Optimal spectral phase control of femtosecond laser-induced up-conversion luminescence in Sm3+:NaYF4 glass

Jian-Ping Li, Lian-Zhong Deng, Ye Zheng, Peng-Peng Ding, Tian-Qing Jia, Zhen-Rong Sun, Jian-Rong Qiu, Shi-An Zhang

PDF(1424 KB)
PDF(1424 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (2) : 22603. DOI: 10.1007/s11467-019-0947-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Optimal spectral phase control of femtosecond laser-induced up-conversion luminescence in Sm3+:NaYF4 glass

Author information +
History +

Abstract

The spectral phase of the femtosecond laser field is an important parameter that affects the upconversion (UC) luminescence efficiency of dopant lanthanide ions. In this work, we report an experimental study on controlling the UC luminescence efficiency in Sm3+:NaYF4 glass by 800-nm femtosecond laser pulse shaping using spectral phase modulation. The optimal phase control strategy efficiently enhances or suppresses the UC luminescence intensity. Based on the laser-power dependence of the UC luminescence intensity and its comparison with the luminescence spectrum under direct 266-nm femtosecond laser irradiation, we propose herein an excitation model combining non-resonant two-photon absorption with resonance-mediated three-photon absorption to explain the experimental observations.

Keywords

up-conversion luminescence / rare earth ions / quantum control / femtosecond laser / spectral phase

Cite this article

Download citation ▾
Jian-Ping Li, Lian-Zhong Deng, Ye Zheng, Peng-Peng Ding, Tian-Qing Jia, Zhen-Rong Sun, Jian-Rong Qiu, Shi-An Zhang. Optimal spectral phase control of femtosecond laser-induced up-conversion luminescence in Sm3+:NaYF4 glass. Front. Phys., 2020, 15(2): 22603 https://doi.org/10.1007/s11467-019-0947-7

References

[1]
S. Y. Han, R. R. Deng, X. J. Xie, and X. G. Liu, Enhancing luminescence in lanthanide-doped upconversion nanoparticles, Angew. Chem. Int. Ed. 53(44), 11702 (2014)
CrossRef ADS Google scholar
[2]
S. Heer, K. Kömpe, H. U. Güdel, and M. Haase, Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals, Adv. Mater. 16(23–24), 2102 (2004)
CrossRef ADS Google scholar
[3]
F. Wang and X. G. Liu, Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles, J. Am. Chem. Soc. 130(17), 5642 (2008)
CrossRef ADS Google scholar
[4]
S. H. Wen, J. J. Zhou, K. Z. Zheng, A. Bednarkiewicz, X. G. Liu, and D. Y. Jin, Advances in highly doped upconversion nanoparticles, Nat. Commun. 9(1), 2415 (2018)
CrossRef ADS Google scholar
[5]
F. Wang and X. G. Liu, Multicolor tuning of lanthanidedoped nanoparticles by single wavelength excitation, Acc. Chem. Res. 47(4), 1378 (2014)
CrossRef ADS Google scholar
[6]
K. Patel, V. Blair, J. Douglas, Q. L. Dai, Y. H. Liu, S. Q. Ren, and R. Brennan, Structural effects of lanthanide dopants on alumina, Sci. Rep. 7(1), 39946 (2017)
CrossRef ADS Google scholar
[7]
D. K. Xu, A. M. Li, L. Yao, H. Lin, S. H. Yang, and Y. L. Zhang, Lanthanide-doped KLu2F7 nanoparticles with high upconversion luminescence performance: A comparative study by Judd-Ofelt analysis and energy transfer mechanistic investigation, Sci. Rep. 7(1), 43189 (2017)
CrossRef ADS Google scholar
[8]
Q. Shao, Z. Yang, G. Zhang, Y. Hu, Y. Dong, and J. Jiang, Multifunctional lanthanide-doped core/shell nanoparticles: Integration of upconversion luminescence, temperature sensing, and photothermal conversion properties, ACS Omega 3(1), 188 (2018)
CrossRef ADS Google scholar
[9]
F. Xu, Y. Zhao, M. Hu, P. Zhang, N. Kong, R. Liu, C. Liu, and S. K. Choi, Lanthanide-doped core–shell nanoparticles as a multimodality platform for imaging and photodynamic therapy, Chem. Commun. 54(68), 9525 (2018)
CrossRef ADS Google scholar
[10]
X. Chen, D. Peng, Q. Ju, and F. Wang, Photon upconversion in core–shell nanoparticles, Chem. Soc. Rev. 44(6), 1318 (2015)
CrossRef ADS Google scholar
[11]
L. Tian, Y. Shang, S. Hao, Q. Han, T. Chen, W. Lv, and C. Yang, Constructing a “native” oxyfluoride layer on fluoride particles for enhanced upconversion luminescence, Adv. Funct. Mater. 28(48), 1803946 (2018)
CrossRef ADS Google scholar
[12]
X. Tian, Z. Wu, Y. Jia, J. Chen, R. K. Zheng, Y. Zhang, and H. Luo, Remanent-polarization-induced enhancement of photoluminescence in Pr3+-doped lead-free ferroelectric (Bi0.5Na0.5) TiO3 ceramic, Appl. Phys. Lett. 102(4), 042907 (2013)
CrossRef ADS Google scholar
[13]
V. K. Tikhomirov, L. F. Chibotaru, D. Saurel, P. Gredin, M. Mortier, and V. V. Moshchalkov, Er3+-doped nanoparticles for optical detection of magnetic field, Nano Lett. 9(2), 721 (2009)
CrossRef ADS Google scholar
[14]
F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, Temperature sensing using fluorescent nanothermometers, ACS Nano 4(6), 3254 (2010)
CrossRef ADS Google scholar
[15]
Z. Chen, G. Wu, H. Jia, K. Sharafudeen, W. Dai, X. Zhang, S. Zeng, J. Liu, R. Wei, S. Lv, G. Dong, and J. Qiu, Improved up-conversion luminescence from Er3+:LaF3 nanocrystals embedded in oxyfluoride glass ceramics via simultaneous triwavelength excitation, J. Phys. Chem. C 119(42), 24056 (2015)
CrossRef ADS Google scholar
[16]
C. F. Gainer, G. S. Joshua, C. R. De Silva, and M. Romanowski, Control of green and red upconversion in NaYF4:Yb3+, Er3+ nanoparticles by excitation modulation, J. Mater. Chem. 21(46), 18530 (2011)
CrossRef ADS Google scholar
[17]
C. F. Gainer, G. S. Joshua, and M. Romanowski, Toward the use of two-color emission control in upconverting NaYF4: Er3+, Yb3+ nanoparticles for biomedical imaging, Nanoscale 8231, 82310I (2012)
[18]
S. Zhang, S. Xu, J. Ding, C. Lu, T. Jia, J. Qiu, and Z. Sun, Single and two-photon fluorescence control of Er3+ ions by phase-shaped femtosecond laser pulse, Appl. Phys. Lett. 104(1), 014101 (2014)
CrossRef ADS Google scholar
[19]
P. Liu, W. Cheng, Y. Yao, C. Xu, Y. Zheng, L. Deng, T. Jia, J. Qiu, Z. Sun, and S. Zhang, Observing quantum control of up-conversion luminescence in Dy3+ ion doped glass from weak to intermediate shaped femtosecond laser fields, Laser Phys. Lett. 14(11), 115301 (2017)
CrossRef ADS Google scholar
[20]
E. De la Rosa, L. A. Diaz-Torres, P. Salas, and R. A. Rodriguez, Visible light emission under UV and IR excitation of rare earth doped ZrO2 nanophosphor, Opt. Mater. 27(7), 1320 (2005)
CrossRef ADS Google scholar
[21]
T. P. Tang, C. M. Lee, and F. C. Yen, The photoluminescence of SrAl2O4: Sm phosphors, Ceram. Int. 32(6), 665 (2006)
CrossRef ADS Google scholar
[22]
G. B. Nair and S. J. Dhoble, Photoluminescence properties of Eu3+/Sm3+ activated CaZr4(PO4)6 phosphors, J. Fluoresc. 26(5), 1865 (2016)
CrossRef ADS Google scholar
[23]
D. T. Marzahl, P. W. Metz, C. Kränkel, and G. Huber, Spectroscopy and laser operation of Sm3+-doped lithium lutetium tetrafluoride (LiLuF4) and strontium hexaaluminate (SrAl12O19), Opt. Express 23(16), 21118 (2015)
CrossRef ADS Google scholar
[24]
J. Liu and Y. K. Vohra, Sm:YAG optical pressure sensor to 180 GPa: Calibration and structural disorder, Appl. Phys. Lett. 64(25), 3386 (1994)
CrossRef ADS Google scholar
[25]
M. Dyrba, P. T. Miclea, and S. Schweizer, Spectral downconversion in Sm-doped borate glasses for photovoltaic applications, Proc. SPIE 7725, 77251D (2010)
CrossRef ADS Google scholar
[26]
J. F. Suyver, J. Grimm, M. K. Van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+, J. Lumin. 117(1), 1 (2006)
CrossRef ADS Google scholar
[27]
D. Meshulach and Y. Silberberg, Coherent quantum control of two-photon transitions by a femtosecond laser pulse, Nature 396(6708), 239 (1998)
CrossRef ADS Google scholar
[28]
D. Meshulach and Y. Silberberg, Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses, Phys. Rev. A 60(2), 1287 (1999)
CrossRef ADS Google scholar
[29]
L. Wu, M. Ji, H. Wang, Y. Kong, and Y. Zhang, Site occupancy and photoluminescence of Sm3+ in KSr4(BO3)3: Sm3+ phosphors, Opt. Mater. Express 4(8), 1535 (2014)
CrossRef ADS Google scholar
[30]
L. Z. Deng, Y. Yao, L. Deng, H. Jia, Y. Zheng, C. Xu, J. Li, T. Jia, J. Qiu, Z. Sun, and S. Zhang, Tuning upconversion luminescence in Er3+-doped glass ceramic by phase-shaped femtosecond laser field with optimal feedback control, Front. Phys. 14(1), 13602 (2019)
CrossRef ADS Google scholar
[31]
W. T. Carnall, P. R. Fields, and K. Rajnak, Electronic energy levels in the trivalent lanthanide aquo ions (I): Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+, J. Chem. Phys. 49(10), 4424 (1968)
CrossRef ADS Google scholar
[32]
S. Q. Mawlud, M. M. Ameen, M. R. Sahar, Z. A. S. Mahraz, and K. F. Ahmed, Spectroscopic properties of Sm3+ doped sodium-tellurite glasses: Judd–Ofelt analysis, Opt. Mater. 69, 318 (2017)
CrossRef ADS Google scholar
[33]
A. Gandman, L. Chuntonov, L. Rybak, and Z. Amitay, Coherent phase control of resonance-mediated (2+1) three-photon absorption, Phys. Rev. A 75(3), 031401 (2007)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1424 KB)

Accesses

Citations

Detail

Sections
Recommended

/