Optimal spectral phase control of femtosecond laser-induced up-conversion luminescence in Sm3+:NaYF4 glass
Jian-Ping Li, Lian-Zhong Deng, Ye Zheng, Peng-Peng Ding, Tian-Qing Jia, Zhen-Rong Sun, Jian-Rong Qiu, Shi-An Zhang
Optimal spectral phase control of femtosecond laser-induced up-conversion luminescence in Sm3+:NaYF4 glass
The spectral phase of the femtosecond laser field is an important parameter that affects the upconversion (UC) luminescence efficiency of dopant lanthanide ions. In this work, we report an experimental study on controlling the UC luminescence efficiency in Sm3+:NaYF4 glass by 800-nm femtosecond laser pulse shaping using spectral phase modulation. The optimal phase control strategy efficiently enhances or suppresses the UC luminescence intensity. Based on the laser-power dependence of the UC luminescence intensity and its comparison with the luminescence spectrum under direct 266-nm femtosecond laser irradiation, we propose herein an excitation model combining non-resonant two-photon absorption with resonance-mediated three-photon absorption to explain the experimental observations.
up-conversion luminescence / rare earth ions / quantum control / femtosecond laser / spectral phase
[1] |
S. Y. Han, R. R. Deng, X. J. Xie, and X. G. Liu, Enhancing luminescence in lanthanide-doped upconversion nanoparticles, Angew. Chem. Int. Ed. 53(44), 11702 (2014)
CrossRef
ADS
Google scholar
|
[2] |
S. Heer, K. Kömpe, H. U. Güdel, and M. Haase, Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals, Adv. Mater. 16(23–24), 2102 (2004)
CrossRef
ADS
Google scholar
|
[3] |
F. Wang and X. G. Liu, Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles, J. Am. Chem. Soc. 130(17), 5642 (2008)
CrossRef
ADS
Google scholar
|
[4] |
S. H. Wen, J. J. Zhou, K. Z. Zheng, A. Bednarkiewicz, X. G. Liu, and D. Y. Jin, Advances in highly doped upconversion nanoparticles, Nat. Commun. 9(1), 2415 (2018)
CrossRef
ADS
Google scholar
|
[5] |
F. Wang and X. G. Liu, Multicolor tuning of lanthanidedoped nanoparticles by single wavelength excitation, Acc. Chem. Res. 47(4), 1378 (2014)
CrossRef
ADS
Google scholar
|
[6] |
K. Patel, V. Blair, J. Douglas, Q. L. Dai, Y. H. Liu, S. Q. Ren, and R. Brennan, Structural effects of lanthanide dopants on alumina, Sci. Rep. 7(1), 39946 (2017)
CrossRef
ADS
Google scholar
|
[7] |
D. K. Xu, A. M. Li, L. Yao, H. Lin, S. H. Yang, and Y. L. Zhang, Lanthanide-doped KLu2F7 nanoparticles with high upconversion luminescence performance: A comparative study by Judd-Ofelt analysis and energy transfer mechanistic investigation, Sci. Rep. 7(1), 43189 (2017)
CrossRef
ADS
Google scholar
|
[8] |
Q. Shao, Z. Yang, G. Zhang, Y. Hu, Y. Dong, and J. Jiang, Multifunctional lanthanide-doped core/shell nanoparticles: Integration of upconversion luminescence, temperature sensing, and photothermal conversion properties, ACS Omega 3(1), 188 (2018)
CrossRef
ADS
Google scholar
|
[9] |
F. Xu, Y. Zhao, M. Hu, P. Zhang, N. Kong, R. Liu, C. Liu, and S. K. Choi, Lanthanide-doped core–shell nanoparticles as a multimodality platform for imaging and photodynamic therapy, Chem. Commun. 54(68), 9525 (2018)
CrossRef
ADS
Google scholar
|
[10] |
X. Chen, D. Peng, Q. Ju, and F. Wang, Photon upconversion in core–shell nanoparticles, Chem. Soc. Rev. 44(6), 1318 (2015)
CrossRef
ADS
Google scholar
|
[11] |
L. Tian, Y. Shang, S. Hao, Q. Han, T. Chen, W. Lv, and C. Yang, Constructing a “native” oxyfluoride layer on fluoride particles for enhanced upconversion luminescence, Adv. Funct. Mater. 28(48), 1803946 (2018)
CrossRef
ADS
Google scholar
|
[12] |
X. Tian, Z. Wu, Y. Jia, J. Chen, R. K. Zheng, Y. Zhang, and H. Luo, Remanent-polarization-induced enhancement of photoluminescence in Pr3+-doped lead-free ferroelectric (Bi0.5Na0.5) TiO3 ceramic, Appl. Phys. Lett. 102(4), 042907 (2013)
CrossRef
ADS
Google scholar
|
[13] |
V. K. Tikhomirov, L. F. Chibotaru, D. Saurel, P. Gredin, M. Mortier, and V. V. Moshchalkov, Er3+-doped nanoparticles for optical detection of magnetic field, Nano Lett. 9(2), 721 (2009)
CrossRef
ADS
Google scholar
|
[14] |
F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, Temperature sensing using fluorescent nanothermometers, ACS Nano 4(6), 3254 (2010)
CrossRef
ADS
Google scholar
|
[15] |
Z. Chen, G. Wu, H. Jia, K. Sharafudeen, W. Dai, X. Zhang, S. Zeng, J. Liu, R. Wei, S. Lv, G. Dong, and J. Qiu, Improved up-conversion luminescence from Er3+:LaF3 nanocrystals embedded in oxyfluoride glass ceramics via simultaneous triwavelength excitation, J. Phys. Chem. C 119(42), 24056 (2015)
CrossRef
ADS
Google scholar
|
[16] |
C. F. Gainer, G. S. Joshua, C. R. De Silva, and M. Romanowski, Control of green and red upconversion in NaYF4:Yb3+, Er3+ nanoparticles by excitation modulation, J. Mater. Chem. 21(46), 18530 (2011)
CrossRef
ADS
Google scholar
|
[17] |
C. F. Gainer, G. S. Joshua, and M. Romanowski, Toward the use of two-color emission control in upconverting NaYF4: Er3+, Yb3+ nanoparticles for biomedical imaging, Nanoscale 8231, 82310I (2012)
|
[18] |
S. Zhang, S. Xu, J. Ding, C. Lu, T. Jia, J. Qiu, and Z. Sun, Single and two-photon fluorescence control of Er3+ ions by phase-shaped femtosecond laser pulse, Appl. Phys. Lett. 104(1), 014101 (2014)
CrossRef
ADS
Google scholar
|
[19] |
P. Liu, W. Cheng, Y. Yao, C. Xu, Y. Zheng, L. Deng, T. Jia, J. Qiu, Z. Sun, and S. Zhang, Observing quantum control of up-conversion luminescence in Dy3+ ion doped glass from weak to intermediate shaped femtosecond laser fields, Laser Phys. Lett. 14(11), 115301 (2017)
CrossRef
ADS
Google scholar
|
[20] |
E. De la Rosa, L. A. Diaz-Torres, P. Salas, and R. A. Rodriguez, Visible light emission under UV and IR excitation of rare earth doped ZrO2 nanophosphor, Opt. Mater. 27(7), 1320 (2005)
CrossRef
ADS
Google scholar
|
[21] |
T. P. Tang, C. M. Lee, and F. C. Yen, The photoluminescence of SrAl2O4: Sm phosphors, Ceram. Int. 32(6), 665 (2006)
CrossRef
ADS
Google scholar
|
[22] |
G. B. Nair and S. J. Dhoble, Photoluminescence properties of Eu3+/Sm3+ activated CaZr4(PO4)6 phosphors, J. Fluoresc. 26(5), 1865 (2016)
CrossRef
ADS
Google scholar
|
[23] |
D. T. Marzahl, P. W. Metz, C. Kränkel, and G. Huber, Spectroscopy and laser operation of Sm3+-doped lithium lutetium tetrafluoride (LiLuF4) and strontium hexaaluminate (SrAl12O19), Opt. Express 23(16), 21118 (2015)
CrossRef
ADS
Google scholar
|
[24] |
J. Liu and Y. K. Vohra, Sm:YAG optical pressure sensor to 180 GPa: Calibration and structural disorder, Appl. Phys. Lett. 64(25), 3386 (1994)
CrossRef
ADS
Google scholar
|
[25] |
M. Dyrba, P. T. Miclea, and S. Schweizer, Spectral downconversion in Sm-doped borate glasses for photovoltaic applications, Proc. SPIE 7725, 77251D (2010)
CrossRef
ADS
Google scholar
|
[26] |
J. F. Suyver, J. Grimm, M. K. Van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+, J. Lumin. 117(1), 1 (2006)
CrossRef
ADS
Google scholar
|
[27] |
D. Meshulach and Y. Silberberg, Coherent quantum control of two-photon transitions by a femtosecond laser pulse, Nature 396(6708), 239 (1998)
CrossRef
ADS
Google scholar
|
[28] |
D. Meshulach and Y. Silberberg, Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses, Phys. Rev. A 60(2), 1287 (1999)
CrossRef
ADS
Google scholar
|
[29] |
L. Wu, M. Ji, H. Wang, Y. Kong, and Y. Zhang, Site occupancy and photoluminescence of Sm3+ in KSr4(BO3)3: Sm3+ phosphors, Opt. Mater. Express 4(8), 1535 (2014)
CrossRef
ADS
Google scholar
|
[30] |
L. Z. Deng, Y. Yao, L. Deng, H. Jia, Y. Zheng, C. Xu, J. Li, T. Jia, J. Qiu, Z. Sun, and S. Zhang, Tuning upconversion luminescence in Er3+-doped glass ceramic by phase-shaped femtosecond laser field with optimal feedback control, Front. Phys. 14(1), 13602 (2019)
CrossRef
ADS
Google scholar
|
[31] |
W. T. Carnall, P. R. Fields, and K. Rajnak, Electronic energy levels in the trivalent lanthanide aquo ions (I): Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+, J. Chem. Phys. 49(10), 4424 (1968)
CrossRef
ADS
Google scholar
|
[32] |
S. Q. Mawlud, M. M. Ameen, M. R. Sahar, Z. A. S. Mahraz, and K. F. Ahmed, Spectroscopic properties of Sm3+ doped sodium-tellurite glasses: Judd–Ofelt analysis, Opt. Mater. 69, 318 (2017)
CrossRef
ADS
Google scholar
|
[33] |
A. Gandman, L. Chuntonov, L. Rybak, and Z. Amitay, Coherent phase control of resonance-mediated (2+1) three-photon absorption, Phys. Rev. A 75(3), 031401 (2007)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |