Bandgap opening in MoTe2 thin flakes induced by surface oxidation

Yuan Gan, Jiyuan Liang, Chang-woo Cho, Si Li, Yanping Guo, Xiaoming Ma, Xuefeng Wu, Jinsheng Wen, Xu Du, Mingquan He, Chang Liu, Shengyuan A. Yang, Kedong Wang, Liyuan Zhang

PDF(5567 KB)
PDF(5567 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (3) : 33602. DOI: 10.1007/s11467-020-0952-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Bandgap opening in MoTe2 thin flakes induced by surface oxidation

Author information +
History +

Abstract

Recently, the layered transition metal dichalcogenide 1T′-MoTe2 has generated considerable interest due to their superconducting and non-trivial topological properties. Here, we present a systematic study on 1T′-MoTe2 single-crystal and exfoliated thin-flakes by means of electrical transport, scanning tunnelling microscope (STM) measurements and band structure calculations. For a bulk sample, it exhibits large magneto-resistance (MR) and Shubnikov–de Hass oscillations in ρxx and a series of Hall plateaus in ρxy at low temperatures. Meanwhile, the MoTe2 thin films were intensively investigated with thickness dependence. For samples, without encapsulation, an apparent transition from the intrinsic metallic to insulating state is observed by reducing thickness. In such thin films, we also observed a suppression of the MR and weak anti-localization (WAL) effects. We attributed these effects to disorders originated from the extrinsic surface chemical reaction, which is consistent with the density functional theory (DFT) calculations and in-situ STM results. In contrast to samples without encapsulated protection, we discovered an interesting superconducting transition for those samples with hexagonal Boron Nitride (h-BN) film protection. Our results indicate that the metallic or superconducting behavior is its intrinsic state, and the insulating behavior is likely caused by surface oxidation in few layer 1T′-MoTe2 flakes.

Keywords

two-dimensional materials / metal-insulator transition / layered transition metal dichalcogenides (TMDs) / surface oxidation

Cite this article

Download citation ▾
Yuan Gan, Jiyuan Liang, Chang-woo Cho, Si Li, Yanping Guo, Xiaoming Ma, Xuefeng Wu, Jinsheng Wen, Xu Du, Mingquan He, Chang Liu, Shengyuan A. Yang, Kedong Wang, Liyuan Zhang. Bandgap opening in MoTe2 thin flakes induced by surface oxidation. Front. Phys., 2020, 15(3): 33602 https://doi.org/10.1007/s11467-020-0952-x

References

[1]
J. A. Wilson and A. D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties, Adv. Phys. 18(73), 193 (1969)
CrossRef ADS Google scholar
[2]
R. C. Morris, R. V. Coleman, and R. Bhandari, Superconductivity and magnetoresistance in NbSe2, Phys. Rev. B 5(3), 895 (1972)
CrossRef ADS Google scholar
[3]
M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5(4), 263 (2013)
CrossRef ADS Google scholar
[4]
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)
CrossRef ADS Google scholar
[5]
R. A. Klemm, Pristine and intercalated transition metal dichalcogenide superconductors, Physica C 514, 86 (2015)
CrossRef ADS Google scholar
[6]
X. Qian, J. Liu, L. Fu, and J. Li, Quantum spin Hall effect in two-dimensional transition metal dichalcogenides, Science 346(6215), 1344 (2014)
CrossRef ADS Google scholar
[7]
K. Novoselov, D. V. Andreeva, W. Ren, and G. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)
CrossRef ADS Google scholar
[8]
J. Qi, H. Liu, H. Jiang, and X. C. Xie, Dephasing effects in topological insulators, Front. Phys. 14(4), 43403 (2019)
CrossRef ADS Google scholar
[9]
T. Teshome and A. Datta, Topological insulator in twodimensional SiGe induced by biaxial tensile strain, ACS Omega 3(1), 1 (2018)
CrossRef ADS Google scholar
[10]
Q. Liu, X. Zhang, L. B. Abdalla, A. Fazzio, and A. Zunger, Switching a normal insulator into a topological insulator via electronic field with application to phosphorene, Nano Lett. 15(2), 1222 (2015)
CrossRef ADS Google scholar
[11]
A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)
CrossRef ADS Google scholar
[12]
Y. Qi, P. G. Naumov, M. N. Ali, C. R. Rajamathi, W. Schnelle, O. Barkalov, M. Hanfland, S. C. Wu, C. Shekhar, Y. Sun, V. Süβ, M. Schmidt, U. Schwarz, E. Pippel, P. Werner, R. Hillebrand, T. Förster, E. Kampert, S. Parkin, R. J. Cava, C. Felser, B. Yan, and S. A. Medvedev, Superconductivity in Weyl semimetal candidate MoTe2, Nat. Commun. 7(1), 11038 (2016)
CrossRef ADS Google scholar
[13]
Q. Zhou, D. Rhodes, Q. R. Zhang, S. Tang, R. Schönemann, and L. Balicas, Hall effect within the colossal magnetoresistive semimetallic state of MoTe2, Phys. Rev. B 94(12), 121101 (2016)
CrossRef ADS Google scholar
[14]
D. H. Keum, S. Cho, J. H. Kim, D. H. Choe, H. J. Sung, M. Kan, H. Kang, J. Y. Hwang, S. W. Kim, H. Yang, K. J. Chang, and Y. H. Lee, Bandgap opening in fewlayered monoclinic MoTe2, Nat. Phys. 11(6), 482 (2015)
CrossRef ADS Google scholar
[15]
H. P. Hughes and R. H. Friend, Electrical resistivity anomaly in b-MoTe2 (metallic behavior), J. Phys. C Solid State Phys. 11(3), L103 (1978)
CrossRef ADS Google scholar
[16]
T. Zandt, H. Dwelk, C. Janowitz, and R. Manzke, Quadratic temperature dependence up to 50 K of the resistivity of metallic MoTe2, J. Alloys Compd. 442(1–2), 216 (2007)
CrossRef ADS Google scholar
[17]
Y. Sun, S. C. Wu, M. N. Ali, C. Felser, and B. Yan, Prediction of Weyl semimetal in orthorhombic MoTe2, Phys. Rev. B 92(16), 161107 (2015)
CrossRef ADS Google scholar
[18]
R. Szczśniak, A. P. Durajski, and M. W. Jarosik, Strongcoupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides, Front. Phys. 13(2), 137401 (2018)
CrossRef ADS Google scholar
[19]
J. Cui, P. Li, J. Zhou, W. Y. He, X. Huang, J. Yi, J. Fan, Z. Ji, X. Jing, F. Qu, Z. G. Cheng, C. Yang, L. Lu, K. Suenaga, J. Liu, K. T. Law, J. Lin, Z. Liu, and G. Liu, Transport evidence of asymmetric spin-orbit coupling in fewlayer superconducting 1Td-MoTe2, Nat. Commun. 10(1), 2044 (2019)
CrossRef ADS Google scholar
[20]
Y. Gan, C.W. Cho, A. Li, J. Lyu, X. Du, J. S. Wen, and L. Y. Zhang, Giant enhancement of superconductivity in few layers MoTe2, Chin. Phys. B 28(11), 117401 (2019)
CrossRef ADS Google scholar
[21]
L. Yang, H. Wu, W. Zhang, Z. Chen, J. Li, X. Lou, Z. Xie, R. Zhu, and H. Chang, Anomalous oxidation and its effect on electrical transport originating from surface chemical instability in large-area, few-layer 1T′-MoTe2 films, Nanoscale 10(42), 19906 (2018)
CrossRef ADS Google scholar
[22]
F. Ye, J. Lee, J. Hu, Z. Mao, J. Wei, and P. X. L. Feng, Environmental instability and degradation of singleand few-layer WTe2 nanosheets in ambient conditions, Small 12(42), 5802 (2016)
CrossRef ADS Google scholar
[23]
B. Chen, H. Sahin, A. Suslu, L. Ding, M. I. Bertoni, F. M. Peeters, and S. Tongay, Environmental changes in MoTe2 excitonic dynamics by defects-activated molecular interaction, ACS Nano 9(5), 5326 (2015)
CrossRef ADS Google scholar
[24]
H. Zhu, Q. Wang, L. Cheng, R. Addou, J. Kim, M. J. Kim, and R. M. Wallace, Defects and surface structural stability of MoTe2 under vacuum annealing, ACS Nano 11(11), 11005 (2017)
CrossRef ADS Google scholar
[25]
J. M. Woods, J. Shen, P. Kumaravadivel, Y. Pang, Y. Xie, G. A. Pan, M. Li, E. I. Altman, L. Lu, and J. J. Cha, Suppression of magnetoresistance in thin WTe2 flakes by surface oxidation, ACS Appl. Mater. Interfaces 9(27), 23175 (2017)
CrossRef ADS Google scholar
[26]
D. Rhodes, R. Schönemann, N. Aryal, Q. Zhou, Q. R. Zhang, E. Kampert, Y.C. Chiu, Y. Lai, Y. Shimura, G. T. McCandless, J. Y. Chan, D. W. Paley, J. Lee, A. D. Finke, J. P. C. Ruff, S. Das, E. Manousakis, and L. Balicas, Bulk Fermi surface of the Weyl type-II semimetallic candidate g-MoTe2, Phys. Rev. B 96(16), 165134 (2017)
CrossRef ADS Google scholar
[27]
I. Childres, L. A. Jauregui, J. Tian, and Y. P. Chen, Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements, New J. Phys. 13(2), 025008 (2011)
CrossRef ADS Google scholar
[28]
B. Zhao, P. Cheng, H. Pan, S. Zhang, B. Wang, G. Wang, F. Xiu, and F. Song, Weak antilocalization in Cd3As2 thin films, Sci. Rep. 6(1), 22377 (2016)
CrossRef ADS Google scholar
[29]
N. P. Breznay, H. Volker, A. Palevski, R. Mazzarello, A. Kapitulnik, and M. Wuttig, Weak antilocalization and disorder-enhanced electron interactions in annealed films of the phase-change compound GeSb2Te4, Phys. Rev. B 86(20), 205302 (2012)
CrossRef ADS Google scholar
[30]
Y. Wu, N. H. Jo, M. Ochi, L. Huang, D. Mou, S. L. Bud’ko, P. C. Canfield, N. Trivedi, R. Arita, and A. Kaminski, Temperature-induced Lifshitz transition in WTe2, Phys. Rev. Lett. 115(16), 166602 (2015)
CrossRef ADS Google scholar
[31]
S. Hikami, A. I. Larkin, and Y. Nagaoka, Spin–orbit interaction and magnetoresistance in the two dimensional random system, Prog. Theor. Phys. 63(2), 707 (1980)
CrossRef ADS Google scholar
[32]
G. Bergmann, Weak localization in thin films: A timeofflight experiment with conduction electrons, Phys. Rep. 107(1), 1 (1984)
CrossRef ADS Google scholar
[33]
J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang, J. R. Shi, X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu, Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3, Phys. Rev. Lett. 105(17), 176602 (2010)
CrossRef ADS Google scholar
[34]
H. T. He, G. Wang, T. Zhang, I. K. Sou, G. K. L. Wong, J. N. Wang, H. Z. Lu, S. Q. Shen, and F. C. Zhang, Impurity effect on weak antilocalization in the topological insulator Bi2Te3, Phys. Rev. Lett. 106(16), 166805 (2011)
CrossRef ADS Google scholar
[35]
J. J. Cha, D. Kong, S. S. Hong, J. G. Analytis, K. Lai, and Y. Cui, Weak antilocalization in Bi2(SexTe1–x)3 nanoribbons and nanoplates, Nano Lett. 12(2), 1107 (2012)
CrossRef ADS Google scholar
[36]
S. Matsuo, T. Koyama, K. Shimamura, T. Arakawa, Y. Nishihara, D. Chiba, K. Kobayashi, T. Ono, C. Z. Chang, K. He, X. C. Ma, and Q. K. Xue, Weak antilocalization and conductance fluctuation in a submicrometersized wire of epitaxial Bi2Se3, Phys. Rev. B 85(7), 075440 (2012)
CrossRef ADS Google scholar
[37]
H. Steinberg, J. B. Laloë, V. Fatemi, J. S. Moodera, and P. Jarillo-Herrero, Electrical tunable surface-to-bulk coherent coupling in topological insulator thin films, Phys. Rev. B 84(23), 233101 (2011)
CrossRef ADS Google scholar
[38]
G. Kresse and J. Hafner, ab initiomolecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B 49(20), 14251 (1994)
CrossRef ADS Google scholar
[39]
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[40]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef ADS Google scholar
[41]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[42]
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(5567 KB)

Accesses

Citations

Detail

Sections
Recommended

/