossRef ADS Google scholar
[340]
J. Benlliure, P. Armbruster, M. Bernas, A. Boudard, J. P. Dufour, ., Isotopic production cross sections of fission residues in 197Au-on-proton collisions at 800AMeV, Nucl. Phys. A 683(1-4), 513 (2001)
CrossRef ADS Google scholar
[341]
H. Iwase, K. Niita, and T. Nakamura, Development of general-purpose particle and heavy ion transport Monte Carlo code, J. Nucl. Sci. Technol. 39(11), 1142 (2002)
CrossRef ADS Google scholar
[342]
Y. Nara, N. Otuka, A. Ohnishi, K. Niita, and S. Chiba, Relativistic nuclear collisions at 10AGeV energies from p+Be to Au+Au with the hadronic cascade model, Phys. Rev. C 61(2), 024901 (2000)
CrossRef ADS Google scholar
[343]
K. Niita, S. Chiba, T. Maruyama, T. Maruyama, H. Takada, T. Fukahori, Y. Nakahara, and A. Iwamoto, Analysis of the (N,xN′) reactions by quantum molecular dynamics plus statistical decay model, Phys. Rev. C 52(5), 2620 (1995)
CrossRef ADS Google scholar
[344]
A. Boudard, J. Cugnon, S. Leray, and C. Volant, Intranuclear cascade model for a comprehensive description of spallation reaction data, Phys. Rev. C 66(4), 044615 (2002)
CrossRef ADS Google scholar
[345]
L. Ou, Z. Li, X. Wu, J. Tian, and W. Sun, A study of proton-induced spallation reactions by the improved quantum molecular dynamics model plus statistical decay models, J. Phys. G 36(12), 125104 (2009)
CrossRef ADS Google scholar
[346]
L. Ou, Y. Zhang, J. Tian, and Z. Li, Analysis of intermediate energy proton-induced spallation reactions by an improved quantum molecular dynamics plus statistical decay model, J. Phys. G 34(5), 827 (2007)
CrossRef ADS Google scholar
[347]
L. Ou, Y. Zhang, and Z. Li, Mechanism of proton-induced reactions on targets 16O, 27Al, 56Fe, 112Cd, 184W and 208Pb at Ep= 800 MeV, Chin. Phys. Lett. 24 (1), 72 (2007)
CrossRef ADS Google scholar
[348]
D. Wei, L. Mao, N. Wang, M. Liu, and L. Ou, Further study on mechanism of production of light complex particles in nucleon-induced reactions, Nucl. Phys. A 933, 114 (2015)
CrossRef ADS Google scholar
[349]
D. Wei, N. Wang, and L. Ou, Mechanism of the production of light complex particles in nucleon-induced reactions, J. Phys. G 41(3), 035104 (2014)
CrossRef ADS Google scholar
[350]
M. M. Meier, W. B. Amian, C. A. Goulding, G. L. Morgan, and C. E. Moss, Differential neutron production cross sections for 256-MeV protons, Nucl. Sci. Eng. 110(3), 289 (1992)
CrossRef ADS Google scholar
[351]
Y. V. Trebukhovsky, Y. E. Titarenko, ., LANL Report LA-UR-03-6071; Los Alamos, 2003; ITEP Print 03-03, Moscow, 2003
[352]
Y. V. Trebukhovsky, Y. E. Titarenko, V. F. Batyaev, R. D. Mulambetov, S. V. Mulambetova, ., Doubledifferential cross sections for the production of neutrons from Pb, W, Zr, Cu, and Al targets irradiated with 0.8-, 1.0-, and 1.6-GeV protons, Phys. At. Nucl. 68(1), 3 (2005)
CrossRef ADS Google scholar
[353]
R. E. Chrien, T. J. Krieger, R. J. Sutter, M. May, H. Palevsky, R. L. Stearns, T. Kozlowski, and T. Bauer, Proton spectra from 800 MeV protons on selected nuclides, Phys. Rev. C 21 (3), 1014 (1980)
CrossRef ADS Google scholar
[354]
C. Villagrasa-Canton, A. Boudard, J. E. Ducret, B. Fernandez, S. Leray, ., Spallation residues in the reaction 56Fe+pat 0.3A, 0.5A, 0.75A, 1.0A, and 1.5AGeV, Phys. Rev. C 75(4), 044603 (2007)
CrossRef ADS Google scholar
[355]
H. Machner, D. G. Aschman, K. Baruth-Ram, J. Carter, A. A. Cowley, ., Isotopic production cross sections in proton–nucleus collisions at 200 MeV, Phys. Rev. C 73(4), 044606 (2006)
CrossRef ADS Google scholar
[356]
Y. Uozumi, P. Evtoukhovitch, H. Fukuda, M. Imamura, H. Iwamoto, ., Magnitude factor systematics of Kalbach phenomenology for reactions emitting helium and lithium ions, Nucl. Instrum. Methods Phys. Res. A 571(3), 743 (2007)
CrossRef ADS Google scholar
[357]
A. Bohnet, N. Ohtsuka, J. Aichelin, R. Linden, and A. Faessler, Quantum molecular-dynamics approach to heavy-ion collisions with Brueckner G-matrix cross sections, Nucl. Phys. A 494(2), 349 (1989)
CrossRef ADS Google scholar
[358]
H. J. Schulze, A. Schnell, G. Röpke, and U. Lombardo, Nucleon–nucleon cross sections in nuclear matter, Phys. Rev. C 55(6), 3006 (1997)
CrossRef ADS Google scholar
[359]
G. Q. Li and R. Machleidt, Microscopic calculation of inmedium nucleon–nucleon cross sections, Phys. Rev. C 48, 1702 (1993)
CrossRef ADS Google scholar
[360]
G. Q. Li and R. Machleidt, Microscopic calculation of inmedium proton–proton cross sections, Phys. Rev. C 49, 566 (1994)
CrossRef ADS Google scholar
[361]
C. Fuchs, A. Faessler, and M. El-Shabshiry, Off-shell behavior of the in-medium nucleon–nucleon cross section, Phys. Rev. C 64(2), 024003 (2001)
CrossRef ADS Google scholar
[362]
Y. H. Cai, H. Q. Song, and U. Lombardo, In-medium nucleon–nucleon cross section, Chin. Phys. Lett. 13(6), 420 (1996)
CrossRef ADS Google scholar
[363]
H. F. Zhang, U. Lombardo, and W. Zuo, Transport parameters in neutron stars from in-medium NN cross sections, Phys. Rev. C 82(1), 015805 (2010)
CrossRef ADS Google scholar
[364]
S. Huber and J. Aichelin, Production of Δ- and N - resonances in the one-boson exchange model, Nucl. Phys. A 573(4), 587 (1994)
CrossRef ADS Google scholar
[365]
R. Machleidt, K. Holinde, and C. Elster, The bonn meson-exchange model for the nucleon–nucleon interaction, Phys. Rep. 149(1), 1 (1987)
CrossRef ADS Google scholar
[366]
A. Larionov and U. Mosel, The NNNΔ cross section in nuclear matter, Nucl. Phys. A 728(1–2), 135 (2003)
CrossRef ADS Google scholar
[367]
G. Mao, Z. Li, Y. Zhuo, Y. Han, and Z. Yu, Study of in-medium NN inelastic cross section from relativistic Boltzmann–Uehling–Uhlenbeck approach, Phys. Rev. C 49(6), 3137 (1994)
CrossRef ADS Google scholar
[368]
G. J. Mao, Z. X. Li, Y. Z. Zhuo, and Z. Q. Yu, Medium effects on the NNinelastic cross section in relativistic heavy-ion collisions, Phys. Lett. B 327(3–4), 183 (1994)
CrossRef ADS Google scholar
[369]
Q. Li, Z. Li, and G. Mao, Isospin dependence of nucleonnucleon elastic cross section, Phys. Rev. C 62(1), 014606 (2000)
CrossRef ADS Google scholar
[370]
G. Mao, Relativistic Microscopic Quantum Transport Equation, NOVA, 2005
[371]
Q. Li and Z. Li, The isospin dependent nucleon–nucleon inelastic cross section in the nuclear medium, Phys. Lett. B 773, 557 (2017)
CrossRef ADS Google scholar
[372]
Y. Cui, Y. Zhang, and Z. Li, Effect of energy conservation on the in-medium NN NΔ cross section in isospinasymmetric nuclear matter, Phys. Rev. C 98(5), 054605 (2018)
CrossRef ADS Google scholar
[373]
Q. Pan and P. Danielewicz, From sideward flow to nuclear compressibility, Phys. Rev. Lett. 70, 2062 (1993) [Erratum Phys. Rev. Lett. 70, 3523 (1993)]
CrossRef ADS Google scholar
[374]
L. Shi and P. Danielewicz, Nuclear isospin diffusivity, Phys. Rev. C 68(6), 064604 (2003)
CrossRef ADS Google scholar
[375]
W. Reisdorf, . (FOPI Collaboration), Nuclear stopping from 0.09Ato 1.93AGeV and its correlation to flow, Phys. Rev. Lett. 92(23), 232301 (2004)
[376]
D. Persram and C. Gale, Elliptic flow in intermediate energy heavy ion collisions and in-medium effects, Phys. Rev. C 65(6), 064611 (2002)
CrossRef ADS Google scholar
[377]
O. Lopez, D. Durand, G. Lehaut, B. Borderie, J. D. Frankland, ., In-medium effects for nuclear matter in the Fermi-energy domain, Phys. Rev. C 90(6), 064602 (2014)
CrossRef ADS Google scholar
[378]
Y. X. Zhang, Y. J. Wang, M. Colonna, P. Danielewicz, A. Ono, ., Comparison of heavy-ion transport simulations: Collision integral in a box, Phys. Rev. C 97(3), 034625 (2018)
CrossRef ADS Google scholar
[379]
L. Ou and X. He, In-medium nucleon-nucleon elastic cross-sections determined from the nucleon induced reaction cross-section data, Chin. Phys. C 43(4), 044103 (2019)
CrossRef ADS Google scholar
[380]
D. Vretenar, T. Niksic, and P. Ring, Relativistic nuclear energy density functionals, Int. J. Mod. Phys. E 19(04), 548 (2010)
CrossRef ADS Google scholar
[381]
P. Ring, Relativistic mean field theory in finite nuclei, Prog. Part. Nucl. Phys. 73, 193 (1996)
CrossRef ADS Google scholar
[382]
P. Ring, Covariant density functional theory and applications to finite nuclei, in: G. A. Lalazissis, P. Ring, and D. Vretenar (Eds.), Extended density functionals in nuclear structure physics, Lect. Notes Phys. 641, 175 (2004)
CrossRef ADS Google scholar
[383]
R. Brockmann, Relativistic Hartree–Fock description of nuclei, Phys. Rev. C 18(3), 1510 (1978)
CrossRef ADS Google scholar
[384]
C. J. Horowitz and B. D. Serot, Properties of nuclear and neutron matter in a relativistic Hartree–Fock theory, Nucl. Phys. A 399(2), 529 (1983)
CrossRef ADS Google scholar
[385]
A. Bouyssy, J. F. Mathiot, N. Van Giai, and S. Marcos, Relativistic description of nuclear systems in the Hartree– Fock approximation, Phys. Rev. C 36(1), 380 (1987)
CrossRef ADS Google scholar
[386]
W. H. Long, N. V. Giai, and J. Meng, Density-dependent relativistic Hartree–Fock approach, Phys. Lett. B 640(4), 150 (2006)
CrossRef ADS Google scholar
[387]
T. Nikšić, D. Vretenar, and P. Ring, Relativistic nuclear energy density functionals: Adjusting parameters to binding energies, Phys. Rev. C 78(3), 034318 (2008)
CrossRef ADS Google scholar
[388]
G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring, New relativistic mean-field interaction with density-dependent meson-nucleon couplings, Phys. Rev. C 71(2), 024312 (2005)
CrossRef ADS Google scholar
[389]
P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, New parametrization for the nuclear covariant energy density functional with a point-coupling interaction, Phys. Rev. C 82(5), 054319 (2010)
CrossRef ADS Google scholar
[390]
T. H. R. Skyrme, CVII. The nuclear surface, Philos. Mag. 1(11), 1043 (1956)
CrossRef ADS Google scholar
[391]
D. Vautherin and D. M. Brink, Hartree–Fock calculations with Skyrme’s interaction (I): Spherical nuclei, Phys. Rev. C 5(3), 626 (1972)
CrossRef ADS Google scholar
[392]
E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, A Skyrme parametrization from subnuclear to neutron star densities, Nucl. Phys. A 627(4), 710 (1997)
CrossRef ADS Google scholar
[393]
J. Dechargé and D. Gogny, Hartree–Fock–Bogolyubov calculations with the D1 effective interaction on spherical nuclei, Phys. Rev. C 21(4), 1568 (1980)
CrossRef ADS Google scholar
[394]
M. Kleban, B. Nerlo-Pomorska, J. F. Berger, J. Decharge, M. Girod, and S. Hilaire, Global properties of spherical nuclei obtained from Hartree–Fock–Bogoliubov calculations with the Gogny force, Phys. Rev. C 65(2), 024309 (2002)
CrossRef ADS Google scholar
[395]
B. Cochet, K. Bennaceur, J. Meyer, P. Bonche, and T. Duguet, Skyrme forces with extended density dependence, Int. J. Mod. Phys. E 13(01), 187 (2004)
CrossRef ADS Google scholar
[396]
P. G. Reinhard and M. Bender, Mean field: Relativistic versus non-relativistic, in: G. A. Lalazissis, P. Ring, and D. Vretenar (Eds.), Extended density functionals in nuclear structure physics, Lect. Notes Phys. 641, 249 (2004)
CrossRef ADS Google scholar
[397]
B. D. Serot and J. D. Walecka, Recent progress in quantum hadrodynamics, Int. J. Mod. Phys. E 6(04), 515 (1997)
CrossRef ADS Google scholar
[398]
R. J. Furnstahl, Next generation relativistic models, in: A. Lalazissis, P. Ring, and D. Vretenar (Eds.), Extended density functionals in nuclear structure physics, Lect. Notes Phys. 641, 1 (2004)
CrossRef ADS Google scholar
[399]
M. Lutz, B. Friman, and Ch. Appel, Saturation from nuclear pion dynamics, Phys. Lett. B 474(1–2), 7 (2000)
CrossRef ADS Google scholar
[400]
P. Finelli, N. Kaiser, D. Vretenar, and W. Weise, Nuclear many-body dynamics constrained by QCD and chiral symmetry, Eur. Phys. J. A 17(4), 573 (2003)
CrossRef ADS Google scholar
[401]
P. Finelli, N. Kaiser, D. Vretenar, and W. Weise, Relativistic nuclear model with point-couplings constrained by QCD and chiral symmetry, Nucl. Phys. A 735(3–4), 449 (2004)
CrossRef ADS Google scholar
[402]
D. Vretenar and W. Weise, Exploring the nucleus in the context of low-energy QCD, in: G. A. Lalazissis, P. Ring, and D. Vretenar (Eds.), Extended density functionals in nuclear structure physics, Lect. Notes Phys. 641, 65 (2004)
CrossRef ADS Google scholar
[403]
J. Dobaczewski, Ab initioderivation of model energy density functionals, J. Phys. G 43(4), 04LT01 (2016)
CrossRef ADS Google scholar
[404]
J. Bonnard, M. Grasso, and D. Lacroix, Energy-density functionals inspired by effective-field theories: Applications to neutron drops, Phys. Rev. C 98(3), 034319 (2018)
CrossRef ADS Google scholar
[405]
V. R. Pandharipande and R. B. Wiringa, Variations on a theme of nuclear matter, Rev. Mod. Phys. 51(4), 821 (1979)
CrossRef ADS Google scholar
[406]
A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Equation of state of nucleon matter and neutron star structure, Phys. Rev. C 58 (3), 1804 (1998)
CrossRef ADS Google scholar
[407]
K. A. Brueckner and J. L. Gammel, Properties of nuclear matter, Phys. Rev. 109(4), 1023 (1958)
CrossRef ADS Google scholar
[408]
M. Jaminon and C. Mahaux, Effective masses in relativistic approaches to the nucleon–nucleus mean field, Phys. Rev. C 40(1), 354 (1989)
CrossRef ADS Google scholar
[409]
W. Zuo, A. Lejeune, U. Lombardo, and J. F. Mathiot, Interplay of three-body interactions in the EOS of nuclear matter, Nucl. Phys. A 706(3–4), 418 (2002)
CrossRef ADS Google scholar
[410]
X. R. Zhou, G. F. Burgio, U. Lombardo, H. J. Schulze, and W. Zuo, Three-body forces and neutron star structure, Phys. Rev. C 69(1), 018801 (2004)
CrossRef ADS Google scholar
[411]
B. Haar and R. Malfliet, Nucleons, mesons and deltas in nuclear matter a relativistic Dirac–Brueckner approach, Phys. Rep. 149(4), 207 (1987)
CrossRef ADS Google scholar
[412]
R. Brockmann and R. Machleidt, Relativistic nuclear structure (I): Nuclear matter, Phys. Rev. C 42(5), 1965 (1990)
CrossRef ADS Google scholar
[413]
F. de Jong and H. Lenske, Relativistic Brueckner–Hartree–Fock calculations with explicit intermediate negative energy states, Phys. Rev. C 58(2), 890 (1998)
CrossRef ADS Google scholar
[414]
T. Gross-Boelting, C. Fuchs, and A. Faessler, Covariant representations of the relativistic Brueckner T-matrix and the nuclear matter problem, Nucl. Phys. A 648(1–2), 105 (1999)
CrossRef ADS Google scholar
[415]
E. Schiller and H. Müther, Correlations and the Dirac structure of the nucleon self-energy, Eur. Phys. J. A 11(1), 15 (2001)
CrossRef ADS Google scholar
[416]
C. Fuchs, The Relativistic Dirac-Brueckner Approach to Nuclear Matter, in: G. A. Lalazissis, P. Ring, and D. Vretenar (Eds.), Extended density functionals in nuclear structure physics, Lect. Notes Phys. 641, 119 (2004)
CrossRef ADS Google scholar
[417]
E. van Dalen, C. Fuchs, and A. Faessler, The relativistic Dirac–Brueckner approach to asymmetric nuclear matter, Nucl. Phys. A 744, 227 (2004)
CrossRef ADS Google scholar
[418]
E. N. E. Dalen, C. Fuchs, and A. Faessler, Momentum, density, and isospin dependence of symmetric and asymmetric nuclear matter properties, Phys. Rev. C 72(6), 065803 (2005)
CrossRef ADS Google scholar
[419]
H. Müther and A. Polls, Two-body correlations in nuclear systems, Prog. Part. Nucl. Phys. 45(1), 243 (2000)
CrossRef ADS Google scholar
[420]
W. H. Dickhoff and C. Barbieri, Self-consistent Green’s function method for nuclei and nuclear matter, Prog. Part. Nucl. Phys. 52(2), 377 (2004)
CrossRef ADS Google scholar
[421]
J. Carlson, J. Morales, V. R. Pandharipande, and D. G. Ravenhall, Quantum Monte Carlo calculations of neutron matter, Phys. Rev. C 68(2), 025802 (2003)
CrossRef ADS Google scholar
[422]
B. A. Li, L. W. Chen, G. C. Yong, and W. Zuo, Double neutron/proton ratio of nucleon emissions in isotopic reaction systems as a robust probe of nuclear symmetry energy, Phys. Lett. B 634(4), 378 (2006)
CrossRef ADS Google scholar
[423]
M. A. Famiano, T. Liu, W. G. Lynch, M. Mocko, A. M. Rogers, ., Neutron and proton transverse emission ratio measurements and the density dependence of the asymmetry term of the nuclear equation of state, Phys. Rev. Lett. 97(5), 052701 (2006)
CrossRef ADS Google scholar
[424]
M. B. Tsang, T. X. Liu, L. Shi, P. Danielewicz, C. K. Gelbke, ., Isospin diffusion and the nuclear symmetry energy in heavy ion reactions, Phys. Rev. Lett. 92(6), 062701 (2004)
CrossRef ADS Google scholar
[425]
T. X. Liu, W. G. Lynch, M. B. Tsang, X. D. Liu, R. Shomin, ., Isospin diffusion observables in heavy-ion reactions, Phys. Rev. C 76(3), 034603 (2007)
CrossRef ADS Google scholar
[426]
Z. Kohley, L. W. May, S. Wuenschel, A. Bonasera, K. Hagel, ., Investigation of transverse collective flow of intermediate mass fragments, Phys. Rev. C 82(6), 064601 (2010)
CrossRef ADS Google scholar
[427]
Y. Zhang, J. Tian, W. Cheng, F. Guan, Y. Huang, ., Long-time drift of the isospin degree of freedom in heavy ion collisions, Phys. Rev. C 95, 041602(R) (2017)
CrossRef ADS Google scholar
[428]
P. Russotto, M. D. Cozma, A. Le Fèvre, Y. Leifels, R. Lemmon, Q. Li, J. Łukasik, and W. Trautmann, Flow probe of symmetry energy in relativistic heavy-ion reactions, Eur. Phys. J. A 50(2), 38 (2014)
CrossRef ADS Google scholar
[429]
P. Russotto, P. Z. Wu, M. Zoric, M. Chartier, Y. Leifels, R. C. Lemmon, Q. Li, J. Łukasik, A. Pagano, P. Pawłowski, and W. Trautmann, Symmetry energy from elliptic flow in 197Au+197Au, Phys. Lett. B 697(5), 471 (2011)
CrossRef ADS Google scholar
[430]
M. B. Tsang, Y. Zhang, P. Danielewicz, M. Famiano, Z. Li, W. G. Lynch, and A. W. Steiner, Constraints on the density dependence of the symmetry energy, Phys. Rev. Lett. 102(12), 122701 (2009)
CrossRef ADS Google scholar
[431]
P. Danielewicz and J. Lee, Symmetry energy (I): Semiinfinite matter, Nucl. Phys. A 818(1–2), 36 (2009)
CrossRef ADS Google scholar
[432]
C. J. Horowitz and J. Piekarewicz, Neutron star structure and the neutron radius of 208Pb, Phys. Rev. Lett. 86(25), 5647 (2001)
CrossRef ADS Google scholar
[433]
J. Piekarewicz, Unmasking the nuclear matter equation of state, Phys. Rev. C 69(4), 041301 (2004)
CrossRef ADS Google scholar
[434]
S. Yoshida and H. Sagawa, Isovector nuclear matter properties and neutron skin thickness, Phys. Rev. C 73(4), 044320 (2006)
CrossRef ADS Google scholar
[435]
E. Galichet, . (INDRA Collaboration), Isospin diffusion in 58Ni-induced reactions at intermediate energies (I): Experimental results, Phys. Rev. C 79(6), 064614 (2009)
CrossRef ADS Google scholar
[436]
R. S. Wang, Y. Zhang, Z. G. Xiao, J. L. Tian, Y. X. Zhang, ., Time-dependent isospin composition of particles emitted in fission events following 40Ar+197Au at 35 MeV/u, Phys. Rev. C 89(6), 064613 (2014)
CrossRef ADS Google scholar
[437]
M. B. Tsang, J. R. Stone, F. Camera, P. Danielewicz, S. Gandolfi, ., Constraints on the symmetry energy and neutron skins from experiments and theory, Phys. Rev. C 86(1), 015803 (2012)
CrossRef ADS Google scholar
[438]
J. M. Lattimer and A. W. Steiner, Constraints on the symmetry energy using the mass-radius relation of neutron stars, Eur. Phys. J. A 50(2), 40 (2014)
CrossRef ADS Google scholar
[439]
B. A. Li and L. W. Chen, Nucleon–nucleon cross sections in neutron-rich matter and isospin transport in heavy-ion reactions at intermediate energies, Phys. Rev. C 72(6), 064611 (2005)
CrossRef ADS Google scholar
[440]
A. Klimkiewicz, N. Paar, P. Adrich, M. Fallot, K. Boretzky, ., Nuclear symmetry energy and neutron skins derived from pygmy dipole resonances, Phys. Rev. C 76(5), 051603 (2007)
CrossRef ADS Google scholar
[441]
G. Colò and P. Danielewicz, Constraints, limits and extensions for nuclear energy functionals, AIP Conf. Proc. 1128, 59 (2009)
CrossRef ADS Google scholar
[442]
L. Trippa, G. Colò, and E. Vigezzi, Giant dipole resonance as a quantitative constraint on the symmetry energy, Phys. Rev. C 77, 061304(R)
CrossRef ADS Google scholar
[443]
L. Ou, Z. G. Xiao, H. Yi, N. Wang, M. Liu, and J. Tian, Dynamic isovector reorientation of deuteron as a probe to nuclear symmetry energy, Phys. Rev. Lett. 115(21), 212501 (2015)
CrossRef ADS Google scholar
[444]
S. Köhler, Skyrme force and the mass formula, Nucl. Phys. A 258(2), 301 (1976)
CrossRef ADS Google scholar
[445]
F. Tondeur, M. Brack, M. Farine, and J. M. Pearson, Static nuclear properties and the parametrisation of Skyrme forces, Nucl. Phys. A 420(2), 297 (1984)
CrossRef ADS Google scholar
[446]
J. Margueron, J. Navarro, and N. Van Giai, Instabilities of infinite matter with effective Skyrme-type interactions, Phys. Rev. C 66(1), 014303 (2002)
CrossRef ADS Google scholar
[447]
Q. Wu, Y. Zhang, Z. Xiao, R. Wang, Y. Zhang, Z. Li, N. Wang, and R. H. Showalter, Competition between Coulomb and symmetry potential in semi-peripheral heavy ion collisions, Phys. Rev. C 91(1), 014617 (2015)
CrossRef ADS Google scholar
[448]
T. Gaitanos, M. Di Toro, G. Ferini, M. Colonna, and H. H. Wolter, Isospin effects in intermediate energy heavy ion collisions, arXiv: nucl-th/0402041 (2004)
[449]
S. A. Bass, C. Hartnack, H. Stöcker, and W. Greiner, High p t pions as probes of the dense phase of relativistic heavy ion collisions, Phys. Rev. C 50(4), 2167 (1994)
CrossRef ADS Google scholar
[450]
Z. Xiao, B. A. Li, L. W. Chen, G. C. Yong, and M. Zhang, Circumstantial evidence for a soft nuclear symmetry energy at suprasaturation densities, Phys. Rev. Lett. 102(6), 062502 (2009)
CrossRef ADS Google scholar
[451]
W. J. Xie, J. Su, L. Zhu, and F. S. Zhang, Symmetry energy and pion production in the Boltzmann–Langevin approach, Phys. Lett. B 718 (4–5), 1510 (2013)
CrossRef ADS Google scholar
[452]
Z. Q. Feng and G. M. Jin, Probing high-density behavior of symmetry energy from pion emission in heavy-ion collisions, Phys. Lett. B 683(2–3), 140 (2010)
CrossRef ADS Google scholar
[453]
T. Song and C. M. Ko, Modifications of the pionproduction threshold in the nuclear medium in heavy ion collisions and the nuclear symmetry energy, Phys. Rev. C 91(1), 014901 (2015)
CrossRef ADS Google scholar
[454]
M. D. Cozma, Constraining the density dependence of the symmetry energy using the multiplicity and average p T ratios of charged pions, Phys. Rev. C 95(1), 014601 (2017)
CrossRef ADS Google scholar
[455]
Z. Zhang and C. M. Ko, Medium effects on pion production in heavy ion collisions, Phys. Rev. C 95(6), 064604 (2017)
CrossRef ADS Google scholar
[456]
J. Hong and P. Danielewicz, Subthreshold pion production within a transport description of central Au+Au collisions, Phys. Rev. C 90(2), 024605 (2014)
CrossRef ADS Google scholar
[457]
L. Ou, Z. Li, Y. Zhang, and M. Liu, Effect of the splitting of the neutron and proton effective masses on the nuclear symmetry energy at finite temperatures, Phys. Lett. B 697(3), 246 (2011)
CrossRef ADS Google scholar
[458]
J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Temperature effects on the nuclear symmetry energy and symmetry free energy with an isospin and momentum dependent interaction, Phys. Rev. C 75(1), 014607 (2007)
CrossRef ADS Google scholar
[459]
J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Effects of isospin and momentum dependent interactions on thermal properties of asymmetric nuclear matter, Phys. Rev. C 77(1), 014302 (2008)
CrossRef ADS Google scholar
[460]
W. J. Xie and B. A. Li, Bayesian inference of high-density nuclear symmetry energy from radii of canonical neutron stars, Astrophys. J. 883(2), 174 (2019)
CrossRef ADS Google scholar
[461]
J. Margueron, R. Hoffmann Casali, and F. Gulminelli, Equation of state for dense nucleonic matter from metamodeling (I): Foundational aspects, Phys. Rev. C 97(2), 025805 (2018)
CrossRef ADS Google scholar
[462]
J. Margueron and F. Gulminelli, Effect of high-order empirical parameters on the nuclear equation of state, Phys. Rev. C 99(2), 025806 (2019)
CrossRef ADS Google scholar
[463]
N. B. Zhang and B. A. Li, Delineating effects of nuclear symmetry energy on the radii and tidal polarizabilities of neutron stars, J. Phys. G 46(1), 014002 (2019)
CrossRef ADS Google scholar
[464]
B. K. Agrawal, S. Shlomo, and V. K. Au, Determination of the parameters of a Skyrme type effective interaction using the simulated annealing approach, Phys. Rev. C 72(1), 014310 (2005)
CrossRef ADS Google scholar
[465]
L. W. Chen, B. J. Cai, C. M. Ko, B. A. Li, C. Shen, and J. Xu, Higher-order effects on the incompressibility of isospin asymmetric nuclear matter, Phys. Rev. C 80(1), 014322 (2009)
CrossRef ADS Google scholar
[466]
C. Mondal, B. K. Agrawal, J. N. De, S. K. Samaddar, M. Centelles, and X. Viñas, Interdependence of different symmetry energy elements, Phys. Rev. C 96, 021302(R) (2017)
CrossRef ADS Google scholar
[467]
M. Dutra, O. Lourenco, J. S. Sa Martins, A. Delfino, J. R. Stone, and P. D. Stevenson, Skyrme interaction and nuclear matter constraints, Phys. Rev. C 85(3), 035201 (2012)
CrossRef ADS Google scholar
[468]
P. A. M. Guichon and A. W. Thomas, Quark structure and nuclear effective forces, Phys. Rev. Lett. 93(13), 132502 (2004)
CrossRef ADS Google scholar
[469]
J. R. Stone, N. J. Stone, and S. A. Moszkowski, Incompressibility in finite nuclei and nuclear matter, Phys. Rev. C 89(4), 044316 (2014)
CrossRef ADS Google scholar
[470]
Y. Zhang, M. Liu, C. J. Xia, Z. Li, and S. K. Biswal, Constraints on the symmetry energy and its associated parameters from nuclei to neutron stars, Phys. Rev. C 101(3), 034303 (2020)
CrossRef ADS Google scholar
[471]
J. Rizzo, M. Colonna, V. Baran, M. Di Toro, H. H. Wolter, and M. Zielinska-Pfabe, Isospin dynamics in peripheral heavy ion collisions at Fermi energies, Nucl. Phys. A 806(1–4), 79 (2008)
CrossRef ADS Google scholar
[472]
B. A. Li, C. B. Das, S. Das Gupta, and C. Gale, Momentum dependence of the symmetry potential and nuclear reactions induced by neutron-rich nuclei at RIA, Phys. Rev. C 69(1), 011603 (2004)
CrossRef ADS Google scholar
[473]
V. Giordano, M. Colonna, M. DiToro, V. Greco, and J. Rizzo, Isospin emission and flow at high baryon density: A test of the symmetry potential, Phys. Rev. C 81(4), 044611 (2010)
CrossRef ADS Google scholar
[474]
P. G. Reinhard and H. Flocard, Nuclear effective forces and isotope shifts, Nucl. Phys. A 584(3), 467 (1995)
CrossRef ADS Google scholar
[475]
J. Friedrich and P. G. Reinhard, Skyrme-force parametrization: Least-squares fit to nuclear groundstate properties, Phys. Rev. C 33(1), 335 (1986)
CrossRef ADS Google scholar
[476]
D. D. S. Coupland, W. G. Lynch, M. B. Tsang, P. Danielewicz, and Y. Zhang, Influence of transport variables on isospin transport ratios, Phys. Rev. C 84(5), 054603 (2011)
CrossRef ADS Google scholar
[477]
D. D. S. Coupland, PhD thesis, Michigan State University, 2013
[478]
D. D. S. Coupland, M. Youngs, Z. Chajecki, W. G. Lynch, M. B. Tsang, ., Probing effective nucleon masses with heavy-ion collisions, Phys. Rev. C 94(1), 011601 (2016)
CrossRef ADS Google scholar
[479]
S. Brandt, Data Analysis: Statistical and Computational Methods for Scientists and Engineers, 4th Ed., Springer, 2014
[480]
P. Morfouace, C. Y. Tsang, Y. Zhang, W. G. Lynch, M. B. Tsang, ., Constraining the symmetry energy with heavy-ion collisions and Bayesian analyses, Phys. Lett. B 799, 135045 (2019)
CrossRef ADS Google scholar
[481]
L. Li, Y. Zhang, Z. Li, N. Wang, Y. Cui, and J. Winkelbauer, Impact parameter smearing effects on isospin sensitive observables in heavy ion collisions, Phys. Rev. C 97(4), 044606 (2018)
CrossRef ADS Google scholar
[482]
Z. Y. Sun, M. B. Tsang, W. G. Lynch, G. Verde, F. Amorini, ., Isospin diffusion and equilibration for Sn+Sn collisions at E/A= 35 MeV, Phys. Rev. C 82, 051603(R) (2010)
CrossRef ADS Google scholar
[483]
E. E. Kolomeitsev, C. Hartnack, H. W. Barz, M. Bleicher, E. Bratkovskaya, ., Transport theories for heavy-ion collisions in the 1AGeV regime, J. Phys. G 31(6), S741 (2005)
CrossRef ADS Google scholar
[484]
J. Xu, L. W. Chen, M. B. Tsang, H. Wolter, Y. X. Zhang, ., Understanding transport simulations of heavy-ion collisions at 100Aand 400AMeV: Comparison of heavyion transport codes under controlled conditions, Phys. Rev. C 93(4), 044609 (2016)
CrossRef ADS Google scholar
[485]
V. V. Desai, W. Loveland, K. McCaleb, R. Yanez, G. Lane, ., The 136Xe+198Pt reaction: A test of models of multi-nucleon transfer reactions, Phys. Rev. C 99(4), 044604 (2019)
CrossRef ADS Google scholar
[486]
A. Ono, Dynamics of clusters and fragments in heavy-ion collisions, Prog. Part. Nucl. Phys. 105, 139 (2019)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(11044 KB)

Accesses

Citations

Detail

Sections
Recommended

/