Progress of quantum molecular dynamics model and its applications in heavy ion collisions
Ying-Xun Zhang, Ning Wang, Qing-Feng Li, Li Ou, Jun-Long Tian, Min Liu, Kai Zhao, Xi-Zhen Wu, Zhu-Xia Li
Progress of quantum molecular dynamics model and its applications in heavy ion collisions
In this review article, we first briefly introduce the transport theory and quantum molecular dynamics model applied in the study of the heavy ion collisions from low to intermediate energies. The developments of improved quantum molecular dynamics model (ImQMD) and ultra-relativistic quantum molecular dynamics model (UrQMD), are reviewed. The reaction mechanism and phenomena related to the fusion, multinucleon transfer, fragmentation, collective flow and particle production are reviewed and discussed within the framework of the two models. The constraints on the isospin asymmetric nuclear equation of state and in-medium nucleon–nucleon cross sections by comparing the heavy ion collision data with transport models calculations in last decades are also discussed, and the uncertainties of these constraints are analyzed as well. Finally, we discuss the future direction of the development of the transport models for improving the understanding of the reaction mechanism, the descriptions of various observables, the constraint on the nuclear equation of state, as well as for the constraint on in-medium nucleon–nucleon cross sections.
quantum molecular dynamics model / low energy heavy ion collisions / low-intermediate energy heavy ion collisions / fusion / multinucleon transfer reaction / multifragmentation / collective flow / isospin asymmetric equation of state / in-medium nucleon–nucleon cross sections
[1] |
J. A. Gaidos, L. J. Gutay, A. S. Hirsch, R. Mitchell, T. V. Ragland, R. P. Scharenberg, F. Turkot, R. B. Willmann, and C. L. Wilson, Nuclear fragment emission in highenergy p–Xe and p–Kr collisions and a description of their production mechanism, Phys. Rev. Lett. 42(2), 82 (1979)
CrossRef
ADS
Google scholar
|
[2] |
R. W. Minich, S. Agarwal, A. Bujak, J. Chuang, J. E. Finn, L. J. Gutay, A. S. Hirsch, N. T. Porile, R. P. Scharenberg, B. C. Stringfellow, and F. Turkot, Critical phenomena in hadronic matter and experimental isotopic yields in high energy proton–nucleus collisions, Phys. Lett. B 118(4–6), 458 (1982)
CrossRef
ADS
Google scholar
|
[3] |
J. E. Finn, S. Agarwal, A. Bujak, J. Chuang, L. J. Gutay, A. S. Hirsch, R. W. Minich, N. T. Porile, R. P. Scharenberg, B. C. Stringfellow, and F. Turkot, Nuclear fragment mass yields from high-energy proton–nucleus interactions, Phys. Rev. Lett. 49(18), 1321 (1982)
CrossRef
ADS
Google scholar
|
[4] |
L. D. Landau and E. M. Lifshitz, Fluid Mechanics, London: Pergamon Press, 1959
|
[5] |
W. Scheid, R. Ligensa, and W. Greiner, Ion–ion potentials and the compressibility of nuclear matter, Phys. Rev. Lett. 21(21), 1479 (1968)
CrossRef
ADS
Google scholar
|
[6] |
J. Hofmann, H. Stöcker, U. Heinz, W. Scheid, and W. Greiner, Possibility of detecting density isomers in highdensity nuclear mach shock waves, Phys. Rev. Lett. 36(2), 88 (1976)
CrossRef
ADS
Google scholar
|
[7] |
P. J. Siemens, Heavy ion collisions, Nucl. Phys. A 335(1– 2), 491 (1980)
CrossRef
ADS
Google scholar
|
[8] |
H. A. Gustafsson, H. H. Gutbrod, B. Kolb, H. Löhner, B. Ludewigt, A. M. Poskanzer, T. Renner, H. Riedesel, H. G. Ritter, A. Warwick, F. Weik, and H. Wieman, Collective flow observed in relativistic nuclear collisions, Phys. Rev. Lett. 52(18), 1590 (1984)
CrossRef
ADS
Google scholar
|
[9] |
H. Stöcker and W. Greiner, High energy heavy ion collisions — probing the equation of state of highly excited hardronic matter, Phys. Rep. 137(5–6), 277 (1986)
CrossRef
ADS
Google scholar
|
[10] |
R. B. Clare and D. Strottman, Relativistic hydrodynamics and heavy ion reactions, Phys. Rep. 141(4), 177 (1986)
CrossRef
ADS
Google scholar
|
[11] |
H. Stöcker, J. A. Maruhn, and W. Greiner, Collective sideward flow of nuclear matter in violent high-energy heavy-ion collisions, Phys. Rev. Lett. 44(11), 725 (1980)
CrossRef
ADS
Google scholar
|
[12] |
R. E. Renfordt, D. Schall, R. Bock, R. Brockmann, J. W. Harris, A. Sandoval, R. Stock, H. Ströbele, D. Bangert, W. Rauch, G. Odyniec, H. G. Pugh, and L. S. Schroeder, Stopping power and collective flow of nuclear matter in the reaction Ar+Pb at 0.8 GeV/u, Phys. Rev. Lett. 53(8), 763 (1984)
CrossRef
ADS
Google scholar
|
[13] |
H. Ströbele, R. Brockmann, J. W. Harris, F. Riess, A. Sandoval, R. Stock, K. L. Wolf, H. G. Pugh, L. S. Schroeder, R. E. Renfordt, K. Tittel, and M. Maier, Charged-particle exclusive analysis of central Ar+ KCl and Ar+ Pb reactions at 1.8 and 0.8 GeV/nucleon, Phys. Rev. C 27(3), 1349 (1983)
CrossRef
ADS
Google scholar
|
[14] |
A. Baden, H. H. Gutbrod, H. Löhner, M. R. Maier, A. M. Poskanzer, T. Renner, H. Riedesel, H. G. Ritter, H. Spieler, A. Warwick, F. Weik, and H. Wieman, The plastic ball spectrometer: An electronic 4τ detector with particle identification, Nucl. Instrum. Methods 203(1–3), 189 (1982)
CrossRef
ADS
Google scholar
|
[15] |
G. Buchwald, G. Graebner, J. Theis, J. Maruhn, W. Greiner, and H. Stöcker, Kinetic energy flow in Nb(400 AMeV) + Nb: Evidence for hydrodynamic compression of nuclear matter, Phys. Rev. Lett. 52(18), 1594 (1984)
CrossRef
ADS
Google scholar
|
[16] |
W. Reisdorf and H. G. Ritter, Collective flow in heavy-ion collisions, Annu. Rev. Nucl. Part. Sci. 47(1), 663 (1997)
CrossRef
ADS
Google scholar
|
[17] |
N. Herrmann, J. P. Wessels, and T. Wienold, Collective flow in heavy-ion collisions, Annu. Rev. Nucl. Part. Sci. 49(1), 581 (1999)
CrossRef
ADS
Google scholar
|
[18] |
R. Wada, K. D. Hildenbrand, U. Lynen, W. F. J. Müller, H. J. Rabe,
CrossRef
ADS
Google scholar
|
[19] |
H. Johnston, T. White, J. Winger, D. Rowland, B. Hurst, F. Gimeno-Nogues, D. O’Kelly, and S. J. Yennello, Isospin equilibration in the reaction 40Ar, 40Ca+58Fe, 58Ni, Phys. Lett. B 371(3–4), 186 (1996)
CrossRef
ADS
Google scholar
|
[20] |
M. Veselsky, R. W. Ibbotson, R. Laforest, E. Ramakrishnan, D. J. Rowland, A. Ruangma, E. M. Winchester, E. Martin, and S. J. Yennello, Inhomogeneous isospin distribution in the reactions of 28Si+112Sn and 124Sn at 30 and 50 MeV/nucleon, Phys. Rev. C 62(4), 041605 (2000)
CrossRef
ADS
Google scholar
|
[21] |
A. Z. Mekjian, Explosive nucleosynthesis, equilibrium thermodynamics, and relativistic heavy-ion collisions, Phys. Rev. C 17(3), 1051 (1978)
CrossRef
ADS
Google scholar
|
[22] |
M. B. Tsang, W. A. Friedman, C. K. Gelbke, W. G. Lynch, G. Verde, and H. S. Xu, Isotopic scaling in nuclear reactions, Phys. Rev. Lett. 86(22), 5023 (2001)
CrossRef
ADS
Google scholar
|
[23] |
H. Xu, R. Alfaro, B. Davin, L. Beaulieu, Y. Larochelle,
CrossRef
ADS
Google scholar
|
[24] |
P. Danielewicz, R. Lacey, and W. G. Lynch, Determination of the equation of state of dense matter, Science 298(5598), 1592 (2002)
CrossRef
ADS
Google scholar
|
[25] |
G. G. Adamian, N. V. Antonenko, and W. Scheid, Model of competition between fusion and quasifission in reactions with heavy nuclei, Nucl. Phys. A 618(1–2), 176 (1997)
CrossRef
ADS
Google scholar
|
[26] |
A. Diaz-Torres, G. G. Adamian, N. V. Antonenko, and W. Scheid, Quasifission process in a transport model for a dinuclear system, Phys. Rev. C 64(2), 024604 (2001)
CrossRef
ADS
Google scholar
|
[27] |
N. Wang, E. G. Zhao, W. Scheid, and S.-G. Zhou, Theoretical study of the synthesis of superheavy nuclei with Z=119 and 120 in heavy-ion reactions with transuranium targets, Phys. Rev. C 85, 041601(R) (2012)
CrossRef
ADS
Google scholar
|
[28] |
V. Zagrebaev and W. Greiner, Unified consideration of deep inelastic, quasi-fission and fusion-fission phenomena, J. Phys. G 31(7), 825 (2005)
CrossRef
ADS
Google scholar
|
[29] |
A. K. Nasirov, G. Mandaglio, G. Giardina, A. Sobiczewski, and A. I. Muminov, Effects of the entrance channel and fission barrier in the synthesis of superheavy element Z=120, Phys. Rev. C 84(4), 044612 (2011)
CrossRef
ADS
Google scholar
|
[30] |
S. Hofmann and G. Münzenberg, The discovery of the heaviest elements, Rev. Mod. Phys. 72(3), 733 (2000)
CrossRef
ADS
Google scholar
|
[31] |
Yu. Ts. Oganessian, F. S. Abdullin, P. D. Bailey, D. E. Benker, M. E. Bennett,
CrossRef
ADS
Google scholar
|
[32] |
R. K. Gupta, M. Manhas, G. Münzenberg, and W. Greiner, Theory of the compactness of the hot fusion reaction 48Ca+244Pu→292114*, Phys. Rev. C 72, 014607 (2005)
CrossRef
ADS
Google scholar
|
[33] |
G. G. Adamian, N. V. Antonenko, A. Diaz-Torres, and W. Scheid, Dynamical restriction for a growing neck due to mass parameters in a dinuclear system, Nucl. Phys. A 671(1–4), 233 (2000)
CrossRef
ADS
Google scholar
|
[34] |
B. N. Lu, E. G. Zhao, and S. G. Zhou, Potential energy surfaces of actinide nuclei from a multidimensional constrained covariant density functional theory: Barrier heights and saddle point shapes, Phys. Rev. C 85, 011301(R) (2012)
CrossRef
ADS
Google scholar
|
[35] |
N. Wang, J. L. Tian and W. Scheid, Systematics of fusion probability in “hot” fusion reactions, Phys. Rev. C 84, 061601(R) (2011)
CrossRef
ADS
Google scholar
|
[36] |
V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, W. Scheid, and H. Q. Zhang, Effects of nuclear deformation and neutron transfer in capture processes, and fusion hindrance at deep sub-barrier energies, Phys. Rev. C 84(6), 064614 (2011)
CrossRef
ADS
Google scholar
|
[37] |
M. Dasgupta, D. J. Hinde, A. Diaz-Torres, B. Bouriquet, C. I. Low, G. J. Milburn, and J. O. Newton, Beyond the coherent coupled channels description of nuclear fusion, Phys. Rev. Lett. 99(19), 192701 (2007)
CrossRef
ADS
Google scholar
|
[38] |
J. R. Leigh, M. Dasgupta, D. J. Hinde, J. C. Mein, C. R. Morton, R. C. Lemmon, J. P. Lestone, J. O. Newton, H. Timmers, J. X. Wei, and N. Rowley, Barrier distributions from the fusion of oxygen ions with 144,148,154Sm and 186W, Phys. Rev. C 52(6), 3151 (1995)
CrossRef
ADS
Google scholar
|
[39] |
H. Timmers, D. Ackermann, S. Beghini, L. Corradi, J. H. He, G. Montagnoli, F. Scarlassara, A. M. Stefanini, and N. Rowley, A case study of collectivity, transfer and fusion enhancement, Nucl. Phys. A 633 (3), 421 (1998)
CrossRef
ADS
Google scholar
|
[40] |
H. Q. Zhang, C. J. Lin, F. Yang, H. M. Jia, X. X. Xu, Z. D. Wu, F. Jia, S. T. Zhang, Z. H. Liu, A. Richard, and C. Beck, Near-barrier fusion of 32S+90,96Zr: The effect of multi-neutron transfers in sub-barrier fusion reactions, Phys. Rev. C 82(5), 054609 (2010)
CrossRef
ADS
Google scholar
|
[41] |
A. Sobiczewski and K. Pomorski, Description of structure and properties of superheavy nuclei, Prog. Part. Nucl. Phys. 58(1), 292 (2007)
CrossRef
ADS
Google scholar
|
[42] |
W. D. Myers and W. J. Swiatecki, Nucleus–nucleus proximity potential and superheavy nuclei, Phys. Rev. C 62(4), 044610 (2000)
CrossRef
ADS
Google scholar
|
[43] |
M. Liu, N. Wang, Z. Li, X. Wu, and E. Zhao, Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers, Nucl. Phys. A 768(1–2), 80 (2006)
CrossRef
ADS
Google scholar
|
[44] |
N. Wang, M. Liu, and Y. X. Yang, Heavy-ion fusion and scattering with Skyrme energy density functional, Sci. China G: Phys. Mech. Astron. 52(10), 1554 (2009))
CrossRef
ADS
Google scholar
|
[45] |
N. Wang, K. Zhao, W. Scheid, and X. Wu, Fusion-fission reactions with a modified Woods–Saxon potential, Phys. Rev. C 77(1), 014603 (2008)
CrossRef
ADS
Google scholar
|
[46] |
V. Zagrebaev and W. Greiner, Synthesis of superheavy nuclei: A search for new production reactions, Phys. Rev. C 78(3), 034610 (2008)
CrossRef
ADS
Google scholar
|
[47] |
T. Cap, K. Siwek-Wilczyńska, and J. Wilczyński, Nucleus–nucleus cold fusion reactions analyzed with the l-dependent “fusion by diffusion” model, Phys. Rev. C 83(5), 054602 (2011)
CrossRef
ADS
Google scholar
|
[48] |
K. Hagino, N. Rowley, and A. T. Kruppa, A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions, Comput. Phys. Commun. 123(1–3), 143 (1999)
CrossRef
ADS
Google scholar
|
[49] |
C. Y. Wong, Interaction barrier in charged-particle nuclear reactions, Phys. Rev. Lett. 31(12), 766 (1973)
CrossRef
ADS
Google scholar
|
[50] |
R. K. Puri and R. K. Gupta, Fusion barriers using the energy-density formalism: Simple analytical formula and the calculation of fusion cross sections, Phys. Rev. C 45(4), 1837 (1992)
CrossRef
ADS
Google scholar
|
[51] |
B. Wang, K. Wen, W. J. Zhao, E. G. Zhao, and S. G. Zhou, Systematics of capture and fusion dynamics in heavy-ion collisions, At. Data Nucl. Data Tables 114, 281 (2017)
CrossRef
ADS
Google scholar
|
[52] |
V. I. Zagrebaev, Yu. Ts. Oganessian, M. G. Itkis, and W. Greiner, Superheavy nuclei and quasi-atoms produced in collisions of transuranium ions, Phys. Rev. C 73, 031602(R) (2006)
CrossRef
ADS
Google scholar
|
[53] |
V. Zagrebaev and W. Greiner, Low-energy collisions of heavy nuclei: Dynamics of sticking, mass transfer and fusion, J. Phys. G 34(1), 1 (2007)
CrossRef
ADS
Google scholar
|
[54] |
V. Zagrebaev and W. Greiner, Shell effects in damped collisions: A new way to superheavies, J. Phys. G 34(11), 2265 (2007)
CrossRef
ADS
Google scholar
|
[55] |
F. Zhang, C. Li, L. Zhu, and P. Wen, Production cross sections for exotic nuclei with multinucleon transfer reactions, Front. Phys. 13(6), 132113 (2018)
CrossRef
ADS
Google scholar
|
[56] |
A. S. Umar and V. E. Oberacker, Heavy-ion interaction potential deduced from density-constrained timedependent Hartree–Fock calculation, Phys. Rev. C 74, 021601(R) (2006)
CrossRef
ADS
Google scholar
|
[57] |
A. S. Umar, V. E. Oberacker, J. A. Maruhn, and P. G. Reinhard, Microscopic composition of ion–ion interaction potentials, Phys. Rev. C 85(1), 017602 (2012)
CrossRef
ADS
Google scholar
|
[58] |
T. Nakatsukasa and K. Yabana, Linear response theory in the continuum for deformed nuclei: Green’s function vs time-dependent Hartree–Fock with the absorbing boundary condition, Phys. Rev. C 71(2), 024301 (2005)
CrossRef
ADS
Google scholar
|
[59] |
J. A. Maruhn, P. G. Reinhard, P. D. Stevenson, and M. R. Strayer, Spin-excitation mechanisms in Skyrme-force time-dependent Hartree–Fock calculations, Phys. Rev. C 74(2), 027601 (2006)
CrossRef
ADS
Google scholar
|
[60] |
L. Guo, J. A. Maruhn, and P. G. Reinhard, Boostinvariant mean field approximation and the nuclear Landau–Zener effect, Phys. Rev. C 76(1), 014601 (2007)
CrossRef
ADS
Google scholar
|
[61] |
C. Simenel, Nuclear quantum many-body dynamics, Eur. Phys. J. A 48(11), 152 (2012)
CrossRef
ADS
Google scholar
|
[62] |
B. A. Li, L. W. Chen, and C. M. Ko, Recent progress and new challenges in isospin physics with heavy-ion reactions, Phys. Rep. 464 (4–6), 113 (2008)
CrossRef
ADS
Google scholar
|
[63] |
B. A. Li, C. M. Ko, and Z. Z. Ren, Equation of state of asymmetric nuclear matter and collisions of neutron-rich nuclei, Phys. Rev. Lett. 78(9), 1644 (1997)
CrossRef
ADS
Google scholar
|
[64] |
B. A. Li, C. M. Ko, and W. Bauer, Isospin physics in heavy-ion collisions at intermediate energies, Int. J. Mod. Phys. E 07(02), 147 (1998)
CrossRef
ADS
Google scholar
|
[65] |
L. W. Chen, C. M. Ko, B. A. Li, C. Xu, and J. Xu, Probing isospin- and momentum-dependent nuclear effective interactions in neutron-rich matter, Eur. Phys. J. A 50(2), 29 (2014)
CrossRef
ADS
Google scholar
|
[66] |
B. A. Li, Probing the high density behavior of the nuclear symmetry energy with high energy heavy-ion collisions, Phys. Rev. Lett. 88(19), 192701 (2002)
CrossRef
ADS
Google scholar
|
[67] |
B. A. Li, Isospin dependence of the π−/π+ ratio and density dependence of the nuclear symmetry energy, Phys. Rev. C 67(1), 017601 (2003)
CrossRef
ADS
Google scholar
|
[68] |
V. Baran, M. Colonna, V. Greco, and M. Di Toro, Reaction dynamics with exotic nuclei, Phys. Rep. 410(5–6), 335 (2005)
CrossRef
ADS
Google scholar
|
[69] |
V. Greco, V. Baran, M. Colonna, M. Di Toro, T. Gaitanos, and H. H. Wolter, Relativistic effects in the search for high density symmetry energy, Phys. Lett. B 562(3–4), 215 (2003)
CrossRef
ADS
Google scholar
|
[70] |
L. W. Chen, C. M. Ko, and B. A. Li, Determination of the stiffness of the nuclear symmetry energy from isospin diffusion, Phys. Rev. Lett. 94(3), 032701 (2005)
CrossRef
ADS
Google scholar
|
[71] |
L. W. Chen, V. Greco, C. M. Ko, and B. A. Li, Effects of symmetry energy on two-nucleon correlation functions in heavy-ion collisions induced by neutron-rich nuclei, Phys. Rev. Lett. 90(16), 162701 (2003)
CrossRef
ADS
Google scholar
|
[72] |
T. Gaitanos, M. Di Toro, S. Type, V. Baran, C. Fuchs, V. Greco, and H. H. Wolter, On the Lorentz structure of the symmetry energy, Nucl. Phys. A 732, 24 (2004)
CrossRef
ADS
Google scholar
|
[73] |
Q. F. Li, Z. X. Li, S. Soff, R. K. Gupta, M. Bleicher, and H. Stöcker, Probing the density dependence of the symmetry potential at low and high densities, Phys. Rev. C 72(3), 034613 (2005)
CrossRef
ADS
Google scholar
|
[74] |
Q. F. Li, Z. X. Li, S. Soff, R. K. Gupta, M. Bleicher, and H. Stöcker, Probing the equation of state with pions, J. Phys. G 32(2), 151 (2006)
CrossRef
ADS
Google scholar
|
[75] |
Q. Li, Z. Li, S. Soff, R. K. Gupta, M. Bleicher, and H. Stöcker, Probing the density dependence of the symmetry potential in intermediate-energy heavy ion collisions, J. Phys. G 31(11), 1359 (2005)
CrossRef
ADS
Google scholar
|
[76] |
Q. F. Li, Z. X. Li, E. G. Zhao, and R. K. Gupta, Σ−/Σ+ratio as a candidate for probing the density dependence of the symmetry potential at high nuclear densities, Phys. Rev. C 71(5), 054907 (2005)
CrossRef
ADS
Google scholar
|
[77] |
Q. Li, Z. Li, S. Soff, M. Bleicher, and H. Stöcker, Medium modifications of the nucleon–nucleon elastic cross section in neutron-rich intermediate energy HICs, J. Phys. G 32(4), 407 (2006)
CrossRef
ADS
Google scholar
|
[78] |
W. Reisdorf,
|
[79] |
G. Ferini, M. Colonna, T. Gaitanos, M. Di Toro, and H. Wolter, Isospin effects on subthreshold Kaon production at intermediate energies, Phys. Rev. Lett. 97(20), 202301 (2006)
CrossRef
ADS
Google scholar
|
[80] |
M. Di Toro, M. Colonna, G. Ferini, T. Gaitanos, V. Greco, and H. H. Wolter, Heavy ion collisions at relativistic energies: Testing a nuclear matter at high baryon and isospin density, Nucl. Phys. A 782(1–4), 267 (2007)
CrossRef
ADS
Google scholar
|
[81] |
G. C. Yong, B. A. Li, and L. W. Chen, Double neutronproton differential transverse flow as a probe for the high density behavior of the nuclear symmetry energy, Phys. Rev. C 74(6), 064617 (2006)
CrossRef
ADS
Google scholar
|
[82] |
Y. Leifels, T. Blaich, T. W. Elze, H. Emling, H. Freiesleben,
CrossRef
ADS
Google scholar
|
[83] |
D. Lambrecht, T. Blaich, T. W. Elze, H. Emling, H. Freiesleben,
CrossRef
ADS
Google scholar
|
[84] |
H. Petersen, Q. Li, X. Zhu, and M. Bleicher, Directed and elliptic flow in heavy-ion collisions from E beam= 90 MeV/nucleon to E c.m. = 200 GeV/nucleon, Phys. Rev. C 74(6), 064908 (2006)
CrossRef
ADS
Google scholar
|
[85] |
J. C. Yang, J. W. Xia, G. Q. Xiao, H. S. Xu, H. W. Zhao,
CrossRef
ADS
Google scholar
|
[86] |
G. Q. Xiao, H. S. Xu, and S. C. Wang, HIAF and CiADS national research facilities: Progress and prospect, Nucl. Phys. Rev. 34, 275 (2017)
|
[87] |
X. H. Zhou, Physics opportunities at the new facility HIAF, Nucl. Phys. Rev. 35, 339 (2018)
|
[88] |
https://frib.msu.edu/
|
[89] |
C.-B. Moon, Nuclear physics programs for the future rare isotope beams accelerator facility in Korea, arXiv: 1601.07271 (2016)
|
[90] |
http://www.nishina.riken.jp/RIBF/
|
[91] |
https://www.ganil-spiral2.eu/
|
[92] |
https://fair-center.eu/
|
[93] |
https://web.infn.it/epics/index.php
|
[94] |
http://nica.jinr.ru/
|
[95] |
W. P. Liu, The prospects for accelerator-basednuclear physics facilities, Physics (College Park Md.) 43, 150 (2014) (in Chinese)
|
[96] |
G. G. Adamian, N. V. Antonenko, W. Scheid, and V. V. Volkov, Treatment of competition between complete fusion and quasifission in collisions of heavy nuclei, Nucl. Phys. A 627(2), 361 (1997)
CrossRef
ADS
Google scholar
|
[97] |
M. H. Huang, Z. G. Gan, X. H. Zhou, J. Q. Li, and W. Scheid, Competing fusion and quasifission reaction mechanisms in the production of superheavy nuclei, Phys. Rev. C 82(4), 044614 (2010)
CrossRef
ADS
Google scholar
|
[98] |
G. G. Adamian, N. V. Antonenko, and W. Scheid, Characteristics of quasifission products within the dinuclear system model, Phys. Rev. C 68(3), 034601 (2003)
CrossRef
ADS
Google scholar
|
[99] |
G. G. Adamian, N. V. Antonenko, and W. Scheid, Isotopic trends in the production of superheavy nuclei in cold fusion reactions, Phys. Rev. C 69, 011601(R) (2004)
CrossRef
ADS
Google scholar
|
[100] |
Z. Q. Feng, G. M. Jin, F. Fu, and J. Q. Li, Production cross sections of superheavy nuclei based on dinuclear system model, Nucl. Phys. A 771, 50 (2006)
CrossRef
ADS
Google scholar
|
[101] |
G. G. Adamian, N. V. Antonenko, and A. S. Zubov, Production of unknown transactinides in asymmetry-exitchannel quasifission reactions, Phys. Rev. C 71(3), 034603 (2005)
CrossRef
ADS
Google scholar
|
[102] |
Q. Li, W. Zuo, W. Li, N. Wang, E. Zhao, J. Li, and W. Scheid, Deformation and orientation effects in the driving potential of the dinuclear model, Eur. Phys. J. A 24(2), 223 (2005)
CrossRef
ADS
Google scholar
|
[103] |
G. G. Adamian, N. V. Antonenko, and D. Lacroix, Production of neutron-rich Ca, Sn, and Xe isotopes in transfer-type reactions with radioactive beams, Phys. Rev. C 82(6), 064611 (2010)
CrossRef
ADS
Google scholar
|
[104] |
M.-H. Mun, G. G. Adamian, N. V. Antonenko, Y. Oh, and Y. Kim, Production cross section of neutron-rich isotopes with radioactive and stable beams, Phys. Rev. C 89, 034622 (2014)
CrossRef
ADS
Google scholar
|
[105] |
L. Zhu, Z. Q. Feng, and F. S. Zhang, Production of heavy neutron-rich nuclei in transfer reactions within the dinuclear system model, J. Phys. G 42(8), 085102 (2015)
CrossRef
ADS
Google scholar
|
[106] |
L. Zhu, J. Su, W. J. Xie, and F. S. Zhang, Production of neutron-rich transcalifornium nuclei in 238U-induced transfer reactions, Phys. Rev. C 94(5), 054606 (2016)
CrossRef
ADS
Google scholar
|
[107] |
Z. Q. Feng, Production of neutron-rich isotopes around N= 126 in multinucleon transfer reactions, Phys. Rev. C 95(2), 024615 (2017)
CrossRef
ADS
Google scholar
|
[108] |
V. Zagrebaev and W. Greiner, New way for the production of heavy neutron-rich nuclei, J. Phys. G 35(12), 125103 (2008)
CrossRef
ADS
Google scholar
|
[109] |
V. I. Zagrebaev and W. Greiner, New ideas on the production of heavy and superheavy neutron rich nuclei, Nucl. Phys. A 834(1–4), 366c (2010)
CrossRef
ADS
Google scholar
|
[110] |
V. I. Zagrebaev and W. Greiner, Production of heavy trans-target nuclei in multinucleon transfer reactions, Phys. Rev. C 87(3), 034608 (2013)
CrossRef
ADS
Google scholar
|
[111] |
V. Zagrebaev and W. Greiner, Production of new heavy isotopes in low-energy multinucleon transfer reactions, Phys. Rev. Lett. 101(12), 122701 (2008)
CrossRef
ADS
Google scholar
|
[112] |
V. I. Zagrebaev, B. Fornal, S. Leoni, and W. Greiner, Formation of light exotic nuclei in low-energy multinucleon transfer reactions, Phys. Rev. C 89(5), 054608 (2014)
CrossRef
ADS
Google scholar
|
[113] |
Y. Aritomo, T. Wada, M. Ohta, and Y. Abe, Fluctuationdissipation model for synthesis of superheavy elements, Phys. Rev. C 59(2), 796 (1999)
CrossRef
ADS
Google scholar
|
[114] |
Y. Aritomo, T. Wada, M. Ohta, and Y. Abe, Diffusion mechanism for synthesis of superheavy elements, Phys. Rev. C 55, R1011(R) (1997)
CrossRef
ADS
Google scholar
|
[115] |
C. Shen, G. Kosenko, and Y. Abe, Two-step model of fusion for the synthesis of superheavy elements, Phys. Rev. C 66, 061602(R) (2002)
CrossRef
ADS
Google scholar
|
[116] |
Z. Q. Feng, G. M. Jin, and J. Q. Li, Production of heavy isotopes in transfer reactions by collisions of 238U+238U, Phys. Rev. C 80(6), 067601 (2009)
CrossRef
ADS
Google scholar
|
[117] |
X. J. Bao, S. Q. Guo, H. F. Zhang, and J. Q. Li, Influence of entrance channel on production cross sections of superheavy nuclei, Phys. Rev. C 96(2), 024610 (2017)
CrossRef
ADS
Google scholar
|
[118] |
J. Tõke, D. K. Agnihotri, S. P. Baldwin, B. Djerroud, B. Lott, B. M. Quednau, W. Skulski, W. U. Schröder, L. G. Sobotka, R. J. Charity, D. G. Sarantites, and R. T. de Souza, Dynamical fragment production as a mode of energy dissipation in heavy-ion reactions, Phys. Rev. Lett. 77(17), 3514 (1996)
CrossRef
ADS
Google scholar
|
[119] |
J. P. Bondorf, R. Donangelo, I. N. Mishustin, C. J. Pethick, H. Schulz, and K. Sneppen, Statistical multifragmentation of nuclei, Nucl. Phys. A 443(2), 321 (1985)
CrossRef
ADS
Google scholar
|
[120] |
J. Bondorf, R. Donangelo, I. N. Mishustin, and H. Schulz, Statistical multifragmentation of nuclei, Nucl. Phys. A 444(3), 460 (1985)
CrossRef
ADS
Google scholar
|
[121] |
H. W. Barz, J. P. Bondorf, R. Donangelo, and H. Schulz, Connection between the thermodynamical and the percolation models of nuclear fragmentation, Phys. Lett. B 169(4), 318 (1986)
CrossRef
ADS
Google scholar
|
[122] |
B. H. Sa, Y. M. Zheng, and X. Z. Zhang, Disassembly of hot nuclei and relevant phase transition, Int. J. Mod. Phys. A 05(05), 843 (1990)
CrossRef
ADS
Google scholar
|
[123] |
J. P. Bondorf, A. S. Botvina, A. S. Iljinov, I. N. Mishustin, and K. Sneppen, Statistical multifragmentation of nuclei, Phys. Rep. 257(3), 133 (1995)
CrossRef
ADS
Google scholar
|
[124] |
A. S. Botvina and I. N. Mishustin, Statistical evolution of isotope composition of nuclear fragments, Phys. Rev. C 63(6), 061601 (2001)
CrossRef
ADS
Google scholar
|
[125] |
N. Buyukcizmeci, R. Ogul, and A. S. Botvina, Isospin and symmetry energy effects on nuclear fragment production in liquid-gas-type phase transition region, Eur. Phys. J. A 25(1), 57 (2005)
CrossRef
ADS
Google scholar
|
[126] |
P. Napolitani and M. Colonna, Bifurcations in Boltzmann–Langevin one body dynamics for fermionic systems, Phys. Lett. B 726(1–3), 382 (2013)
CrossRef
ADS
Google scholar
|
[127] |
P. Napolitani and M. Colonna, Frustrated fragmentation and re-aggregation in nuclei: A non-equilibrium description in spallation, Phys. Rev. C 92(3), 034607 (2015)
CrossRef
ADS
Google scholar
|
[128] |
T. Gaitanos, A. B. Larionov, H. Lenske, and U. Mosel, Breathing mode in an improved transport approach, Phys. Rev. C 81(5), 054316 (2010)
CrossRef
ADS
Google scholar
|
[129] |
A. B. Larionov, T. Gaitanos, and U. Mosel, Kaon and hyperon production in antiproton-induced reactions on nuclei, Phys. Rev. C 85(2), 024614 (2012)
CrossRef
ADS
Google scholar
|
[130] |
O. Buss, T. Gaitanos, K. Gallmeister, H. van Hees, M. Kaskulov, O. Lalakulich, A. B. Larionov, T. Leitner, J. Weil, and U. Mosel, Transport-theoretical description of nuclear reactions, Phys. Rep. 512(1–2), 1 (2012); see also
CrossRef
ADS
Google scholar
|
[131] |
F. S. Zhang and E. Suraud, Analysis of multifragmentation in a Boltzmann–Langevin approach, Phys. Rev. C 51(6), 3201 (1995)
CrossRef
ADS
Google scholar
|
[132] |
W.-J. Xie, J. Su, L. Zhu, and F.-S. Zhang, Neutronproton effective mass splitting in a Boltzmann–Langevin approach, Phys. Rev. C 88, 061601(R) (2013)
CrossRef
ADS
Google scholar
|
[133] |
P. Danielewicz, Determination of the mean-field momentum-dependence using elliptic flow, Nucl. Phys. A 673(1–4), 375 (2000)
CrossRef
ADS
Google scholar
|
[134] |
P. Danielewicz and G. F. Bertsch, Production of deuterons and pions in a transport model of energetic heavy-ion reactions, Nucl. Phys. A 533(4), 712 (1991)
CrossRef
ADS
Google scholar
|
[135] |
C. Fuchs and H. H. Wolter, The relativistic Landau- Vlasov method in heavy-ion collisions, Nucl. Phys. A 589(4), 732 (1995)
CrossRef
ADS
Google scholar
|
[136] |
T. Gaitanos, M. Di Toro, S. Typel, V. Baran, C. Fuchs, V. Greco, and H. H. Wolter, On the Lorentz structure of the symmetry energy, Nucl. Phys. A 732, 24 (2004)
CrossRef
ADS
Google scholar
|
[137] |
C. M. Ko and Q. Li, Relativistic Vlasov–Uehling- Uhlenbeck model for heavy-ion collisions, Phys. Rev. C 37(5), 2270 (1988)
CrossRef
ADS
Google scholar
|
[138] |
C. M. Ko and Q. Li, Medium effects in high energy heavyion collisions, J. Phys. G 22(12), 1673 (1996)
CrossRef
ADS
Google scholar
|
[139] |
T. Song and C. M. Ko, Modifications of the pionproduction threshold in the nuclear medium in heavy ion collisions and the nuclear symmetry energy, Phys. Rev. C 91(1), 014901 (2015)
CrossRef
ADS
Google scholar
|
[140] |
M. Colonna, M. Di Toro, A. Guarnera, S. Maccarone, M. Zielinska-Pfabé, and H. H. Wolter, Fluctuations and dynamical instabilities in heavy-ion reactions, Nucl. Phys. A 642(3–4), 449 (1998)
CrossRef
ADS
Google scholar
|
[141] |
A. Guarnera, M. Colonna, and Ph. Chomaz, 3D stochastic mean-field simulations of the spinodal fragmentation of dilute nuclei, Phys. Lett. B 373(4), 267 (1996)
CrossRef
ADS
Google scholar
|
[142] |
M. Colonna, Fluctuations and symmetry energy in nuclear fragmentation dynamics, Phys. Rev. Lett. 110(4), 042701 (2013)
CrossRef
ADS
Google scholar
|
[143] |
A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi, Antisymmetrized version of molecular dynamics with twonucleon collisions and its application to heavy ion reactions, Prog. Theor. Phys. 87(5), 1185 (1992)
CrossRef
ADS
Google scholar
|
[144] |
A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi, Momentum distribution of fragments in heavy-ion reactions: Dependence on the stochastic collision process, Phys. Rev. C 47(6), 2652 (1993)
CrossRef
ADS
Google scholar
|
[145] |
J. Su, F. S. Zhang, and B. A. Bian, Odd-even effect in heavy-ion collisions at intermediate energies, Phys. Rev. C 83(1), 014608 (2011)
CrossRef
ADS
Google scholar
|
[146] |
J. Su and F. S. Zhang, Non-equilibrium and residual memory in momentum space of fragmenting sources in central heavy-ion collisions, Phys. Rev. C 87(1), 017602 (2013)
CrossRef
ADS
Google scholar
|
[147] |
J. Su, K. Cherevko, W. J. Xie, and F. S. Zhang, Nonisotropic and nonsingle explosion in central 129Xe+120Sn collisions at 50–125 MeV/nucleon, Phys. Rev. C 89(1), 014619 (2014)
CrossRef
ADS
Google scholar
|
[148] |
J. Aichelin and G. Bertsch, Numerical simulation of medium energy heavy ion reactions, Phys. Rev. C 31(5), 1730 (1985)
CrossRef
ADS
Google scholar
|
[149] |
C. Hartnack, L. Zhuxia, L. Neise, G. Peilert, A. Rosenhauer, H. Sorge, J. Aichelin, H. Stöcker, and W. Greiner, Quantum molecular dynamics a microscopic model from UNILAC to CERN energies, Nucl. Phys. A 495(1–2), 303 (1989)
CrossRef
ADS
Google scholar
|
[150] |
J. Aichelin, “Quantum” molecular dynamics — a dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions, Phys. Rep. 202(5–6), 233 (1991)
CrossRef
ADS
Google scholar
|
[151] |
C. Hartnack, R. K. Puri, J. Aichelin, J. Konopka, S. A. Bass, H. Stöcker, and W. Greiner, Modelling the manybody dynamics of heavy ion collisions: Present status and future perspective, Eur. Phys. J. A 1(2), 151 (1998)
CrossRef
ADS
Google scholar
|
[152] |
M. Papa, T. Maruyama, and A. Bonasera, Constrained molecular dynamics approach to fermionic systems, Phys. Rev. C 64(2), 024612 (2001)
CrossRef
ADS
Google scholar
|
[153] |
M. Papa, Many-body correlations in semiclassical molecular dynamics and Skyrme interaction, Phys. Rev. C 87(1), 014001 (2013)
CrossRef
ADS
Google scholar
|
[154] |
M. Papa, G. Giuliani, and A. Bonasera, Constrained molecular dynamics II: An N-body approach to nuclear systems, J. Comput. Phys. 208(2), 403 (2005)
CrossRef
ADS
Google scholar
|
[155] |
N. Wang, Z. Li, and X. Wu, Improved quantum molecular dynamics model and its applications to fusion reaction near barrier, Phys. Rev. C 65(6), 064608 (2002)
CrossRef
ADS
Google scholar
|
[156] |
Y. X. Zhang and Z. X. Li, Elliptic flow and system size dependence of transition energies at intermediate energies, Phys. Rev. C 74(1), 014602 (2006)
CrossRef
ADS
Google scholar
|
[157] |
Y. X. Zhang, Z. X. Li, and P. Danielewicz, In-medium NN cross sections determined from the nuclear stopping and collective flow in heavy-ion collisions at intermediate energies, Phys. Rev. C 75(3), 034615 (2007)
CrossRef
ADS
Google scholar
|
[158] |
Y. X. Zhang, P. Danielewicz, M. Famiano, Z. Li, W. G. Lynch, and M. B. Tsang, The influence of cluster emission and the symmetry energy on neutron–proton spectral double ratios, Phys. Lett. B 664(1–2), 145 (2008)
CrossRef
ADS
Google scholar
|
[159] |
Y. X. Zhang, Z. X. Li, C. S. Zhou, and M. B. Tsang, Effect of isospin-dependent cluster recognition on the observables in heavy ion collisions, Phys. Rev. C 85, 051602(R) (2012)
CrossRef
ADS
Google scholar
|
[160] |
Y. Zhang, D. D. S. Coupland, P. Danielewicz, Z. Li, H. Liu, F. Lu, W. G. Lynch, and M. B. Tsang, Influence of in-medium NNcross sections, symmetry potential, and impact parameter on isospin observables, Phys. Rev. C 85(2), 024602 (2012)
CrossRef
ADS
Google scholar
|
[161] |
Y. Zhang, M. Tsang, and Z. Li, Covariance analysis of symmetry energy observables from heavy ion collision, Phys. Lett. B 749, 262 (2015)
CrossRef
ADS
Google scholar
|
[162] |
N. Wang, Z. Li, X. Wu, J. Tian, Y. Zhang, and M. Liu, Further development of the improved quantum molecular dynamics model and its application to fusion reactions near the barrier, Phys. Rev. C 69(3), 034608 (2004)
CrossRef
ADS
Google scholar
|
[163] |
Z. Q. Feng, Momentum dependence of the symmetry potential and its influence on nuclear reactions, Phys. Rev. C 84(2), 024610 (2011)
CrossRef
ADS
Google scholar
|
[164] |
Z. Q. Feng, Nuclear in-medium effects and collective flows in heavy-ion collisions at intermediate energies, Phys. Rev. C 85(1), 014604 (2012)
CrossRef
ADS
Google scholar
|
[165] |
X. G. Cao, G. Q. Zhang, X. Z. Cai, Y. G. Ma, W. Guo, J. G. Chen, W. D. Tian, D. Q. Fang, and H. W. Wang, Roles of deformation and orientation in heavy-ion collisions induced by light deformed nuclei at intermediate energy, Phys. Rev. C 81(6), 061603 (2010)
CrossRef
ADS
Google scholar
|
[166] |
G. Q. Zhang, Y. G. Ma, X. G. Cao, C. L. Zhou, X. Z. Cai, D. Q. Fang, W. D. Tian, and H. W. Wang, Unified description of nuclear stopping in central heavy-ion collisions from 10AMeV to 1.2AGeV, Phys. Rev. C 84, 034612 (2011)
CrossRef
ADS
Google scholar
|
[167] |
W. B. He, Y. G. Ma, X. G. Cao, X. Z. Cai, and G. Q. Zhang, Giant dipole resonance as a fingerprint of α clustering configurations in 12C and 16O, Phys. Rev. Lett. 113(3), 032506 (2014)
CrossRef
ADS
Google scholar
|
[168] |
D. T. Khoa, N. Ohtsuka, M. A. Matin, A. Faessler, S. W. Huang, E. Lehmann, and R. K. Puri, In-medium effects in the description of heavy-ion collisions with realistic NN interactions, Nucl. Phys. A 548(1), 102 (1992)
CrossRef
ADS
Google scholar
|
[169] |
V. Uma Maheswari, C. Fuchs, A. Faessler, L. Sehn, D. S. Kosov, and Z. Wang, In-medium dependence and Coulomb effects of the pion production in heavy ion collisions, Nucl. Phys. A 628(4), 669 (1998)
CrossRef
ADS
Google scholar
|
[170] |
K. Shekhter, C. Fuchs, A. Faessler, M. Krivoruchenko, and B. Martemyanov, Dilepton production in heavy-ion collisions at intermediate energies, Phys. Rev. C 68(1), 014904 (2003)
CrossRef
ADS
Google scholar
|
[171] |
M. D. Cozma, Y. Leifels, W. Trautmann, Q. Li, and P. Russotto, Toward a model-independent constraint of the high-density dependence of the symmetry energy, Phys. Rev. C 88(4), 044912 (2013)
CrossRef
ADS
Google scholar
|
[172] |
Q. Li, C. Shen, C. Guo, Y. Wang, Z. Li, J. Lukasik, and W. Trautmann, Nonequilibrium dynamics in heavy-ion collisions at low energies available at the GSI Schwerionen Synchrotron, Phys. Rev. C 83(4), 044617 (2011)
CrossRef
ADS
Google scholar
|
[173] |
S. A. Bass, M. Belkacem, M. Bleicher,
CrossRef
ADS
Google scholar
|
[174] |
H. Sorge, H. Stocker, and W. Greiner, Poincaré invariant Hamiltonian dynamics: Modelling multi-hadronic interactions in a phase space approach, Ann. Phys. 192(2), 266 (1989)
CrossRef
ADS
Google scholar
|
[175] |
C.-Y. Wong, Dynamics of nuclear fluid (VIII): Timedependent Hartree–Fock approximation from a classical point of view, Phys. Rev. C 25, 1460 (1982)
CrossRef
ADS
Google scholar
|
[176] |
Ph. Chomaz, G. F. Burgio, and J. Randrup, Inclusion of fluctuations in nuclear dynamics, Phys. Lett. B 254(3–4), 340 (1991)
CrossRef
ADS
Google scholar
|
[177] |
F. Chapelle, G. F. Burgio, Ph. Chomaz, and J. Randrup, Fluctuations in nuclear dynamics: Comparison of different methods, Nucl. Phys. A 540(1–2), 227 (1992)
CrossRef
ADS
Google scholar
|
[178] |
F. S. Zhang and E. Suraud, Boltzmann-Langevin equation, dynamical instability and multifragmentation, Phys. Lett. B 319(1–3), 35 (1993)
CrossRef
ADS
Google scholar
|
[179] |
Y. Abe, S. Ayik, P. G. Reinhard, and E. Suraud, On stochastic approaches of nuclear dynamics, Phys. Rep. 275(2–3), 49 (1996)
CrossRef
ADS
Google scholar
|
[180] |
A. Guarnera, M. Colonna, and Ph. Chomaz, 3D stochastic mean-field simulations of the spinodal fragmentation of dilute nuclei, Phys. Lett. B 373(4), 267 (1996)
CrossRef
ADS
Google scholar
|
[181] |
M. Colonna, Fluctuations and symmetry energy in nuclear fragmentation dynamics, Phys. Rev. Lett. 10(4), 042701 (2013)
CrossRef
ADS
Google scholar
|
[182] |
S. Gavin, G. Moschelli, and C. Zin, Boltzmann–Langevin approach to pre-equilibrium correlations in nuclear collisions, Phys. Rev. C 95(6), 064901 (2017)
CrossRef
ADS
Google scholar
|
[183] |
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, B864 (1964)
CrossRef
ADS
Google scholar
|
[184] |
W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. A 140, 1133 (1965)
CrossRef
ADS
Google scholar
|
[185] |
R. M. Dreizler and E. K. U. Gross, Density Functional Theory: An Approach to the Quantum Many-Body Problem, Springer-Verlag, Berlin, 1990
|
[186] |
R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Clarendon, Oxford, 1989
|
[187] |
W. Kohn, Electronic structure of matter — wave functions and density functionals, Rev. Mod. Phys. 71(5), 1253 (1999)
CrossRef
ADS
Google scholar
|
[188] |
E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40(5), 749 (1932)
CrossRef
ADS
Google scholar
|
[189] |
P. Carruthers and F. Zachariasen, Relativistic quantum transport theory approach to multiparticle production, Phys. Rev. D 13(4), 950 (1976)
CrossRef
ADS
Google scholar
|
[190] |
L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics, Benjamin, New York, 1962
|
[191] |
P. C. Martin and J. Schwinger, Theory of many-particle systems (I), Phys. Rev. 115(6), 1342 (1959)
CrossRef
ADS
Google scholar
|
[192] |
J. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. (N.Y.) 2(3), 407 (1961)
CrossRef
ADS
Google scholar
|
[193] |
P. Danielewicz, Quantum theory of nonequilibrium processes (I), Ann. Phys. 152(2), 239 (1984)
CrossRef
ADS
Google scholar
|
[194] |
G. J. Mao, Z. X. Li, Y. Z. Zhuo, and Y. L. Han, Medium effects on the NNinelastic cross section in relativistic heavy-ion collisions, Phys. Lett. B 327(3-4), 183 (1994)
CrossRef
ADS
Google scholar
|
[195] |
G. Mao, Z. Li, Y. Zhuo, and Z. Yu, Medium effects on the NNinelastic cross section in relativistic heavy-ion collisions, Phys. Lett. B 327(3–4), 183 (1994)
CrossRef
ADS
Google scholar
|
[196] |
Y. Han, G. Mao, Z. Li, and Y. Zhuo, Effective nucleonnucleon cross sections based on Skyrme interactions, Phys. Rev. C 50(2), 961 (1994)
CrossRef
ADS
Google scholar
|
[197] |
G. Mao, Z. Li, and Y. Zhuo, Self-consistent relativistic Boltzmann–Uehling–Uhlenbeck equation for the Δ distribution function, Phys. Rev. C 53 (6), 2933 (1996)
CrossRef
ADS
Google scholar
|
[198] |
G. Mao, L. Neise, H. Stoecker, W. Greiner, and Z. Li, Relativistic transport theory of N,Δ, and N ∗ (1440) interacting through σ, ω, and π mesons, Phys. Rev. C 57(4), 1938 (1998)
CrossRef
ADS
Google scholar
|
[199] |
Q. Li, Z. Li, and G. Mao, Isospin dependence of nucleonnucleon elastic cross section, Phys. Rev. C 62(1), 014606 (2000)
CrossRef
ADS
Google scholar
|
[200] |
Q. Li, Z. Li, and E. Zhao, Density and temperature dependence of nucleon-nucleon elastic cross section, Phys. Rev. C 69(1), 017601 (2004)
CrossRef
ADS
Google scholar
|
[201] |
W. Cassing and S. Juchem, Semiclassical transport of particles with dynamical spectral functions, Nucl. Phys. A 665(3–4), 377 (2000)
CrossRef
ADS
Google scholar
|
[202] |
G. F. Bertsch and S. Das Gupta, A guide to microscopic models for intermediate energy heavy ion collisions, Phys. Rep. 160(4), 189 (1988)
CrossRef
ADS
Google scholar
|
[203] |
J. Aichelin, A. Rosenhauer, G. Peilert, H. Stoecker, and W. Greiner, Importance of momentum-dependent interactions for the extraction of the nuclear equation of state from high-energy heavy-ion collisions, Phys. Rev. Lett. 58(19), 1926 (1987)
CrossRef
ADS
Google scholar
|
[204] |
C. Hartnack and J. Aichelin, New parametrization of the optical potential, Phys. Rev. C 49(5), 2801 (1994)
CrossRef
ADS
Google scholar
|
[205] |
C. Gale, G. Bertsch, and S. Das Gupta, Heavy-ion collision theory with momentum-dependent interactions, Phys. Rev. C 35(5), 1666 (1987)
CrossRef
ADS
Google scholar
|
[206] |
M. Isse, A. Ohnishi, N. Otuka, P. K. Sahu, and Y. Nara, Mean-field effects on collective flow in high-energy heavyion collisions at 2–158A GeV energies, Phys. Rev. C 72(6), 064908 (2005)
CrossRef
ADS
Google scholar
|
[207] |
S. Hama, B. C. Clark, E. D. Cooper, H. S. Sherif, and R. L. Mercer, Global Dirac optical potentials for elastic proton scattering from heavy nuclei, Phys. Rev. C 41(6), 2737 (1990)
CrossRef
ADS
Google scholar
|
[208] |
J. Cugnon, Monte Carlo calculation of high-energy heavyion interactions, Phys. Rev. C 22(5), 1885 (1980)
CrossRef
ADS
Google scholar
|
[209] |
J. J. Molitoris, J. B. Hoffer, H. Kruse, and H. Stöcker, Microscopic calculations of collective flow probing the shortrange nature of the nuclear force, Phys. Rev. Lett. 53(9), 899 (1984)
CrossRef
ADS
Google scholar
|
[210] |
H. Kruse, B. V. Jacak, J. J. Molitoris, G. D. Westfall, and H. Stöcker, Vlasov–Uehling–Uhlenbeck theory of medium energy heavy ion reactions: Role of mean field dynamics and two body collisions, Phys. Rev. C 31(5), 1770 (1985)
CrossRef
ADS
Google scholar
|
[211] |
G. F. Bertsch, H. Kruse, and S. D. Gupta, Boltzmann equation for heavy ion collisions, Phys. Rev. C 29(2), 673 (1984)
CrossRef
ADS
Google scholar
|
[212] |
C. Grégoire, B. Remaud, F. Sebille, L. Vinet, and Y. Raffray, Semi-classical dynamics of heavy-ion reactions, Nucl. Phys. A 465(2), 317 (1987)
CrossRef
ADS
Google scholar
|
[213] |
J. Aichelin, C. Hartnack, A. Bohnet, L. Zhuxia, G. Peilert, H. Stöcker, and W. Greiner, QMD versus BUU/VUU: Same results from different theories, Phys. Lett. B 224(1– 2), 34 (1989)
CrossRef
ADS
Google scholar
|
[214] |
H. Feldmeier, Fermionic molecular dynamics, Nucl. Phys. A 515(1), 147 (1990)
CrossRef
ADS
Google scholar
|
[215] |
H. Feldmeier and J. Schnack, Fermionic molecular dynamics SCV252SCV133 V2, Prog. Part. Nucl. Phys. 39, 393 (1997)
CrossRef
ADS
Google scholar
|
[216] |
T. Maruyama, K. Niita, and A. Iwamoto, Extension of quantum molecular dynamics and its application to heavy-ion collisions, Phys. Rev. C 53(1), 297 (1996)
CrossRef
ADS
Google scholar
|
[217] |
L. Wilets, E. M. Henley, M. Kraft, and A. D. Mackellar, Classical many-body model for heavy-ion collisions incorporating the Pauli principle, Nucl. Phys. A 282(2), 341 (1977)
CrossRef
ADS
Google scholar
|
[218] |
L. Wilets, Y. Yariv, and R. Chestnut, Classical manybody model for heavy-ion collisions (II), Nucl. Phys. A 301(2), 359 (1978)
CrossRef
ADS
Google scholar
|
[219] |
J. C. Dorso and J. Randrup, Classical simulation of nuclear systems, Phys. Lett. B 215(4), 611 (1988)
CrossRef
ADS
Google scholar
|
[220] |
Z. X. Li, C. Hartnack, H. Stoeker, and W. Greiner, Transition from binary processes to multifragmentation in quantum molecular dynamics for intermediate energy heavy ion collisions, Phys. Rev. C 44, 824 (1990)
CrossRef
ADS
Google scholar
|
[221] |
N. Wang, L. Ou, Y. Zhang, and Z. Li, Microscopic dynamics simulations of heavy-ion fusion reactions induced by neutron-rich nuclei, Phys. Rev. C 89(6), 064601 (2014)
CrossRef
ADS
Google scholar
|
[222] |
H. Yao and N. Wang, Microscopic dynamics simulations of multinucleon transfer in 86Kr+64Ni at 25 MeV/nucleon, Phys. Rev. C 95(1), 014607 (2017)
CrossRef
ADS
Google scholar
|
[223] |
Y. Y. Jiang, N. Wang, Z. X. Li, and W. Scheid, Dynamical nucleus–nucleus potential at short distances, Phys. Rev. C 81(4), 044602 (2010)
CrossRef
ADS
Google scholar
|
[224] |
N. Wang, K. Zhao, and Z. X. Li, Systematic study of 16O-induced fusion with the improved quantum molecular dynamics model, Phys. Rev. C 90(5), 054610 (2014)
CrossRef
ADS
Google scholar
|
[225] |
J. Tian, X. Wu, K. Zhao, Y. Zhang, and Z. Li, Properties of the composite systems formed in the reactions of 238U+238U and 232Th+250Cf, Phys. Rev. C 77(6), 064603 (2008)
CrossRef
ADS
Google scholar
|
[226] |
K. Zhao, X. Wu, and Z. Li, Quantum molecular dynamics study of the mass distribution of products in 7.0AMeV 238U+238U collisions, Phys. Rev. C 80(5), 054607 (2009)
CrossRef
ADS
Google scholar
|
[227] |
Y. X. Zhang, M. B. Tsang, Z. X. Li, and H. Liu, Constraints on nucleon effective mass splitting with heavy ion collisions, Phys. Lett. B 732, 186 (2014)
CrossRef
ADS
Google scholar
|
[228] |
J. J. Cugnon, D. L’Hôte, and J. Vandermeulen, Simple parametrization of cross-sections for nuclear transport studies up to the GeV range, Nucl. Instrum. Methods B 111(3–4), 215 (1996)
CrossRef
ADS
Google scholar
|
[229] |
A. Ono, J. Xu, M. Colonna, P. Danielewicz, C. M. Ko,
CrossRef
ADS
Google scholar
|
[230] |
N. Wang and T. Li, Shell and isospin effects in nuclear charge radii, Phys. Rev. C 88, 011301(R) (2013)
CrossRef
ADS
Google scholar
|
[231] |
A. Trzcińska, J. Jastrzebski, P. Lubiński, F. J. Hartmann, R. Schmidt, T. von Egidy, and B. Kłos, Neutron density distributions deduced from antiprotonic atoms, Phys. Rev. Lett. 87(8), 082501 (2001)
CrossRef
ADS
Google scholar
|
[232] |
J. Bartel, P. Quentin, M. Brack, C. Guet, and H. B. Håkansson, Towards a better parametrisation of Skyrmelike effective forces: A critical study of the SkM force, Nucl. Phys. A 386 (1), 79 (1982)
CrossRef
ADS
Google scholar
|
[233] |
K. Wen, F. Sakata, Z. X. Li, X. Z. Wu, Y. X. Zhang, and S. G. Zhou, Non-Gaussian fluctuations and non- Markovian effects in the nuclear fusion process: Langevin dynamics emerging from quantum molecular dynamics simulations, Phys. Rev. Lett. 111(1), 012501 (2013)
CrossRef
ADS
Google scholar
|
[234] |
R. Nebauer, J. Aichelin, M. Assenard, G. Auger, C. O. Bacri,
CrossRef
ADS
Google scholar
|
[235] |
T. X. Liu, M. J. van Goethem, X. D. Liu, W. G. Lynch, R. Shomin,
CrossRef
ADS
Google scholar
|
[236] |
P. Russotto, E. De Filippo, A. Pagano, E. Piasecki, F. Amorini,
|
[237] |
Z. Kohley, L. W. May, S. Wuenschel, M. Colonna, M. Di Toro,
CrossRef
ADS
Google scholar
|
[238] |
S. Hudan, A. Chbihi, J. D. Frankland, A. Mignon, J. P. Wieleczko,
|
[239] |
C. O. Dorso and J. Randrup, Early recognition of clusters in molecular dynamics, Phys. Lett. B 301(4), 328 (1993)
CrossRef
ADS
Google scholar
|
[240] |
R. K. Puri and J. Aichelin, Simulated annealing clusterization algorithm for studying the multifragmentation, J. Comput. Phys. 162(1), 245 (2000)
CrossRef
ADS
Google scholar
|
[241] |
P. B. Gossiaux, R. K. Puri, C. Hartnack, and J. Aichelin, The multifragmentation of spectator matter, Nucl. Phys. A 619(3–4), 379 (1997)
CrossRef
ADS
Google scholar
|
[242] |
S. Goyal and R. K. Puri, Formation of fragments in heavy-ion collisions using a modified clusterization method, Phys. Rev. C 83(4), 047601 (2011)
CrossRef
ADS
Google scholar
|
[243] |
M. Bleicher, E. Zabrodin, C. Spieles, S. A. Bass, C. Ernst, S. Soff, L. Bravina, M. Belkacem, H. Weber, H. Stöcker, and W. Greiner, Relativistic hadron–hadron collisions inthe ultra-relativistic quantum molecular dynamics model, J. Phys. G 25(9), 1859 (1999)
CrossRef
ADS
Google scholar
|
[244] |
Q. Li, G. Graf, and M. Bleicher, Ultrarelativistic quantum molecular dynamics calculations of two-pion Hanbury–Brown–Twiss correlations in central Pb–Pb collisions at s N N= 2.76 TeV, Phys. Rev. C 85(3), 034908 (2012)
CrossRef
ADS
Google scholar
|
[245] |
|
[246] |
Q. Li, M. Bleicher, and H. Stöcker, The effect of “preformed” hadron potentials on the dynamics of heavy ion collisions and the HBT puzzle, Phys. Lett. B 659(3), 525 (2008)
CrossRef
ADS
Google scholar
|
[247] |
H. Petersen, J. Steinheimer, G. Burau, M. Bleicher, and H. Stocker, Fully integrated transport approach to heavy ion reactions with an intermediate hydrodynamic stage, Phys. Rev. C 78(4), 044901 (2008)
CrossRef
ADS
Google scholar
|
[248] |
Q. Li, J. Steinheimer, H. Petersen, M. Bleicher, and H. Stocker, Effects of a phase transition on HBT correlations in an integrated Boltzmann+hydrodynamics approach, Phys. Lett. B 674(2), 111 (2009)
CrossRef
ADS
Google scholar
|
[249] |
P. Russotto, S. Gannon, S. Kupny, P. Lasko, L. Acosta,
|
[250] |
C. Guo, Y. Wang, Q. Li, and F. S. Zhang, Effect of the spin–orbit interaction on flows in heavy-ion collisions at intermediate energies, Phys. Rev. C 90(3), 034606 (2014)
CrossRef
ADS
Google scholar
|
[251] |
Y. Sun, Y. Wang, Q. Li, and F. Wang, Effect of internal magnetic field on collective flow in heavy ion collisions at intermediate energies, Phys. Rev. C 99(6), 064607 (2019)
CrossRef
ADS
Google scholar
|
[252] |
Y. Liu, Y. Wang, Q. Li, and L. Liu, Collective flows of pions in Au+Au collisions at energies 1.0 and 1.5 GeV/nucleon, Phys. Rev. C 97, 034602 (2018)
CrossRef
ADS
Google scholar
|
[253] |
Y. Du, Y. Wang, Q. Li, and L. Liu, The effect of Lorentzlike force on collective flows of K+ in Au+Au collisions at 1.5 GeV/nucleon, Sci. China Phys. Mech. Astron. 61(6), 062011 (2018)
CrossRef
ADS
Google scholar
|
[254] |
Y. Wang, Q. Li, Y. Leifels, and A. Le Fevre, Study of the nuclear symmetry energy from the rapidity-dependent elliptic flow in heavy-ion collisions around 1 GeV/nucleon regime, Phys. Lett. B 802, 135249 (2020)
CrossRef
ADS
Google scholar
|
[255] |
Y. Wang, C. Guo, Q. Li, H. Zhang, Z. Li, and W. Trautmann, Collective flow of light particles in Au+Au collisions at intermediate energies, Phys. Rev. C 89(3), 034606 (2014)
CrossRef
ADS
Google scholar
|
[256] |
P. C. Li, Y. J. Wang, Q. F. Li, and H. F. Zhang, Effects of the in-medium nucleon–nucleon cross section on collective flow and nuclear stopping in heavy-ion collisions in the Fermi-energy domain, Phys. Rev. C 97(4), 044620 (2018)
CrossRef
ADS
Google scholar
|
[257] |
X. Wu, J. Tian, W. Ning, Z. Kai, and Z. Li, Microscopic study on dynamic barrier in fusion reactions, Chin. Phys. C 12, 1317 (2004)
|
[258] |
V. Yu. Denisov and W. Nörenberg, Entrance channel potentials in the synthesis of the heaviest nuclei, Eur. Phys. J. A 15(3), 375 (2002)
CrossRef
ADS
Google scholar
|
[259] |
V. Zanganeh, N. Wang, and O. N. Ghodsi, Dynamical nucleus–nucleus potential and incompressibility of nuclear matter, Phys. Rev. C 85(3), 034601 (2012)
CrossRef
ADS
Google scholar
|
[260] |
E. F. Aguilera, J. J. Kolata, and R. J. Tighe, Nuclear structure effects in the sub-barrier fusion of 16O+70,72,73,74,76Ge, Phys. Rev. C 52(6), 3103 (1995)
CrossRef
ADS
Google scholar
|
[261] |
T. Kurtukian-Nieto, J. Benlliure, K. H. Schmidt, L. Audouin, F. Becker,
CrossRef
ADS
Google scholar
|
[262] |
K. D. Hildenbrand, H. Freiesleben, F. Pühlhofer, W. F. W. Schneider, R. Bock, D. Harrach, and H. J. Specht, Reaction between 238U and 238U at 7.42 MeV/nucleon, Phys. Rev. Lett. 39(17), 1065 (1977)
CrossRef
ADS
Google scholar
|
[263] |
M. Schädel, J. V. Kratz, H. Ahrens, W. Brächle, G. Franz, H. Gäggeler, I. Warnecke, G. Wirth, G. Herrmann, N. Trautmann, and M. Weis, Isotope distributions in the reaction of 238U with 238U, Phys. Rev. Lett. 41(7), 469 (1978)
CrossRef
ADS
Google scholar
|
[264] |
H. Essel, K. Hartel, W. Henning, P. Kienle,
CrossRef
ADS
Google scholar
|
[265] |
H. Freiesleben, K. D. Hildenbrand, F. Pühlhofer, W. F. W. Schneider, R. Bock, D. Harrach, and H. J. Specht, The reaction 238U+238U at 7.42 MeV/u, Z. Phys. A At. Nucl. 292(2), 171 (1979)
|
[266] |
M. Schädel, W. Brüchle, H. Güggeler, J. V. Kratz, K. Sümmerer,
CrossRef
ADS
Google scholar
|
[267] |
K. J. Moody, D. Lee, R. B. Welch, K. E. Gregorich, G. T. Seaborg, R. W. Lougheed, and E. K. Hulet, Actinide production in reactions of heavy ions with 248Cm, Phys. Rev. C 33(4), 1315 (1986)
CrossRef
ADS
Google scholar
|
[268] |
J. V. Kratz, M. Schädel, and H. W. Gäggeler, Reexamining the heavy-ion reactions 238U+238U and 238U+248Cm and actinide production close to the barrier, Phys. Rev. C 88(5), 054615 (2013)
CrossRef
ADS
Google scholar
|
[269] |
C. Golabek, A. C. C. Villari, S. Heinz, W. Mittig, S. Bhattacharyya,
CrossRef
ADS
Google scholar
|
[270] |
T. Mijatović, S. Szilner, L. Corradi, D. Montanari, G. Pollarolo,
CrossRef
ADS
Google scholar
|
[271] |
J. S. Barrett, W. Loveland, R. Yanez, S. Zhu, A. D. Ayangeakaa,
CrossRef
ADS
Google scholar
|
[272] |
W. Loveland, Synthesis of transactinide nuclei using radioactive beams, Phys. Rev. C 76(1), 014612 (2007)
CrossRef
ADS
Google scholar
|
[273] |
R. Yanez and W. Loveland, Predicting the production of neutron-rich heavy nuclei in multinucleon transfer reactions using a semi-classical model including evaporation and fission competition, GRAZING-F, Phys. Rev. C 91(4), 044608 (2015)
CrossRef
ADS
Google scholar
|
[274] |
C. Golabek and C. Simenel, Collision dynamics of two 238U atomic nuclei, Phys. Rev. Lett. 103(4), 042701 (2009)
CrossRef
ADS
Google scholar
|
[275] |
D. J. Kedziora and C. Simenel, New inverse quasifission mechanism to produce neutron-rich transfermium nuclei, Phys. Rev. C 81(4), 044613 (2010)
CrossRef
ADS
Google scholar
|
[276] |
N. Wang, Z. Li, X. Wu, and E. Zhao, Search for possible way of producing super-heavy elements: Dynamic study on damped reactions of 244Pu+244Pu, 238U+238U and 197Au+197Au, Mod. Phys. Lett. A 20(34), 2619 (2005)
CrossRef
ADS
Google scholar
|
[277] |
K. Zhao, Z. Li, X. Wu, and Y. Zhang, Production probability of superheavy fragments at various initial deformations and orientations in the 238U+238U reaction, Phys. Rev. C 88(4), 044605 (2013)
CrossRef
ADS
Google scholar
|
[278] |
K. Zhao, Z. Li, N. Wang, Y. Zhang, Q. Li, Y. Wang, and X. Wu, Production mechanism of neutron-rich transuranium nuclei in 238U+238U collisions at near-barrier energies, Phys. Rev. C 92(2), 024613 (2015)
CrossRef
ADS
Google scholar
|
[279] |
K. Zhao, Z. Li, Y. Zhang, N. Wang, Q. Li, C. Shen, Y. Wang, and X. Wu, Production of unknown neutron-rich isotopes in 238U+238U collisions at near-barrier energy, Phys. Rev. C 94(2), 024601 (2016)
CrossRef
ADS
Google scholar
|
[280] |
S. Ayik, B. Yilmaz, O. Yilmaz, A. S. Umar, and G. Turan, Multinucleon transfer in central collisions of 238U+238U, Phys. Rev. C 96(2), 024611 (2017)
CrossRef
ADS
Google scholar
|
[281] |
K. Sekizawa, and K. Yabana, Time-dependent Hartree- Fock calculations for multinucleon transfer processes in 40,48Ca+124Sn, 40Ca+208Pb, and 58Ni+208Pb reactions, Phys. Rev. C 88(1), 014614 (2013)
CrossRef
ADS
Google scholar
|
[282] |
A. Ghiorso, D. Lee, L. P. Somerville, W. Loveland, J. M. Nitschke,
CrossRef
ADS
Google scholar
|
[283] |
Yu. A. Lazarev, Y. V. Lobanov, Y. T. Oganessian, V. K. Utyonkov, F. S. Abdullin,
CrossRef
ADS
Google scholar
|
[284] |
V. Ninov, K. E. Gregorich, W. Loveland, A. Ghiorso, D. C. Hoffman,
|
[285] |
Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. S. Abdullin, A. N. Polyakov,
|
[286] |
Yu. Ts. Oganessian,
|
[287] |
Yu. Ts. Oganessian, V. K. Utyonkoy, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov,
CrossRef
ADS
Google scholar
|
[288] |
Yu. Ts. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov,
|
[289] |
Yu. Ts. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov,
|
[290] |
Yu. Ts. Oganessian, V. K. Utyonkov, S. N. Dmitriev, Y. V. Lobanov, M. G. Itkis,
|
[291] |
P. A. Ellison, K. E. Gregorich, J. S. Berryman, D. L. Bleuel, R. M. Clark,
CrossRef
ADS
Google scholar
|
[292] |
Yu. Ts. Oganessian, F. Sh. Abdullin, S. N. Dmitriev, J. M. Gostic, J. H. Hamilton,
CrossRef
ADS
Google scholar
|
[293] |
Yu. Ts. Oganessian, F. Sh. Abdullin, C. Alexander, J. Binder, R. A. Boll,
CrossRef
ADS
Google scholar
|
[294] |
W. Reisdorf, F. P. Hessberger, K. D. Hildenbrand, S. Hofmann, G. Münzenberg,
CrossRef
ADS
Google scholar
|
[295] |
R. Charity, M. A. McMahan, G. J. Wozniak, R. J. Mc-Donald, L. G. Moretto,
CrossRef
ADS
Google scholar
|
[296] |
N. Wang, T. Wu, J. Zeng, Y. X. Yang, and L. Ou, Improvement on fermionic properties and new isotope production in molecular dynamics simulations, J. Phys. G 43(6), 065101 (2016)
CrossRef
ADS
Google scholar
|
[297] |
N. Wang and L. Guo, New neutron-rich isotope production in 154Sm+160Gd, Phys. Lett. B 760, 236 (2016)
CrossRef
ADS
Google scholar
|
[298] |
G. Audi, F. G. Kondev, M. Wang, B. Pfeiffer, X. Sun, J. Blachot, and M. MacCormick, The Nubase2012 evaluation of nuclear properties, Chin. Phys. C 36(12), 1157 (2012)
CrossRef
ADS
Google scholar
|
[299] |
I. Skwira-Chalot, K. Siwek-Wilczynska, J. Wilczynski, F. Amorini, A. Anzalone,
CrossRef
ADS
Google scholar
|
[300] |
I. Skwira-Chalot, K. Siwek-Wilczynska, J. Wilczynski, F. Amorini, A. Anzalone,
CrossRef
ADS
Google scholar
|
[301] |
I. Skwira-Chalot, K. Siwek-Wilczynska, J. Wilczynski, F. Amorini, A. Anzalone,
|
[302] |
J. Wilczynski, I. Skwira-Chalot, K. Siwek-Wilczynska, J. Wilczynski,
|
[303] |
J. L. Tian, X. Z. Wu, Z. X. Li, K. Zhao, Y. Zhang, X. Li, and S. Yan, Mechanism of ternary breakup in the reaction 197Au+197Au at 15AMeV, Phys. Rev. C 82(5), 054608 (2010)
CrossRef
ADS
Google scholar
|
[304] |
X. Li, J. L. Tian, S. W. Yan, J. X. Cheng, and X. Jiang, Angular distributions of fragments produced in ternary reaction of 197Au+197Au at 15AMeV, Mod. Phys. Lett. A 26(06), 449 (2011)
CrossRef
ADS
Google scholar
|
[305] |
Y. Zhang, C. Zhou, J. Chen, N. Wang, K. Zhao, and Z. X. Li, Correlation between the fragmentation modes and light charged particles emission in heavy ion collisions, Sci. China Phys. Astro. Mech. 58(11), 112002 (2015)
CrossRef
ADS
Google scholar
|
[306] |
J. B. Natowitz, R. Wada, K. Hagel, T. Keutgen, M. Murray, A. Makeev, L. Qin, P. Smith, and C. Hamilton, Caloric curves and critical behavior in nuclei, Phys. Rev. C 65(3), 034618 (2002)
CrossRef
ADS
Google scholar
|
[307] |
M. D’Agostino, M. Bruno, F. Gulminelli, R. Bougault, F. Cannata, P. Chomaz, F. Gramegna, N. Le Neidre, A. Moroni, and G. Vannini, Experimental signals of phase transition, Nucl. Phys. A 734, 512 (2004)
CrossRef
ADS
Google scholar
|
[308] |
J. Richert and P. Wagner, Microscopic model approaches to fragmentation of nuclei and phase transitions in nuclear matter, Phys. Rep. 350(1), 1 (2001)
CrossRef
ADS
Google scholar
|
[309] |
P. Chomaz, M. Colonna, and J. Randrup, Nuclear spinodal fragmentation, Phys. Rep. 389(5–6), 263 (2004)
CrossRef
ADS
Google scholar
|
[310] |
A. M. Poskanzer, G. W. Butler, and E. K. Hyde, Fragment production in the interaction of 5.5 GeV protons with uranium, Phys. Rev. C 3(2), 882 (1971)
CrossRef
ADS
Google scholar
|
[311] |
G. D. Westfall, R. G. Sextro, A. M. Poskanzer, A. M. Zebelman, G. W. Butler, and E. K. Hyde, Energy spectra of nuclear fragments produced by high energy protons, Phys. Rev. C 17(4), l368 (1978)
CrossRef
ADS
Google scholar
|
[312] |
J. Pochodzalla, T. Möhlenkamp, T. Rubehn, A. Schüttauf, A. Wörner,
CrossRef
ADS
Google scholar
|
[313] |
M. Baldo, G. F. Burgio, and A. Rapisarda, Dynamics of fragment formation in the nuclear spinodal region, Phys. Rev. C 51(1), 198 (1995)
CrossRef
ADS
Google scholar
|
[314] |
S. K. Nayak, R. Ramaswamy, and C. Chakravarty, Maximal Lyapunov exponent in small atomic clusters, Phys. Rev. E 51(4), 3376 (1995)
CrossRef
ADS
Google scholar
|
[315] |
Y. Zhang, X. Wu, and Z. Li, Connection between the largest Lyapunov exponent, density fluctuation, and multifragmentation in excited nuclear systems, Phys. Rev. C 69(4), 044609 (2004)
CrossRef
ADS
Google scholar
|
[316] |
J. P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Mod. Phys. 57(3), 617 (1985)
CrossRef
ADS
Google scholar
|
[317] |
Y. Gu, Evidences of classical and quantum chaos in the time evolution of nonequilibrium ensembles, Phys. Lett. A 149(2–3), 95 (1990)
CrossRef
ADS
Google scholar
|
[318] |
J. Łukasik, G. Auger, M. L. Begemann-Blaich, N. Bellaize, R. Bittiger,
CrossRef
ADS
Google scholar
|
[319] |
C. Pinkenburg,
|
[320] |
P. Chung,
CrossRef
ADS
Google scholar
|
[321] |
C. Alt,
|
[322] |
A. Andronic,
|
[323] |
Y. J. Wang, C. C. Guo, Q. F. Li, H. F. Zhang, Y. Leifels, and W. Trautmann, Constraining the high-density nuclear symmetry energy with the transverse-momentumdependent elliptic flow, Phys. Rev. C 89(4), 044603 (2014)
CrossRef
ADS
Google scholar
|
[324] |
Y. J. Wang, C. C. Guo, Q. F. Li, Z. X. Li, J. Su, and H. F. Zhang, Influence of differential elastic nucleon–nucleon cross section on stopping and collective flow in heavy-ion collisions at intermediate energies, Phys. Rev. C 94(2), 024608 (2016)
CrossRef
ADS
Google scholar
|
[325] |
P. C. Li, Y. J. Wang, Q. F. Li, and H. F. Zhang, Collective flow and nuclear stopping in heavy ion collisions in Fermi energy domain, Nucl. Sci. Tech. 29(12), 177 (2018)
CrossRef
ADS
Google scholar
|
[326] |
Y. J. Wang, C. C. Guo, Q. F. Li, A. Le F’evre, Y. Leifels, and W. Trautmann, Determination of the nuclear incompressibility from the rapidity-dependent elliptic flow in heavy-ion collisions at beam energies 0.4A–1.0AGeV, Phys. Lett. B 778, 207 (2018)
CrossRef
ADS
Google scholar
|
[327] |
W. Gudowski, Accelerator-driven transmutation projects. The importance of nuclear physics research for waste transmutation, Nucl. Phys. A 654(1–2), c436 (1999)
CrossRef
ADS
Google scholar
|
[328] |
M. Casolino, V. Bidoli, A. Morselli, L. Narici, M. P. De Pascale,
CrossRef
ADS
Google scholar
|
[329] |
B. Larsson, PhD thesis, Uppsala University, 1962
|
[330] |
J. H. Trainor, Instrument and spacecraft faults associated with nuclear radiation in space, Adv. Space Res. 14(10), 685 (1994)
CrossRef
ADS
Google scholar
|
[331] |
M. S. Smith and K. E. Rehm, Nuclear astrophysics measurements with radioactive beams, Annu. Rev. Nucl. Part. Sci. 51(1), 91 (2001)
CrossRef
ADS
Google scholar
|
[332] |
G. S. Bauer, Proceedings of the 2nd International Conference on Accelerator Driven Transmutation Technologies, p.159, Kalmar, Uppsala University, 1996
|
[333] |
Tech. Rep. No. DOE/Er-0705, Department of Energy, 1997
|
[334] |
J. M. Carpenter, Pulsed spallation neutron sources for slow neutron scattering, Nucl. Instrum. Methods 145(1), 91 (1977)
CrossRef
ADS
Google scholar
|
[335] |
C. D. Bowman, E. D. Arthur, P. W. Lisowski, G. P. Lawrence, R. J. Jensen,
CrossRef
ADS
Google scholar
|
[336] |
T. Takizuka, Proceedings of the International Conference on Accelerator-driven Transmutation Technologies and Application, p. 64, AIP Press, Woodbury, NY, 1995
|
[337] |
F. Rejmund, B. Mustapha, P. Armbruster, J. Benlliure, M. Bernas,
CrossRef
ADS
Google scholar
|
[338] |
B. Fernández-Dominguez, P. Armbruster, L. Audouin, J. Benlliure, M. Bernas,
CrossRef
ADS
Google scholar
|
[339] |
L. Audouin, L. Tassan-Got, P. Armbruster, J. Benlliure, M. Bernas,
CrossRef
ADS
Google scholar
|
[340] |
J. Benlliure, P. Armbruster, M. Bernas, A. Boudard, J. P. Dufour,
CrossRef
ADS
Google scholar
|
[341] |
H. Iwase, K. Niita, and T. Nakamura, Development of general-purpose particle and heavy ion transport Monte Carlo code, J. Nucl. Sci. Technol. 39(11), 1142 (2002)
CrossRef
ADS
Google scholar
|
[342] |
Y. Nara, N. Otuka, A. Ohnishi, K. Niita, and S. Chiba, Relativistic nuclear collisions at 10AGeV energies from p+Be to Au+Au with the hadronic cascade model, Phys. Rev. C 61(2), 024901 (2000)
CrossRef
ADS
Google scholar
|
[343] |
K. Niita, S. Chiba, T. Maruyama, T. Maruyama, H. Takada, T. Fukahori, Y. Nakahara, and A. Iwamoto, Analysis of the (N,xN′) reactions by quantum molecular dynamics plus statistical decay model, Phys. Rev. C 52(5), 2620 (1995)
CrossRef
ADS
Google scholar
|
[344] |
A. Boudard, J. Cugnon, S. Leray, and C. Volant, Intranuclear cascade model for a comprehensive description of spallation reaction data, Phys. Rev. C 66(4), 044615 (2002)
CrossRef
ADS
Google scholar
|
[345] |
L. Ou, Z. Li, X. Wu, J. Tian, and W. Sun, A study of proton-induced spallation reactions by the improved quantum molecular dynamics model plus statistical decay models, J. Phys. G 36(12), 125104 (2009)
CrossRef
ADS
Google scholar
|
[346] |
L. Ou, Y. Zhang, J. Tian, and Z. Li, Analysis of intermediate energy proton-induced spallation reactions by an improved quantum molecular dynamics plus statistical decay model, J. Phys. G 34(5), 827 (2007)
CrossRef
ADS
Google scholar
|
[347] |
L. Ou, Y. Zhang, and Z. Li, Mechanism of proton-induced reactions on targets 16O, 27Al, 56Fe, 112Cd, 184W and 208Pb at Ep= 800 MeV, Chin. Phys. Lett. 24 (1), 72 (2007)
CrossRef
ADS
Google scholar
|
[348] |
D. Wei, L. Mao, N. Wang, M. Liu, and L. Ou, Further study on mechanism of production of light complex particles in nucleon-induced reactions, Nucl. Phys. A 933, 114 (2015)
CrossRef
ADS
Google scholar
|
[349] |
D. Wei, N. Wang, and L. Ou, Mechanism of the production of light complex particles in nucleon-induced reactions, J. Phys. G 41(3), 035104 (2014)
CrossRef
ADS
Google scholar
|
[350] |
M. M. Meier, W. B. Amian, C. A. Goulding, G. L. Morgan, and C. E. Moss, Differential neutron production cross sections for 256-MeV protons, Nucl. Sci. Eng. 110(3), 289 (1992)
CrossRef
ADS
Google scholar
|
[351] |
Y. V. Trebukhovsky, Y. E. Titarenko,
|
[352] |
Y. V. Trebukhovsky, Y. E. Titarenko, V. F. Batyaev, R. D. Mulambetov, S. V. Mulambetova,
CrossRef
ADS
Google scholar
|
[353] |
R. E. Chrien, T. J. Krieger, R. J. Sutter, M. May, H. Palevsky, R. L. Stearns, T. Kozlowski, and T. Bauer, Proton spectra from 800 MeV protons on selected nuclides, Phys. Rev. C 21 (3), 1014 (1980)
CrossRef
ADS
Google scholar
|
[354] |
C. Villagrasa-Canton, A. Boudard, J. E. Ducret, B. Fernandez, S. Leray,
CrossRef
ADS
Google scholar
|
[355] |
H. Machner, D. G. Aschman, K. Baruth-Ram, J. Carter, A. A. Cowley,
CrossRef
ADS
Google scholar
|
[356] |
Y. Uozumi, P. Evtoukhovitch, H. Fukuda, M. Imamura, H. Iwamoto,
CrossRef
ADS
Google scholar
|
[357] |
A. Bohnet, N. Ohtsuka, J. Aichelin, R. Linden, and A. Faessler, Quantum molecular-dynamics approach to heavy-ion collisions with Brueckner G-matrix cross sections, Nucl. Phys. A 494(2), 349 (1989)
CrossRef
ADS
Google scholar
|
[358] |
H. J. Schulze, A. Schnell, G. Röpke, and U. Lombardo, Nucleon–nucleon cross sections in nuclear matter, Phys. Rev. C 55(6), 3006 (1997)
CrossRef
ADS
Google scholar
|
[359] |
G. Q. Li and R. Machleidt, Microscopic calculation of inmedium nucleon–nucleon cross sections, Phys. Rev. C 48, 1702 (1993)
CrossRef
ADS
Google scholar
|
[360] |
G. Q. Li and R. Machleidt, Microscopic calculation of inmedium proton–proton cross sections, Phys. Rev. C 49, 566 (1994)
CrossRef
ADS
Google scholar
|
[361] |
C. Fuchs, A. Faessler, and M. El-Shabshiry, Off-shell behavior of the in-medium nucleon–nucleon cross section, Phys. Rev. C 64(2), 024003 (2001)
CrossRef
ADS
Google scholar
|
[362] |
Y. H. Cai, H. Q. Song, and U. Lombardo, In-medium nucleon–nucleon cross section, Chin. Phys. Lett. 13(6), 420 (1996)
CrossRef
ADS
Google scholar
|
[363] |
H. F. Zhang, U. Lombardo, and W. Zuo, Transport parameters in neutron stars from in-medium NN cross sections, Phys. Rev. C 82(1), 015805 (2010)
CrossRef
ADS
Google scholar
|
[364] |
S. Huber and J. Aichelin, Production of Δ- and N ∗- resonances in the one-boson exchange model, Nucl. Phys. A 573(4), 587 (1994)
CrossRef
ADS
Google scholar
|
[365] |
R. Machleidt, K. Holinde, and C. Elster, The bonn meson-exchange model for the nucleon–nucleon interaction, Phys. Rep. 149(1), 1 (1987)
CrossRef
ADS
Google scholar
|
[366] |
A. Larionov and U. Mosel, The NN→ NΔ cross section in nuclear matter, Nucl. Phys. A 728(1–2), 135 (2003)
CrossRef
ADS
Google scholar
|
[367] |
G. Mao, Z. Li, Y. Zhuo, Y. Han, and Z. Yu, Study of in-medium NN inelastic cross section from relativistic Boltzmann–Uehling–Uhlenbeck approach, Phys. Rev. C 49(6), 3137 (1994)
CrossRef
ADS
Google scholar
|
[368] |
G. J. Mao, Z. X. Li, Y. Z. Zhuo, and Z. Q. Yu, Medium effects on the NNinelastic cross section in relativistic heavy-ion collisions, Phys. Lett. B 327(3–4), 183 (1994)
CrossRef
ADS
Google scholar
|
[369] |
Q. Li, Z. Li, and G. Mao, Isospin dependence of nucleonnucleon elastic cross section, Phys. Rev. C 62(1), 014606 (2000)
CrossRef
ADS
Google scholar
|
[370] |
G. Mao, Relativistic Microscopic Quantum Transport Equation, NOVA, 2005
|
[371] |
Q. Li and Z. Li, The isospin dependent nucleon–nucleon inelastic cross section in the nuclear medium, Phys. Lett. B 773, 557 (2017)
CrossRef
ADS
Google scholar
|
[372] |
Y. Cui, Y. Zhang, and Z. Li, Effect of energy conservation on the in-medium NN → NΔ cross section in isospinasymmetric nuclear matter, Phys. Rev. C 98(5), 054605 (2018)
CrossRef
ADS
Google scholar
|
[373] |
Q. Pan and P. Danielewicz, From sideward flow to nuclear compressibility, Phys. Rev. Lett. 70, 2062 (1993) [Erratum Phys. Rev. Lett. 70, 3523 (1993)]
CrossRef
ADS
Google scholar
|
[374] |
L. Shi and P. Danielewicz, Nuclear isospin diffusivity, Phys. Rev. C 68(6), 064604 (2003)
CrossRef
ADS
Google scholar
|
[375] |
W. Reisdorf,
|
[376] |
D. Persram and C. Gale, Elliptic flow in intermediate energy heavy ion collisions and in-medium effects, Phys. Rev. C 65(6), 064611 (2002)
CrossRef
ADS
Google scholar
|
[377] |
O. Lopez, D. Durand, G. Lehaut, B. Borderie, J. D. Frankland,
CrossRef
ADS
Google scholar
|
[378] |
Y. X. Zhang, Y. J. Wang, M. Colonna, P. Danielewicz, A. Ono,
CrossRef
ADS
Google scholar
|
[379] |
L. Ou and X. He, In-medium nucleon-nucleon elastic cross-sections determined from the nucleon induced reaction cross-section data, Chin. Phys. C 43(4), 044103 (2019)
CrossRef
ADS
Google scholar
|
[380] |
D. Vretenar, T. Niksic, and P. Ring, Relativistic nuclear energy density functionals, Int. J. Mod. Phys. E 19(04), 548 (2010)
CrossRef
ADS
Google scholar
|
[381] |
P. Ring, Relativistic mean field theory in finite nuclei, Prog. Part. Nucl. Phys. 73, 193 (1996)
CrossRef
ADS
Google scholar
|
[382] |
P. Ring, Covariant density functional theory and applications to finite nuclei, in: G. A. Lalazissis, P. Ring, and D. Vretenar (Eds.), Extended density functionals in nuclear structure physics, Lect. Notes Phys. 641, 175 (2004)
CrossRef
ADS
Google scholar
|
[383] |
R. Brockmann, Relativistic Hartree–Fock description of nuclei, Phys. Rev. C 18(3), 1510 (1978)
CrossRef
ADS
Google scholar
|
[384] |
C. J. Horowitz and B. D. Serot, Properties of nuclear and neutron matter in a relativistic Hartree–Fock theory, Nucl. Phys. A 399(2), 529 (1983)
CrossRef
ADS
Google scholar
|
[385] |
A. Bouyssy, J. F. Mathiot, N. Van Giai, and S. Marcos, Relativistic description of nuclear systems in the Hartree– Fock approximation, Phys. Rev. C 36(1), 380 (1987)
CrossRef
ADS
Google scholar
|
[386] |
W. H. Long, N. V. Giai, and J. Meng, Density-dependent relativistic Hartree–Fock approach, Phys. Lett. B 640(4), 150 (2006)
CrossRef
ADS
Google scholar
|
[387] |
T. Nikšić, D. Vretenar, and P. Ring, Relativistic nuclear energy density functionals: Adjusting parameters to binding energies, Phys. Rev. C 78(3), 034318 (2008)
CrossRef
ADS
Google scholar
|
[388] |
G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring, New relativistic mean-field interaction with density-dependent meson-nucleon couplings, Phys. Rev. C 71(2), 024312 (2005)
CrossRef
ADS
Google scholar
|
[389] |
P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, New parametrization for the nuclear covariant energy density functional with a point-coupling interaction, Phys. Rev. C 82(5), 054319 (2010)
CrossRef
ADS
Google scholar
|
[390] |
T. H. R. Skyrme, CVII. The nuclear surface, Philos. Mag. 1(11), 1043 (1956)
CrossRef
ADS
Google scholar
|
[391] |
D. Vautherin and D. M. Brink, Hartree–Fock calculations with Skyrme’s interaction (I): Spherical nuclei, Phys. Rev. C 5(3), 626 (1972)
CrossRef
ADS
Google scholar
|
[392] |
E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, A Skyrme parametrization from subnuclear to neutron star densities, Nucl. Phys. A 627(4), 710 (1997)
CrossRef
ADS
Google scholar
|
[393] |
J. Dechargé and D. Gogny, Hartree–Fock–Bogolyubov calculations with the D1 effective interaction on spherical nuclei, Phys. Rev. C 21(4), 1568 (1980)
CrossRef
ADS
Google scholar
|
[394] |
M. Kleban, B. Nerlo-Pomorska, J. F. Berger, J. Decharge, M. Girod, and S. Hilaire, Global properties of spherical nuclei obtained from Hartree–Fock–Bogoliubov calculations with the Gogny force, Phys. Rev. C 65(2), 024309 (2002)
CrossRef
ADS
Google scholar
|
[395] |
B. Cochet, K. Bennaceur, J. Meyer, P. Bonche, and T. Duguet, Skyrme forces with extended density dependence, Int. J. Mod. Phys. E 13(01), 187 (2004)
CrossRef
ADS
Google scholar
|
[396] |
P. G. Reinhard and M. Bender, Mean field: Relativistic versus non-relativistic, in: G. A. Lalazissis, P. Ring, and D. Vretenar (Eds.), Extended density functionals in nuclear structure physics, Lect. Notes Phys. 641, 249 (2004)
CrossRef
ADS
Google scholar
|
[397] |
B. D. Serot and J. D. Walecka, Recent progress in quantum hadrodynamics, Int. J. Mod. Phys. E 6(04), 515 (1997)
CrossRef
ADS
Google scholar
|
[398] |
R. J. Furnstahl, Next generation relativistic models, in: A. Lalazissis, P. Ring, and D. Vretenar (Eds.), Extended density functionals in nuclear structure physics, Lect. Notes Phys. 641, 1 (2004)
CrossRef
ADS
Google scholar
|
[399] |
M. Lutz, B. Friman, and Ch. Appel, Saturation from nuclear pion dynamics, Phys. Lett. B 474(1–2), 7 (2000)
CrossRef
ADS
Google scholar
|
[400] |
P. Finelli, N. Kaiser, D. Vretenar, and W. Weise, Nuclear many-body dynamics constrained by QCD and chiral symmetry, Eur. Phys. J. A 17(4), 573 (2003)
CrossRef
ADS
Google scholar
|
[401] |
P. Finelli, N. Kaiser, D. Vretenar, and W. Weise, Relativistic nuclear model with point-couplings constrained by QCD and chiral symmetry, Nucl. Phys. A 735(3–4), 449 (2004)
CrossRef
ADS
Google scholar
|
[402] |
D. Vretenar and W. Weise, Exploring the nucleus in the context of low-energy QCD, in: G. A. Lalazissis, P. Ring, and D. Vretenar (Eds.), Extended density functionals in nuclear structure physics, Lect. Notes Phys. 641, 65 (2004)
CrossRef
ADS
Google scholar
|
[403] |
J. Dobaczewski, Ab initioderivation of model energy density functionals, J. Phys. G 43(4), 04LT01 (2016)
CrossRef
ADS
Google scholar
|
[404] |
J. Bonnard, M. Grasso, and D. Lacroix, Energy-density functionals inspired by effective-field theories: Applications to neutron drops, Phys. Rev. C 98(3), 034319 (2018)
CrossRef
ADS
Google scholar
|
[405] |
V. R. Pandharipande and R. B. Wiringa, Variations on a theme of nuclear matter, Rev. Mod. Phys. 51(4), 821 (1979)
CrossRef
ADS
Google scholar
|
[406] |
A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Equation of state of nucleon matter and neutron star structure, Phys. Rev. C 58 (3), 1804 (1998)
CrossRef
ADS
Google scholar
|
[407] |
K. A. Brueckner and J. L. Gammel, Properties of nuclear matter, Phys. Rev. 109(4), 1023 (1958)
CrossRef
ADS
Google scholar
|
[408] |
M. Jaminon and C. Mahaux, Effective masses in relativistic approaches to the nucleon–nucleus mean field, Phys. Rev. C 40(1), 354 (1989)
CrossRef
ADS
Google scholar
|
[409] |
W. Zuo, A. Lejeune, U. Lombardo, and J. F. Mathiot, Interplay of three-body interactions in the EOS of nuclear matter, Nucl. Phys. A 706(3–4), 418 (2002)
CrossRef
ADS
Google scholar
|
[410] |
X. R. Zhou, G. F. Burgio, U. Lombardo, H. J. Schulze, and W. Zuo, Three-body forces and neutron star structure, Phys. Rev. C 69(1), 018801 (2004)
CrossRef
ADS
Google scholar
|
[411] |
B. Haar and R. Malfliet, Nucleons, mesons and deltas in nuclear matter a relativistic Dirac–Brueckner approach, Phys. Rep. 149(4), 207 (1987)
CrossRef
ADS
Google scholar
|
[412] |
R. Brockmann and R. Machleidt, Relativistic nuclear structure (I): Nuclear matter, Phys. Rev. C 42(5), 1965 (1990)
CrossRef
ADS
Google scholar
|
[413] |
F. de Jong and H. Lenske, Relativistic Brueckner–Hartree–Fock calculations with explicit intermediate negative energy states, Phys. Rev. C 58(2), 890 (1998)
CrossRef
ADS
Google scholar
|
[414] |
T. Gross-Boelting, C. Fuchs, and A. Faessler, Covariant representations of the relativistic Brueckner T-matrix and the nuclear matter problem, Nucl. Phys. A 648(1–2), 105 (1999)
CrossRef
ADS
Google scholar
|
[415] |
E. Schiller and H. Müther, Correlations and the Dirac structure of the nucleon self-energy, Eur. Phys. J. A 11(1), 15 (2001)
CrossRef
ADS
Google scholar
|
[416] |
C. Fuchs, The Relativistic Dirac-Brueckner Approach to Nuclear Matter, in: G. A. Lalazissis, P. Ring, and D. Vretenar (Eds.), Extended density functionals in nuclear structure physics, Lect. Notes Phys. 641, 119 (2004)
CrossRef
ADS
Google scholar
|
[417] |
E. van Dalen, C. Fuchs, and A. Faessler, The relativistic Dirac–Brueckner approach to asymmetric nuclear matter, Nucl. Phys. A 744, 227 (2004)
CrossRef
ADS
Google scholar
|
[418] |
E. N. E. Dalen, C. Fuchs, and A. Faessler, Momentum, density, and isospin dependence of symmetric and asymmetric nuclear matter properties, Phys. Rev. C 72(6), 065803 (2005)
CrossRef
ADS
Google scholar
|
[419] |
H. Müther and A. Polls, Two-body correlations in nuclear systems, Prog. Part. Nucl. Phys. 45(1), 243 (2000)
CrossRef
ADS
Google scholar
|
[420] |
W. H. Dickhoff and C. Barbieri, Self-consistent Green’s function method for nuclei and nuclear matter, Prog. Part. Nucl. Phys. 52(2), 377 (2004)
CrossRef
ADS
Google scholar
|
[421] |
J. Carlson, J. Morales, V. R. Pandharipande, and D. G. Ravenhall, Quantum Monte Carlo calculations of neutron matter, Phys. Rev. C 68(2), 025802 (2003)
CrossRef
ADS
Google scholar
|
[422] |
B. A. Li, L. W. Chen, G. C. Yong, and W. Zuo, Double neutron/proton ratio of nucleon emissions in isotopic reaction systems as a robust probe of nuclear symmetry energy, Phys. Lett. B 634(4), 378 (2006)
CrossRef
ADS
Google scholar
|
[423] |
M. A. Famiano, T. Liu, W. G. Lynch, M. Mocko, A. M. Rogers,
CrossRef
ADS
Google scholar
|
[424] |
M. B. Tsang, T. X. Liu, L. Shi, P. Danielewicz, C. K. Gelbke,
CrossRef
ADS
Google scholar
|
[425] |
T. X. Liu, W. G. Lynch, M. B. Tsang, X. D. Liu, R. Shomin,
CrossRef
ADS
Google scholar
|
[426] |
Z. Kohley, L. W. May, S. Wuenschel, A. Bonasera, K. Hagel,
CrossRef
ADS
Google scholar
|
[427] |
Y. Zhang, J. Tian, W. Cheng, F. Guan, Y. Huang,
CrossRef
ADS
Google scholar
|
[428] |
P. Russotto, M. D. Cozma, A. Le Fèvre, Y. Leifels, R. Lemmon, Q. Li, J. Łukasik, and W. Trautmann, Flow probe of symmetry energy in relativistic heavy-ion reactions, Eur. Phys. J. A 50(2), 38 (2014)
CrossRef
ADS
Google scholar
|
[429] |
P. Russotto, P. Z. Wu, M. Zoric, M. Chartier, Y. Leifels, R. C. Lemmon, Q. Li, J. Łukasik, A. Pagano, P. Pawłowski, and W. Trautmann, Symmetry energy from elliptic flow in 197Au+197Au, Phys. Lett. B 697(5), 471 (2011)
CrossRef
ADS
Google scholar
|
[430] |
M. B. Tsang, Y. Zhang, P. Danielewicz, M. Famiano, Z. Li, W. G. Lynch, and A. W. Steiner, Constraints on the density dependence of the symmetry energy, Phys. Rev. Lett. 102(12), 122701 (2009)
CrossRef
ADS
Google scholar
|
[431] |
P. Danielewicz and J. Lee, Symmetry energy (I): Semiinfinite matter, Nucl. Phys. A 818(1–2), 36 (2009)
CrossRef
ADS
Google scholar
|
[432] |
C. J. Horowitz and J. Piekarewicz, Neutron star structure and the neutron radius of 208Pb, Phys. Rev. Lett. 86(25), 5647 (2001)
CrossRef
ADS
Google scholar
|
[433] |
J. Piekarewicz, Unmasking the nuclear matter equation of state, Phys. Rev. C 69(4), 041301 (2004)
CrossRef
ADS
Google scholar
|
[434] |
S. Yoshida and H. Sagawa, Isovector nuclear matter properties and neutron skin thickness, Phys. Rev. C 73(4), 044320 (2006)
CrossRef
ADS
Google scholar
|
[435] |
E. Galichet,
CrossRef
ADS
Google scholar
|
[436] |
R. S. Wang, Y. Zhang, Z. G. Xiao, J. L. Tian, Y. X. Zhang,
CrossRef
ADS
Google scholar
|
[437] |
M. B. Tsang, J. R. Stone, F. Camera, P. Danielewicz, S. Gandolfi,
CrossRef
ADS
Google scholar
|
[438] |
J. M. Lattimer and A. W. Steiner, Constraints on the symmetry energy using the mass-radius relation of neutron stars, Eur. Phys. J. A 50(2), 40 (2014)
CrossRef
ADS
Google scholar
|
[439] |
B. A. Li and L. W. Chen, Nucleon–nucleon cross sections in neutron-rich matter and isospin transport in heavy-ion reactions at intermediate energies, Phys. Rev. C 72(6), 064611 (2005)
CrossRef
ADS
Google scholar
|
[440] |
A. Klimkiewicz, N. Paar, P. Adrich, M. Fallot, K. Boretzky,
CrossRef
ADS
Google scholar
|
[441] |
G. Colò and P. Danielewicz, Constraints, limits and extensions for nuclear energy functionals, AIP Conf. Proc. 1128, 59 (2009)
CrossRef
ADS
Google scholar
|
[442] |
L. Trippa, G. Colò, and E. Vigezzi, Giant dipole resonance as a quantitative constraint on the symmetry energy, Phys. Rev. C 77, 061304(R)
CrossRef
ADS
Google scholar
|
[443] |
L. Ou, Z. G. Xiao, H. Yi, N. Wang, M. Liu, and J. Tian, Dynamic isovector reorientation of deuteron as a probe to nuclear symmetry energy, Phys. Rev. Lett. 115(21), 212501 (2015)
CrossRef
ADS
Google scholar
|
[444] |
S. Köhler, Skyrme force and the mass formula, Nucl. Phys. A 258(2), 301 (1976)
CrossRef
ADS
Google scholar
|
[445] |
F. Tondeur, M. Brack, M. Farine, and J. M. Pearson, Static nuclear properties and the parametrisation of Skyrme forces, Nucl. Phys. A 420(2), 297 (1984)
CrossRef
ADS
Google scholar
|
[446] |
J. Margueron, J. Navarro, and N. Van Giai, Instabilities of infinite matter with effective Skyrme-type interactions, Phys. Rev. C 66(1), 014303 (2002)
CrossRef
ADS
Google scholar
|
[447] |
Q. Wu, Y. Zhang, Z. Xiao, R. Wang, Y. Zhang, Z. Li, N. Wang, and R. H. Showalter, Competition between Coulomb and symmetry potential in semi-peripheral heavy ion collisions, Phys. Rev. C 91(1), 014617 (2015)
CrossRef
ADS
Google scholar
|
[448] |
T. Gaitanos, M. Di Toro, G. Ferini, M. Colonna, and H. H. Wolter, Isospin effects in intermediate energy heavy ion collisions, arXiv: nucl-th/0402041 (2004)
|
[449] |
S. A. Bass, C. Hartnack, H. Stöcker, and W. Greiner, High p t pions as probes of the dense phase of relativistic heavy ion collisions, Phys. Rev. C 50(4), 2167 (1994)
CrossRef
ADS
Google scholar
|
[450] |
Z. Xiao, B. A. Li, L. W. Chen, G. C. Yong, and M. Zhang, Circumstantial evidence for a soft nuclear symmetry energy at suprasaturation densities, Phys. Rev. Lett. 102(6), 062502 (2009)
CrossRef
ADS
Google scholar
|
[451] |
W. J. Xie, J. Su, L. Zhu, and F. S. Zhang, Symmetry energy and pion production in the Boltzmann–Langevin approach, Phys. Lett. B 718 (4–5), 1510 (2013)
CrossRef
ADS
Google scholar
|
[452] |
Z. Q. Feng and G. M. Jin, Probing high-density behavior of symmetry energy from pion emission in heavy-ion collisions, Phys. Lett. B 683(2–3), 140 (2010)
CrossRef
ADS
Google scholar
|
[453] |
T. Song and C. M. Ko, Modifications of the pionproduction threshold in the nuclear medium in heavy ion collisions and the nuclear symmetry energy, Phys. Rev. C 91(1), 014901 (2015)
CrossRef
ADS
Google scholar
|
[454] |
M. D. Cozma, Constraining the density dependence of the symmetry energy using the multiplicity and average p T ratios of charged pions, Phys. Rev. C 95(1), 014601 (2017)
CrossRef
ADS
Google scholar
|
[455] |
Z. Zhang and C. M. Ko, Medium effects on pion production in heavy ion collisions, Phys. Rev. C 95(6), 064604 (2017)
CrossRef
ADS
Google scholar
|
[456] |
J. Hong and P. Danielewicz, Subthreshold pion production within a transport description of central Au+Au collisions, Phys. Rev. C 90(2), 024605 (2014)
CrossRef
ADS
Google scholar
|
[457] |
L. Ou, Z. Li, Y. Zhang, and M. Liu, Effect of the splitting of the neutron and proton effective masses on the nuclear symmetry energy at finite temperatures, Phys. Lett. B 697(3), 246 (2011)
CrossRef
ADS
Google scholar
|
[458] |
J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Temperature effects on the nuclear symmetry energy and symmetry free energy with an isospin and momentum dependent interaction, Phys. Rev. C 75(1), 014607 (2007)
CrossRef
ADS
Google scholar
|
[459] |
J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Effects of isospin and momentum dependent interactions on thermal properties of asymmetric nuclear matter, Phys. Rev. C 77(1), 014302 (2008)
CrossRef
ADS
Google scholar
|
[460] |
W. J. Xie and B. A. Li, Bayesian inference of high-density nuclear symmetry energy from radii of canonical neutron stars, Astrophys. J. 883(2), 174 (2019)
CrossRef
ADS
Google scholar
|
[461] |
J. Margueron, R. Hoffmann Casali, and F. Gulminelli, Equation of state for dense nucleonic matter from metamodeling (I): Foundational aspects, Phys. Rev. C 97(2), 025805 (2018)
CrossRef
ADS
Google scholar
|
[462] |
J. Margueron and F. Gulminelli, Effect of high-order empirical parameters on the nuclear equation of state, Phys. Rev. C 99(2), 025806 (2019)
CrossRef
ADS
Google scholar
|
[463] |
N. B. Zhang and B. A. Li, Delineating effects of nuclear symmetry energy on the radii and tidal polarizabilities of neutron stars, J. Phys. G 46(1), 014002 (2019)
CrossRef
ADS
Google scholar
|
[464] |
B. K. Agrawal, S. Shlomo, and V. K. Au, Determination of the parameters of a Skyrme type effective interaction using the simulated annealing approach, Phys. Rev. C 72(1), 014310 (2005)
CrossRef
ADS
Google scholar
|
[465] |
L. W. Chen, B. J. Cai, C. M. Ko, B. A. Li, C. Shen, and J. Xu, Higher-order effects on the incompressibility of isospin asymmetric nuclear matter, Phys. Rev. C 80(1), 014322 (2009)
CrossRef
ADS
Google scholar
|
[466] |
C. Mondal, B. K. Agrawal, J. N. De, S. K. Samaddar, M. Centelles, and X. Viñas, Interdependence of different symmetry energy elements, Phys. Rev. C 96, 021302(R) (2017)
CrossRef
ADS
Google scholar
|
[467] |
M. Dutra, O. Lourenco, J. S. Sa Martins, A. Delfino, J. R. Stone, and P. D. Stevenson, Skyrme interaction and nuclear matter constraints, Phys. Rev. C 85(3), 035201 (2012)
CrossRef
ADS
Google scholar
|
[468] |
P. A. M. Guichon and A. W. Thomas, Quark structure and nuclear effective forces, Phys. Rev. Lett. 93(13), 132502 (2004)
CrossRef
ADS
Google scholar
|
[469] |
J. R. Stone, N. J. Stone, and S. A. Moszkowski, Incompressibility in finite nuclei and nuclear matter, Phys. Rev. C 89(4), 044316 (2014)
CrossRef
ADS
Google scholar
|
[470] |
Y. Zhang, M. Liu, C. J. Xia, Z. Li, and S. K. Biswal, Constraints on the symmetry energy and its associated parameters from nuclei to neutron stars, Phys. Rev. C 101(3), 034303 (2020)
CrossRef
ADS
Google scholar
|
[471] |
J. Rizzo, M. Colonna, V. Baran, M. Di Toro, H. H. Wolter, and M. Zielinska-Pfabe, Isospin dynamics in peripheral heavy ion collisions at Fermi energies, Nucl. Phys. A 806(1–4), 79 (2008)
CrossRef
ADS
Google scholar
|
[472] |
B. A. Li, C. B. Das, S. Das Gupta, and C. Gale, Momentum dependence of the symmetry potential and nuclear reactions induced by neutron-rich nuclei at RIA, Phys. Rev. C 69(1), 011603 (2004)
CrossRef
ADS
Google scholar
|
[473] |
V. Giordano, M. Colonna, M. DiToro, V. Greco, and J. Rizzo, Isospin emission and flow at high baryon density: A test of the symmetry potential, Phys. Rev. C 81(4), 044611 (2010)
CrossRef
ADS
Google scholar
|
[474] |
P. G. Reinhard and H. Flocard, Nuclear effective forces and isotope shifts, Nucl. Phys. A 584(3), 467 (1995)
CrossRef
ADS
Google scholar
|
[475] |
J. Friedrich and P. G. Reinhard, Skyrme-force parametrization: Least-squares fit to nuclear groundstate properties, Phys. Rev. C 33(1), 335 (1986)
CrossRef
ADS
Google scholar
|
[476] |
D. D. S. Coupland, W. G. Lynch, M. B. Tsang, P. Danielewicz, and Y. Zhang, Influence of transport variables on isospin transport ratios, Phys. Rev. C 84(5), 054603 (2011)
CrossRef
ADS
Google scholar
|
[477] |
D. D. S. Coupland, PhD thesis, Michigan State University, 2013
|
[478] |
D. D. S. Coupland, M. Youngs, Z. Chajecki, W. G. Lynch, M. B. Tsang,
CrossRef
ADS
Google scholar
|
[479] |
S. Brandt, Data Analysis: Statistical and Computational Methods for Scientists and Engineers, 4th Ed., Springer, 2014
|
[480] |
P. Morfouace, C. Y. Tsang, Y. Zhang, W. G. Lynch, M. B. Tsang,
CrossRef
ADS
Google scholar
|
[481] |
L. Li, Y. Zhang, Z. Li, N. Wang, Y. Cui, and J. Winkelbauer, Impact parameter smearing effects on isospin sensitive observables in heavy ion collisions, Phys. Rev. C 97(4), 044606 (2018)
CrossRef
ADS
Google scholar
|
[482] |
Z. Y. Sun, M. B. Tsang, W. G. Lynch, G. Verde, F. Amorini,
CrossRef
ADS
Google scholar
|
[483] |
E. E. Kolomeitsev, C. Hartnack, H. W. Barz, M. Bleicher, E. Bratkovskaya,
CrossRef
ADS
Google scholar
|
[484] |
J. Xu, L. W. Chen, M. B. Tsang, H. Wolter, Y. X. Zhang,
CrossRef
ADS
Google scholar
|
[485] |
V. V. Desai, W. Loveland, K. McCaleb, R. Yanez, G. Lane,
CrossRef
ADS
Google scholar
|
[486] |
A. Ono, Dynamics of clusters and fragments in heavy-ion collisions, Prog. Part. Nucl. Phys. 105, 139 (2019)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |