Bandgap opening in MoTe2 thin flakes induced by surface oxidation
Yuan Gan, Jiyuan Liang, Chang-woo Cho, Si Li, Yanping Guo, Xiaoming Ma, Xuefeng Wu, Jinsheng Wen, Xu Du, Mingquan He, Chang Liu, Shengyuan A. Yang, Kedong Wang, Liyuan Zhang
Bandgap opening in MoTe2 thin flakes induced by surface oxidation
Recently, the layered transition metal dichalcogenide 1T′-MoTe2 has generated considerable interest due to their superconducting and non-trivial topological properties. Here, we present a systematic study on 1T′-MoTe2 single-crystal and exfoliated thin-flakes by means of electrical transport, scanning tunnelling microscope (STM) measurements and band structure calculations. For a bulk sample, it exhibits large magneto-resistance (MR) and Shubnikov–de Hass oscillations in ρxx and a series of Hall plateaus in ρxy at low temperatures. Meanwhile, the MoTe2 thin films were intensively investigated with thickness dependence. For samples, without encapsulation, an apparent transition from the intrinsic metallic to insulating state is observed by reducing thickness. In such thin films, we also observed a suppression of the MR and weak anti-localization (WAL) effects. We attributed these effects to disorders originated from the extrinsic surface chemical reaction, which is consistent with the density functional theory (DFT) calculations and in-situ STM results. In contrast to samples without encapsulated protection, we discovered an interesting superconducting transition for those samples with hexagonal Boron Nitride (h-BN) film protection. Our results indicate that the metallic or superconducting behavior is its intrinsic state, and the insulating behavior is likely caused by surface oxidation in few layer 1T′-MoTe2 flakes.
two-dimensional materials / metal-insulator transition / layered transition metal dichalcogenides (TMDs) / surface oxidation
[1] |
J. A. Wilson and A. D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties, Adv. Phys. 18(73), 193 (1969)
CrossRef
ADS
Google scholar
|
[2] |
R. C. Morris, R. V. Coleman, and R. Bhandari, Superconductivity and magnetoresistance in NbSe2, Phys. Rev. B 5(3), 895 (1972)
CrossRef
ADS
Google scholar
|
[3] |
M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5(4), 263 (2013)
CrossRef
ADS
Google scholar
|
[4] |
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)
CrossRef
ADS
Google scholar
|
[5] |
R. A. Klemm, Pristine and intercalated transition metal dichalcogenide superconductors, Physica C 514, 86 (2015)
CrossRef
ADS
Google scholar
|
[6] |
X. Qian, J. Liu, L. Fu, and J. Li, Quantum spin Hall effect in two-dimensional transition metal dichalcogenides, Science 346(6215), 1344 (2014)
CrossRef
ADS
Google scholar
|
[7] |
K. Novoselov, D. V. Andreeva, W. Ren, and G. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)
CrossRef
ADS
Google scholar
|
[8] |
J. Qi, H. Liu, H. Jiang, and X. C. Xie, Dephasing effects in topological insulators, Front. Phys. 14(4), 43403 (2019)
CrossRef
ADS
Google scholar
|
[9] |
T. Teshome and A. Datta, Topological insulator in twodimensional SiGe induced by biaxial tensile strain, ACS Omega 3(1), 1 (2018)
CrossRef
ADS
Google scholar
|
[10] |
Q. Liu, X. Zhang, L. B. Abdalla, A. Fazzio, and A. Zunger, Switching a normal insulator into a topological insulator via electronic field with application to phosphorene, Nano Lett. 15(2), 1222 (2015)
CrossRef
ADS
Google scholar
|
[11] |
A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)
CrossRef
ADS
Google scholar
|
[12] |
Y. Qi, P. G. Naumov, M. N. Ali, C. R. Rajamathi, W. Schnelle, O. Barkalov, M. Hanfland, S. C. Wu, C. Shekhar, Y. Sun, V. Süβ, M. Schmidt, U. Schwarz, E. Pippel, P. Werner, R. Hillebrand, T. Förster, E. Kampert, S. Parkin, R. J. Cava, C. Felser, B. Yan, and S. A. Medvedev, Superconductivity in Weyl semimetal candidate MoTe2, Nat. Commun. 7(1), 11038 (2016)
CrossRef
ADS
Google scholar
|
[13] |
Q. Zhou, D. Rhodes, Q. R. Zhang, S. Tang, R. Schönemann, and L. Balicas, Hall effect within the colossal magnetoresistive semimetallic state of MoTe2, Phys. Rev. B 94(12), 121101 (2016)
CrossRef
ADS
Google scholar
|
[14] |
D. H. Keum, S. Cho, J. H. Kim, D. H. Choe, H. J. Sung, M. Kan, H. Kang, J. Y. Hwang, S. W. Kim, H. Yang, K. J. Chang, and Y. H. Lee, Bandgap opening in fewlayered monoclinic MoTe2, Nat. Phys. 11(6), 482 (2015)
CrossRef
ADS
Google scholar
|
[15] |
H. P. Hughes and R. H. Friend, Electrical resistivity anomaly in b-MoTe2 (metallic behavior), J. Phys. C Solid State Phys. 11(3), L103 (1978)
CrossRef
ADS
Google scholar
|
[16] |
T. Zandt, H. Dwelk, C. Janowitz, and R. Manzke, Quadratic temperature dependence up to 50 K of the resistivity of metallic MoTe2, J. Alloys Compd. 442(1–2), 216 (2007)
CrossRef
ADS
Google scholar
|
[17] |
Y. Sun, S. C. Wu, M. N. Ali, C. Felser, and B. Yan, Prediction of Weyl semimetal in orthorhombic MoTe2, Phys. Rev. B 92(16), 161107 (2015)
CrossRef
ADS
Google scholar
|
[18] |
R. Szczśniak, A. P. Durajski, and M. W. Jarosik, Strongcoupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides, Front. Phys. 13(2), 137401 (2018)
CrossRef
ADS
Google scholar
|
[19] |
J. Cui, P. Li, J. Zhou, W. Y. He, X. Huang, J. Yi, J. Fan, Z. Ji, X. Jing, F. Qu, Z. G. Cheng, C. Yang, L. Lu, K. Suenaga, J. Liu, K. T. Law, J. Lin, Z. Liu, and G. Liu, Transport evidence of asymmetric spin-orbit coupling in fewlayer superconducting 1Td-MoTe2, Nat. Commun. 10(1), 2044 (2019)
CrossRef
ADS
Google scholar
|
[20] |
Y. Gan, C.W. Cho, A. Li, J. Lyu, X. Du, J. S. Wen, and L. Y. Zhang, Giant enhancement of superconductivity in few layers MoTe2, Chin. Phys. B 28(11), 117401 (2019)
CrossRef
ADS
Google scholar
|
[21] |
L. Yang, H. Wu, W. Zhang, Z. Chen, J. Li, X. Lou, Z. Xie, R. Zhu, and H. Chang, Anomalous oxidation and its effect on electrical transport originating from surface chemical instability in large-area, few-layer 1T′-MoTe2 films, Nanoscale 10(42), 19906 (2018)
CrossRef
ADS
Google scholar
|
[22] |
F. Ye, J. Lee, J. Hu, Z. Mao, J. Wei, and P. X. L. Feng, Environmental instability and degradation of singleand few-layer WTe2 nanosheets in ambient conditions, Small 12(42), 5802 (2016)
CrossRef
ADS
Google scholar
|
[23] |
B. Chen, H. Sahin, A. Suslu, L. Ding, M. I. Bertoni, F. M. Peeters, and S. Tongay, Environmental changes in MoTe2 excitonic dynamics by defects-activated molecular interaction, ACS Nano 9(5), 5326 (2015)
CrossRef
ADS
Google scholar
|
[24] |
H. Zhu, Q. Wang, L. Cheng, R. Addou, J. Kim, M. J. Kim, and R. M. Wallace, Defects and surface structural stability of MoTe2 under vacuum annealing, ACS Nano 11(11), 11005 (2017)
CrossRef
ADS
Google scholar
|
[25] |
J. M. Woods, J. Shen, P. Kumaravadivel, Y. Pang, Y. Xie, G. A. Pan, M. Li, E. I. Altman, L. Lu, and J. J. Cha, Suppression of magnetoresistance in thin WTe2 flakes by surface oxidation, ACS Appl. Mater. Interfaces 9(27), 23175 (2017)
CrossRef
ADS
Google scholar
|
[26] |
D. Rhodes, R. Schönemann, N. Aryal, Q. Zhou, Q. R. Zhang, E. Kampert, Y.C. Chiu, Y. Lai, Y. Shimura, G. T. McCandless, J. Y. Chan, D. W. Paley, J. Lee, A. D. Finke, J. P. C. Ruff, S. Das, E. Manousakis, and L. Balicas, Bulk Fermi surface of the Weyl type-II semimetallic candidate g-MoTe2, Phys. Rev. B 96(16), 165134 (2017)
CrossRef
ADS
Google scholar
|
[27] |
I. Childres, L. A. Jauregui, J. Tian, and Y. P. Chen, Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements, New J. Phys. 13(2), 025008 (2011)
CrossRef
ADS
Google scholar
|
[28] |
B. Zhao, P. Cheng, H. Pan, S. Zhang, B. Wang, G. Wang, F. Xiu, and F. Song, Weak antilocalization in Cd3As2 thin films, Sci. Rep. 6(1), 22377 (2016)
CrossRef
ADS
Google scholar
|
[29] |
N. P. Breznay, H. Volker, A. Palevski, R. Mazzarello, A. Kapitulnik, and M. Wuttig, Weak antilocalization and disorder-enhanced electron interactions in annealed films of the phase-change compound GeSb2Te4, Phys. Rev. B 86(20), 205302 (2012)
CrossRef
ADS
Google scholar
|
[30] |
Y. Wu, N. H. Jo, M. Ochi, L. Huang, D. Mou, S. L. Bud’ko, P. C. Canfield, N. Trivedi, R. Arita, and A. Kaminski, Temperature-induced Lifshitz transition in WTe2, Phys. Rev. Lett. 115(16), 166602 (2015)
CrossRef
ADS
Google scholar
|
[31] |
S. Hikami, A. I. Larkin, and Y. Nagaoka, Spin–orbit interaction and magnetoresistance in the two dimensional random system, Prog. Theor. Phys. 63(2), 707 (1980)
CrossRef
ADS
Google scholar
|
[32] |
G. Bergmann, Weak localization in thin films: A timeofflight experiment with conduction electrons, Phys. Rep. 107(1), 1 (1984)
CrossRef
ADS
Google scholar
|
[33] |
J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang, J. R. Shi, X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu, Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3, Phys. Rev. Lett. 105(17), 176602 (2010)
CrossRef
ADS
Google scholar
|
[34] |
H. T. He, G. Wang, T. Zhang, I. K. Sou, G. K. L. Wong, J. N. Wang, H. Z. Lu, S. Q. Shen, and F. C. Zhang, Impurity effect on weak antilocalization in the topological insulator Bi2Te3, Phys. Rev. Lett. 106(16), 166805 (2011)
CrossRef
ADS
Google scholar
|
[35] |
J. J. Cha, D. Kong, S. S. Hong, J. G. Analytis, K. Lai, and Y. Cui, Weak antilocalization in Bi2(SexTe1–x)3 nanoribbons and nanoplates, Nano Lett. 12(2), 1107 (2012)
CrossRef
ADS
Google scholar
|
[36] |
S. Matsuo, T. Koyama, K. Shimamura, T. Arakawa, Y. Nishihara, D. Chiba, K. Kobayashi, T. Ono, C. Z. Chang, K. He, X. C. Ma, and Q. K. Xue, Weak antilocalization and conductance fluctuation in a submicrometersized wire of epitaxial Bi2Se3, Phys. Rev. B 85(7), 075440 (2012)
CrossRef
ADS
Google scholar
|
[37] |
H. Steinberg, J. B. Laloë, V. Fatemi, J. S. Moodera, and P. Jarillo-Herrero, Electrical tunable surface-to-bulk coherent coupling in topological insulator thin films, Phys. Rev. B 84(23), 233101 (2011)
CrossRef
ADS
Google scholar
|
[38] |
G. Kresse and J. Hafner, ab initiomolecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B 49(20), 14251 (1994)
CrossRef
ADS
Google scholar
|
[39] |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef
ADS
Google scholar
|
[40] |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef
ADS
Google scholar
|
[41] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[42] |
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |