Nonlocalized clustering and evolution of cluster structure in nuclei

Bo Zhou , Yasuro Funaki , Hisashi Horiuchi , Akihiro Tohsaki

Front. Phys. ›› 2020, Vol. 15 ›› Issue (1) : 14401

PDF (10188KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (1) : 14401 DOI: 10.1007/s11467-019-0917-0
REVIEW ARTICLE

Nonlocalized clustering and evolution of cluster structure in nuclei

Author information +
History +
PDF (10188KB)

Abstract

We explain various facets of the THSR (Tohsaki–Horiuchi–Schuck-Röpke) wave function. We first discuss the THSR wave function as a wave function of cluster-gas state, since the THSR wave function was originally introduced to elucidate the 3α-condensate-like character of the Hoyle state (02+ state) of 12C. We briefly review the cluster-model studies of the Hoyle state in 1970’s in order to explain how there emerged the idea to assign the α condensate character to the Hoyle state. We then explain that the THSR wave function can describe very well also non-gaslike ordinary cluster states with spatial localization of clusters. This fact means that the dynamical motion of clusters is of nonlocalized nature just as in gas-like states of clusters and the localization of clusters is due to the inter-cluster Pauli principle which is against the close approach of two clusters. The nonlocalized cluster dynamics is formulated by the container model of cluster dynamics. The container model describes gas-like state and non-gaslike states as the solutions of the Hill–Wheeler equation with respect to the size parameter of THSR wave function which is just the size parameter of the container. When we notice that fact that the THSR wave function with the smallest value of size parameter is equivalent to the shell-model wave function, we see that the container model describes the evolution of cluster structure from the ground state with shell-model structure up to the gas-like cluster state via ordinary non-gaslike cluster states. For the description of various cluster structure, more generation of THSR wave function have been introduced and we review some typical examples with their actual applications.

Keywords

Hoyle state / alpha condensation / THSR wave function / nonlocalized clustering / container model / evolution of cluster structure

Cite this article

Download citation ▾
Bo Zhou, Yasuro Funaki, Hisashi Horiuchi, Akihiro Tohsaki. Nonlocalized clustering and evolution of cluster structure in nuclei. Front. Phys., 2020, 15(1): 14401 DOI:10.1007/s11467-019-0917-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. Wildermuth and Y. C. Tang, A Unified Theory of the Nucleus, Vieweg, 1977

[2]

Y. Fujiwara, H. Horiuchi, K. Ikeda, M. Kamimura, K. Katō, Y. Suzuki, and E. Uegaki, Comprehensive Study of Alpha-Nuclei, Prog. Theor. Phys. Suppl. 68, 29 (1980)

[3]

M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, and U.- G. Meißner, Microscopic clustering in light nuclei, Rev. Mod. Phys. 90, 035004 (2018)

[4]

T. Furuta and A. Ono, Nuclear liquid-gas phase transition studied with antisymmetrized molecular dynamics, Phys. Rev. C 74, 014612 (2006)

[5]

T. Yamada, Y. Funaki, H. Horiuchi, G. Röpke, P. Schuck, and A. Tohsaki, Nuclear Alpha-Particle Condensates, in: Clusters in Nuclei, Vol.2, Lecture Notes in Physics, edited by C. Beck, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp 229–298

[6]

H. Horiuchi, K. Ikeda, and K. Katō, Recent developments in nuclear cluster physics, Prog. Theor. Phys. Suppl. 192, 1 (2012)

[7]

Y. Funaki, H. Horiuchi, and A. Tohsaki, Cluster models from RGM to alpha condensation and beyond, Prog. Part. Nucl. Phys. 82, 78 (2015)

[8]

A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Alpha cluster condensation in 12C and 16O, Phys. Rev. Lett. 87, 192501 (2001)

[9]

Y. Funaki, A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Analysis of previous microscopic calculations for the second 0+ state in 12C in terms of 3αparticle Bose-condensed state, Phys. Rev. C 67, 051306 (2003)

[10]

B. Zhou, Y. Funaki, H. Horiuchi, Z. Ren, G. Röpke, P. Schuck, A. Tohsaki, C. Xu, and T. Yamada, Nonlocalized clustering: A new concept in nuclear cluster structure physics, Phys. Rev. Lett. 110, 262501 (2013)

[11]

B. Zhou, Y. Funaki, H. Horiuchi, Z. Ren, G. Röpke, P. Schuck, A. Tohsaki, C. Xu, and T. Yamada, Nonlocalized cluster dynamics and nuclear molecular structure, Phys. Rev. C 89, 034319 (2014)

[12]

H. Horiuchi, Three-alpha model of 12C orthogonality condition model as an approximation of resonating group treatment, Prog. Theor. Phys. 51, 1266 (1974)

[13]

E. Uegaki, S. Okabe, Y. Abe, and H. Tanaka, Structure of the Excited States in 12C (I), Prog. Theor. Phys. 57, 1262 (1977)

[14]

M. Kamimura, Transition densities between the 01+, 21+,41+, 02+, 22+, 11 and 31 states in 12C derived from the three-alpha resonating-group wave functions, Nucl. Phys. A 351, 456 (1981)

[15]

J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schiavilla, K. E. Schmidt, and R. B. Wiringa, Quantum Monte Carlo methods for nuclear physics, Rev. Mod. Phys. 87, 1067 (2015)

[16]

Y. Funaki, Hoyle band and alpha condensation in 12C, Phys. Rev. C 92, 021302 (2015)

[17]

Y. Funaki, Monopole excitation of the Hoyle state and linear-chain state in 12C, Phys. Rev. C 94, 024344 (2016)

[18]

B. Zhou, A. Tohsaki, H. Horiuchi, and Z. Ren, Breathinglike excited state of the Hoyle state in 12C, Phys. Rev. C 94, 044319 (2016)

[19]

Y. Funaki, T. Yamada, H. Horiuchi, G. Röpke, P. Schuck, and A. Tohsaki, α-particle condensation in 16O studied with a full four-body orthogonality Condition model calculation, Phys. Rev. Lett. 101, 082502 (2008)

[20]

Y. Funaki, T. Yamada, A. Tohsaki, H. Horiuchi, G. Röpke, and P. Schuck, Microscopic study of 4-α particle condensation with inclusion of resonances, Phys. Rev. C 82, 024312 (2010)

[21]

H. Horiuchi and K. Ikeda, A molecule-like structure in atomic nuclei of 16O* and 20Ne, Prog. Theor. Phys. 40, 277 (1968)

[22]

B. Zhou, Z. Ren, C. Xu, Y. Funaki, T. Yamada, A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, New concept for the ground-state band in 20Ne within a microscopic cluster model, Phys. Rev. C 86, 014301 (2012)

[23]

P. Navrátil, J. P. Vary, and B. R. Barrett, Large-basis ab initio no-core shell model and its application to 12C, Phys. Rev. C 62, 054311 (2000)

[24]

S. Quaglioni, C. Romero-Redondo, and P. Navrátil, Three-cluster dynamics within an ab initioframework, Phys. Rev. C 88, 034320 (2013)

[25]

J.-P. Ebran, E. Khan, T. Nikšić, and D. Vretenar, How atomic nuclei cluster, Nature 487, 341 (2012)

[26]

P. W. Zhao, N. Itagaki, and J. Meng, Rod-shaped nuclei at extreme spin and isospin, Phys. Rev. Lett. 115, 022501 (2015)

[27]

Y. Iwata, T. Ichikawa, N. Itagaki, J. A. Maruhn, and T. Otsuka, Examination of the stability of a rod-shaped structure in 24Mg, Phys. Rev. C 92, 011303 (2015)

[28]

T. Yamada, Y. Funaki, T. Myo, H. Horiuchi, K. Ikeda, G. Röpke, P. Schuck, and A. Tohsaki, Isoscalar monopole excitations in 16O: Alpha-cluster states at low energy and mean-field-type states at higher energy, Phys. Rev. C 85, 034315 (2012)

[29]

W. B. He, Y. G. Ma, X. G. Cao, X. Z. Cai, and G. Q. Zhang, Giant dipole resonance as a fingerprint of clustering configurations in 12C and 16O, Phys. Rev. Lett. 113, 032506 (2014)

[30]

Y. Chiba, M. Kimura, and Y. Taniguchi, Isoscalar dipole transition as a probe for asymmetric clustering, Phys. Rev. C 93, 034319 (2016)

[31]

K. Ikeda, N. Takigawa, and H. Horiuchi, The systematic structure-change into the molecule-like structures in the self-conjugate 4nnuclei, Prog. Theor. Phys. Suppl. E 68, 464 (1968)

[32]

F. Hoyle, On nuclear reactions occuring in very hot STARS (I): The synthesis of elements from carbon to nickel, Astrophys. J., Suppl. Ser. 1, 121 (1954)

[33]

C. W. Cook, W. A. Fowler, C. C. Lauritsen, and T. Lauritsen, 12B, 12C, and the red giants, Phys. Rev. 107, 508 (1957)

[34]

J. P. Vary, P. Maris, H. Potter, M. A. Caprio, R. Smith, S. Binder, A. Calci, S. Fischer, J. Langhammer, R. Roth, H. M. Aktulga, E. Ng, C. Yang, D. Oryspayev, M. Sosonkina, E. Saule, and U. Çatalyürek, Ab initio no core shell model – recent results and further prospects, arXiv: 1507.04693[nucl-th] (2015)

[35]

H. Morinaga, Interpretation of some of the excited states of 4nself-conjugate nuclei, Phys. Rev. 101, 254 (1956)

[36]

H. Morinaga, On the spin of a broad state around 10 MeV in 12C, Phys. Lett. 21, 78 (1966)

[37]

Y. Suzuki, H. Horiuchi, and K. Ikeda, Study of α chain states through their decay widths, Prog. Theor. Phys. 47, 1517 (1972)

[38]

S. Saito, Effect of Pauli principle in scattering of two clusters, Prog. Theor. Phys. 40, 893 (1968)

[39]

S. Saito, Interaction between clusters and Pauli principle, Prog. Theor. Phys. 41, 705 (1969)

[40]

S. Saito, Theory of resonating group method and generator coordinate method, and orthogonality condition model, Prog. Theor. Phys. Suppl. 62, 11 (1977)

[41]

D. Brink, In: Proceedings of the International School of Physics ”Enrico Fermi” Course 36, Academic Press, New York, London, 1966

[42]

P. Descouvemont and D. Baye, Microscopic theory of the 8Be(α, γ)12C reaction in a three-cluster model, Phys. Rev. C 36, 54 (1987)

[43]

H. Horiuchi, Generator coordinate treatment of composite particle reaction and molecule-like structures, Prog. Theor. Phys. 43, 375 (1970)

[44]

H. Horiuchi, Kernels of GCM, RGM and OCM and their calculation methods, Prog. Theor. Phys. Suppl. 62, 90 (1977)

[45]

Y. Funaki, H. Horiuchi, A. Tohsaki, P. Schuck, and G. Röpke, Description of 8Be as deformed gas-like twoalpha- particle states, Prog. Theor. Phys. 108, 297 (2002)

[46]

A. Tohsaki-Suzuki, M. Kamimura, and K. Ikeda, Microscopic study of the interaction between complex nuclei, Prog. Theor. Phys. Suppl. 68, 359 (1980)

[47]

Y. Funaki, A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Resonance states in 12C and α-particle condensation, Eur. Phys. J. A 24, 321 (2005)

[48]

Y. Funaki, H. Horiuchi, W. von Oertzen, G. Röpke, P. Schuck, A. Tohsaki, and T. Yamada, Concepts of nuclear α-particle condensation, Phys. Rev. C 80, 064326 (2009)

[49]

A. Volkov, Equilibrium deformation calculations of the ground state energies of 1p shell nuclei, Nucl. Phys. 74, 33 (1965)

[50]

B. Zhou, Y. Funaki, A. Tohsaki, H. Horiuchi, and Z. Ren, The container picture with two-alpha correlation for the ground state of 12C, Prog. Theor. Exp. Phys. 2014, 101D01 (2014)

[51]

M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, and A. Richter, Structure of the Hoyle state in 12C, Phys. Rev. Lett. 98, 032501 (2007)

[52]

M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, and A. Richter, Pair decay width of the Hoyle state and its role for stellar carbon production, Phys. Rev. Lett. 105, 022501 (2010)

[53]

Y. Funaki, A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Inelastic form factors to alpha-particle condensate states in 12C and 16O: What can we learn? Eur. Phys. J. A 28, 259 (2006)

[54]

S. Elhatisari, D. Lee, G. Rupak, E. Epelbaum, H. Krebs, T. A. Lähde, T. Luu, and U.-G. Meiβner, Ab Initioalpha–alpha scattering, Nature 528, 111 (2015)

[55]

S. Elhatisari, N. Li, A. Rokash, J. M. Alarcón, D. Du, N. Klein, B.-n. Lu, U.-G. Meiβner, E. Epelbaum, H. Krebs, T. A. Lähde, D. Lee, and G. Rupak, Nuclear binding near a quantum phase transition, Phys. Rev. Lett. 117, 132501 (2016)

[56]

E. Epelbaum, H. Krebs, T. A. Lähde, D. Lee, and U.- G. Meiβner, Structure and rotations of the Hoyle state, Phys. Rev. Lett. 109, 252501 (2012)

[57]

E. Epelbaum, H. Krebs, T. A. Lähde, D. Lee, and U.-G. Meiβner, Viability of carbon-based life as a function of the light quark mass, Phys. Rev. Lett. 110, 112502 (2013)

[58]

A. C. Dreyfuss, K. D. Launey, T. Dytrych, J. P. Draayer, and C. Bahri, Hoyle state and rotational features in carbon- 12 within a No-Core shell-model framework, Phys. Lett. B 727, 511 (2013)

[59]

T. Dytrych, K. D. Launey, J. P. Draayer, P. Maris, J. P. Vary, E. Saule, U. Catalyurek, M. Sosonkina, D. Langr, and M. A. Caprio, Collective Modes in Light Nuclei from First Principles, Phys. Rev. Lett. 111, 252501 (2013)

[60]

G. K. Tobin, M. C. Ferriss, K. D. Launey, T. Dytrych, J. P. Draayer, A. C. Dreyfuss, and C. Bahri, Symplectic No-Core Shell-Model approach to intermediate-mass nuclei, Phys. Rev. C 89, 034312 (2014)

[61]

R. B. Wiringa, S. C. Pieper, J. Carlson, and V. R. Pandharipande, Quantum Monte Carlo calculations of A=8 nuclei, Phys. Rev. C 62, 014001 (2000)

[62]

P. Schuck, Y. Funaki, H. Horiuchi, G. Röpke, A. Tohsaki, and T. Yamada, Alpha particle clusters and their condensation in nuclear systems, Phys. Scr. 91, 123001 (2016)

[63]

M. Itoh, H. Akimune, M. Fujiwara, U. Garg, H. Hashimoto, T. Kawabata, K. Kawase, S. Kishi, T. Murakami, K. Nakanishi, Y. Nakatsugawa, B. K. Nayak, S. Okumura, H. Sakaguchi, H. Takeda, S. Terashima, M. Uchida, Y. Yasuda, M. Yosoi, and J. Zenihiro, Study of the cluster state at Ex=10.3 MeV in 12C, Nucl. Phys. A 738, 268 (2004)

[64]

M. Freer, H. Fujita, Z. Buthelezi, J. Carter, R. W. Fearick, S. V. Förtsch, R. Neveling, S. M. Perez, P. Papka, F. D. Smit, J. A. Swartz, and I. Usman, 2+ excitation of the 12C Hoyle state, Phys. Rev. C 80, 041303 (2009)

[65]

M. Itoh, H. Akimune, M. Fujiwara, U. Garg, N. Hashimoto, T. Kawabata, K. Kawase, S. Kishi, T. Murakami, K. Nakanishi, Y. Nakatsugawa, B. K. Nayak, S. Okumura, H. Sakaguchi, H. Takeda, S. Terashima, M. Uchida, Y. Yasuda, M. Yosoi, and J. Zenihiro, Candidate for the 2+ excited Hoyle state at Ex~10 MeV in 12C, Phys. Rev. C 84, 054308 (2011)

[66]

H. O. U. Fynbo and M. Freer, Rotations of the Hoyle State in 12C, Physics 4, 94 (2011)

[67]

W. R. Zimmerman, N. E. Destefano, M. Freer, M. Gai, and F. D. Smit, Further evidence for the broad 22+ state at 9.6 MeV in 12C, Phys. Rev. C 84, 027304 (2011)

[68]

W. R. Zimmerman, M. W. Ahmed, B. Bromberger, S. C. Stave, A. Breskin, V. Dangendorf, T. Delbar, M. Gai, S. S. Henshaw, J. M. Mueller, C. Sun, K. Tittelmeier, H. R. Weller, and Y. K. Wu, Unambiguous identification of the second 2+ state in 12C and the structure of the Hoyle state, Phys. Rev. Lett. 110, 152502 (2013)

[69]

M. Itoh, H. Akimune, M. Fujiwara, U. Garg, T. Kawabata, K. Kawase, Tetsuya Murakami, K. Nakanishi, Y. Nakatsugawa, H. Sakaguchi, S. Terashima, Makoto Uchida, Y. Yasuda, M. Yosoi, and J. Zenihiro, Nature of 10 MeV state in 12C, J. Phys.: Conf. Ser. 436, 012006 (2013)

[70]

C. Kurokawa and K. Katō, New broad 0+ state in 12C, Phys. Rev. C 71, 021301 (2005)

[71]

S.-I. Ohtsubo, Y. Fukushima, M. Kamimura, and E. Hiyama, Complex-scaling calculation of three-body resonances using complex-range Gaussian basis functions: Application to 3α resonances in 12C, Prog. Theor. Exp. Phys. 2013, 073D02 (2013)

[72]

J. Aguilar and J. M. Combes, A class of analytic perturbations for one-body Schrödinger Hamiltonians, Commun. Math. Phys. 22, 269 (1971)

[73]

E. Balslev and J. M. Combes, Spectral properties of many-body Schrödinger operators with dilatationanalytic interactions, Comm. Math. Phys. 22, 280 (1971)

[74]

A. T. Kruppa, R. G. Lovas, and B. Gyarmati, Complex scaling in the cluster model: Resonances in 8Be, Phys. Rev. C 37, 383 (1988)

[75]

A. T. Kruppa and K. Katō, Resonances in complex-scaled orthogonality condition model of nuclear cluster system, Prog. Theor. Phys. 84, 1145 (1990)

[76]

S. Aoyama, T. Myo, K. Katō, and K. Ikeda, The complex scaling method for many-body resonances and its applications to three-body resonances, Prog. Theor. Phys. 116, 1 (2006)

[77]

Y. Kanada-En’yo, The structure of ground and excited states of 12C, Prog. Theor. Phys. 117, 655 (2007)

[78]

Y. Funaki, H. Horiuchi, and A. Tohsaki, New treatment of resonances with a bound state approximation using a pseudo-potential, Prog. Theor. Phys. 115, 115 (2006)

[79]

T. Yamada, Y. Funaki, H. Horiuchi, K. Ikeda, and A. Tohsaki, Monopole excitation to cluster states, Prog. Theor. Phys. 120, 1139 (2008)

[80]

T. Yamada and P. Schuck, Single α-particle orbits and Bose-Einstein condensation in 12C, Eur. Phys. J. A 26, 185 (2005)

[81]

A. Hasegawa and S. Nagata, Ground state of 6Li, Prog. Theor. Phys. 45, 1786 (1971)

[82]

F. Tanabe, A. Tohsaki, and R. Tamagaki, α-α scattering at intermediate energies applicability of orthogonality condition model and upper limit of isoscalar mesonnucleon coupling constants inferred from potential tail, Prog. Theor. Phys. 53, 677 (1975)

[83]

F. Ajzenberg-Selove, Energy levels of light nuclei A= 16–17, Nucl. Phys. A 460, 1 (1986)

[84]

T. Wakasa, E. Ihara, K. Fujita, Y. Funaki, K. Hatanaka, H. Horiuchi, M. Itoh, J. Kamiya, G. Röpke, H. Sakaguchi, N. Sakamoto, Y. Sakemi, P. Schuck, Y. Shimizu, M. Takashina, S. Terashima, A. Tohsaki, M. Uchida, H. P. Yoshida, and M. Yosoi, New candidate for an alpha cluster condensed state in 16O(α, A′) at 400 MeV, Phys. Lett. B 653, 173 (2007)

[85]

Y. Suzuki, Structure Study of 16O by 12C+ alpha clustercoupling model (I), Prog. Theor. Phys. 55, 1751 (1976)

[86]

Y. Suzuki, Structure study of 16O by 12C+α clustercoupling model (II), Prog. Theor. Phys. 56, 111 (1976)

[87]

A. M. Lane and R. G. Thomas, R-matrix theory of nuclear reactions, Rev. Mod. Phys. 30, 257 (1958)

[88]

T. Yamada, Y. Funaki, H. Horiuchi, G. Röpke, P. Schuck, and A. Tohsaki, Criterion for Bose–Einstein condensation in traps and self-bound systems, Phys. Rev. A 78, 035603 (2008)

[89]

T. Yamada, Y. Funaki, H. Horiuchi, G. Röpke, P. Schuck, and A. Tohsaki, Internal one-particle density matrix for Bose–Einstein condensates with finite number of particles in a harmonic potential, Phys. Rev. C 79, 054314 (2009)

[90]

A. Tohsaki, New effective internucleon forces in microscopic α-cluster model, Phys. Rev. C 49, 1814 (1994)

[91]

H. Matsumura and Y. Suzuki, A microscopic analysis of the amount of-condensation in 12C, Nucl. Phys. A 739, 238 (2004)

[92]

A. Arima, Elliott’s SU(3) model and its developments in nuclear physics, J. Phys. G Nucl. Part. Phys. 25, 581 (1999)

[93]

M. Lyu, Z. Ren, B. Zhou, Y. Funaki, H. Horiuchi, G. Röpke, P. Schuck, A. Tohsaki, C. Xu, and T. Yamada, Investigation of 9Be from a nonlocalized clustering concept, Phys. Rev. C 91, 014313 (2015)

[94]

A. Tohsaki, The interaction of a nucleon and alpha condensate, Int. J. Mod. Phys. E 17, 2106 (2008)

[95]

J. Hiura, Y. Abe, S. Saitō, and O. Endō, Alpha-cluster plus 16O-core model for 20Ne and neighboring nuclei, Prog. Theor. Phys. 42, 555 (1969)

[96]

T. Matsuse, M. Kamimura, and Y. Fukushima, Study of the alpha-clustering structure of 20Ne based on the resonating group method for 16O+α, Prog. Theor. Phys. 53, 706 (1975)

[97]

M. LeMere, Y. C. Tang, and D. R. Thompson, Study of the A+16O system with the resonating-group method, Phys. Rev. C 14, 23 (1976)

[98]

S. Hara, K. T. Hecht, and Y. Suzuki, Alpha cluster formation in 20Ne in the cluster-orbital shell model (I), Prog. Theor. Phys. 84, 254 (1990)

[99]

S. Hara, K. Ogawa, and Y. Suzuki, Alpha Cluster Formation in 20Ne in the cluster-orbital shell model (II), Prog. Theor. Phys. 88, 329 (1992)

[100]

T. Yamaya, K. Katori, M. Fujiwara, S. Katō, and S. Ohkubo, Alpha-cluster study of 40Ca and 44Ti by the (6Li,d) reaction, Prog. Theor. Phys. 132, 73 (1998)

[101]

A. Astier, P. Petkov, M.-G. Porquet, D. S. Delion, and P. Schuck, Novel manifestation of-clustering structures: New α+208Pb states in 212Po revealed by their enhanced E1 decays, Phys. Rev. Lett. 104, 042701 (2010)

[102]

Z. Ren and B. Zhou, Alpha-clustering effects in heavy nuclei, Front. Phys. 13, 132110 (2018)

[103]

Y. Kanada-En’yo, Description of an-cluster tail in 8Be and 20Ne: Delocalization of the cluster by quantum penetration, Prog. Theor. Exp. Phys. 2014, 103D03 (2014)

[104]

T. Suhara, Y. Funaki, B. Zhou, H. Horiuchi, and A. Tohsaki, One-dimensional α condensation of α-linearchain states, J. Phys.: Conf. Ser. 569, 012008 (2014)

[105]

T. Ichikawa, J. A. Maruhn, N. Itagaki, and S. Ohkubo, Linear chain structure of four-α clusters in 16O, Phys. Rev. Lett. 107, 112501 (2011)

[106]

Y. Funaki, T. Yamada, E. Hiyama, B. Zhou, and K. Ikeda, Container structure of alpha-alpha-Lambda clusters in 9-lambda–Beryrium, Prog. Theor. Exp. Phys. 2014, 113D01 (2014)

[107]

V. I. Kukulin and V. M. Krasnopol’sky, Description of few-body systems via analytical continuation in coupling constant, J. Phys. A: Math. Gen. 10, L33 (1977)

[108]

M. Freer, S. Almaraz-Calderon, A. Aprahamian, N. I. Ashwood, M. Barr, B. Bucher, P. Copp, M. Couder, N. Curtis, X. Fang, F. Jung, S. Lesher, W. Lu, J. D. Malcolm, A. Roberts, W. P. Tan, C. Wheldon, and V. A. Ziman, Evidence for a new 12C state at 13.3 MeV, Phys. Rev. C 83, 034314 (2011)

[109]

R. Bijker and F. Iachello, Cluster states in nuclei as representations of a U(N+1) group, Phys. Rev. C 61, 067305 (2000)

[110]

D. J. Marín-Lámbarri, R. Bijker, M. Freer, M. Gai, T. Kokalova, D. J. Parker, and C. Wheldon, Evidence for triangular D3h symmetry in 12C, Phys. Rev. Lett. 113, 012502 (2014)

[111]

S. Ohkubo and Y. Hirabayashi, Alpha-particle condensate states in 16O, Phys. Lett. B 684, 127 (2010)

[112]

Y. Funaki, T. Yamada, H. Horiuchi, G. Röpke, P. Schuck, and A. Tohsaki, Alpha cluster states and condensation in 16O, Prog. Theor. Phys. 196, 439 (2012)

[113]

T. Suhara and Y. Kanada-En’yo, Effects of alpha-cluster breaking on 3α-cluster structures in 12C, Phys. Rev. C 91, 024315 (2015)

[114]

E. Uegaki, Y. Abe, S. Okabe, and H. Tanaka, Structure of the excited states in 12C (II), Prog. Theor. Phys. 62, 1621 (1979)

[115]

R. Imai, T. Tada, and M. Kimura, Real-time evolution method and its application to the 3α cluster system, Phys. Rev. C 99, 064327 (2019)

[116]

R. Bijker and F. Iachello, The algebraic cluster model: Three-body clusters, Ann. Phys. 298, 334 (2002)

[117]

B. Zhou, Y. Funaki, H. Horiuchi, M. Kimura, Z. Ren, G. Röpke, P. Schuck, A. Tohsaki, C. Xu, and T. Yamada, Nonlocalized motion in a two-dimensional container of α particles in 3 and 4 states of 12C, Phys. Rev. C 99, 051303 (2019)

[118]

R. Bijker and F. Iachello, Evidence for tetrahedral symmetry in 16O, Phys. Rev. Lett. 112, 152501 (2014)

[119]

Y. Kanada-En’yo, Tetrahedral 4α and 12C+α cluster structures in 16O, Phys. Rev. C 96, 034306 (2017)

[120]

Y. Kanada-En’yo and H. Horiuchi, Structure of light unstable nuclei studied with antisymmetrized molecular dynamics, Prog. Theor. Phys. Suppl. 142, 205 (2001)

[121]

M. Freer, The clustered nucleus — cluster structures in stable and unstable nuclei, Rep. Prog. Phys. 70, 2149 (2007)

[122]

Z. H. Yang, Y. L. Ye, Z. H. Li, J. L. Lou, J. S. Wang, D. X. Jiang, Y. C. Ge, Q. T. Li, H. Hua, X. Q. Li, F. R. Xu, J. C. Pei, R. Qiao, H. B. You, H. Wang, Z. Y. Tian, K. A. Li, Y. L. Sun, H. N. Liu, J. Chen, J. Wu, J. Li, W. Jiang, C. Wen, B. Yang, Y. Y. Yang, P. Ma, J. B. Ma, S. L. Jin, J. L. Han, and J. Lee, Observation of enhanced monopole strength and clustering in 12Be, Phys. Rev. Lett. 112, 162501 (2014)

[123]

T. Baba and M. Kimura, Structure and decay pattern of the linear-chain state in 14C, Phys. Rev. C 94, 044303 (2016)

[124]

Y. Kanada-En’yo, M. Kimura, and A. Ono, Antisymmetrized molecular dynamics and its applications to cluster phenomena, Prog. Theor. Exp. Phys. 2012, 01A202 (2012)

[125]

M. Lyu, Z. Ren, B. Zhou, Y. Funaki, H. Horiuchi, G. Röpke, P. Schuck, A. Tohsaki, C. Xu, and T. Yamada, Investigation of 10Be and its cluster dynamics with the nonlocalized clustering approach, Phys. Rev. C 93, 054308 (2016)

[126]

R. Tamagaki, Potential models of nuclear forces at small distances, Prog. Theor. Phys. 39, 91 (1968)

[127]

N. Yamaguchi, T. Kasahara, S. Nagata, and Y. Akaishi, Effective interaction with three-body effects, Prog. Theor. Phys. 62, 1018 (1979)

[128]

F. Kobayashi and Y. Kanada-En’yo, Novel cluster states in 10Be, Phys. Rev. C 86, 064303 (2012)

[129]

T. Suhara and Y. Kanada-En’yo, Quadrupole deformation β and γ constraint in a framework of antisymmetrized molecular dynamics, Prog. Theor. Phys. 123, 303 (2010)

[130]

E. Hiyama and T. Yamada, Structure of light hypernuclei, Prog. Part. Nucl. Phys. 63, 339 (2009)

[131]

Y. Funaki, M. Isaka, E. Hiyama, T. Yamada, and K. Ikeda, Multi-cluster dynamics in Λ13C and analogy to clustering in 12C, Phys. Lett. B 773, 336 (2017)

[132]

Y. Yamamoto, T. Motoba, T. Fukuda, M. Takahashi, and K. Ikeda, Formation and transition of strangeness=–2 nuclear systems, Prog. Theor. Phys. 117, 281 (1994)

[133]

T. Yamada, T. Motoba, K. Ikeda, and H. Bandō, Structure study of typical light hypernuclei, Prog. Theor. Phys. 81, 104 (1985)

[134]

E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, and Y. Yamamoto, Three- and four-body cluster models of Hypernuclei Using the G-Matrix ∧N Interaction Λ9Be, Λ13C, ΛΛ6He and ΛΛ10Be, Prog. Theor. Phys. 97, 881 (1997)

[135]

O. Hashimoto and H. Tamura, Spectroscopy of Λ hypernuclei, Prog. Part. Nucl. Phys. 57, 564 (2006)

[136]

T. Yamada and Y. Funaki, Alpha-cluster structures and monopole excitations in 13C, Phys. Rev. C 92, 034326 (2015)

[137]

Q. Zhao, Z. Ren, M. Lyu, H. Horiuchi, Y. Funaki, G. Röpke, P. Schuck, A. Tohsaki, C. Xu, T. Yamada, and B. Zhou, Investigation of the 9B nucleus and its clusternucleon correlations, Phys. Rev. C 97, 054323 (2018)

[138]

W. Sünkel, A generator coordinate technique for arbitrary cluster widths, Phys. Lett. B 65, 419 (1976)

[139]

M. Colonna and P. Chomaz, Spinodal decomposition in nuclear molecular dynamics, Phys. Lett. B 436, 1 (1998)

[140]

T. Maruyama, K. Niita, and A. Iwamoto, Extension of quantum molecular dynamics and its application to heavy-ion collisions, Phys. Rev. C 53, 297 (1996)

[141]

Y. Tang, M. LeMere, and D. Thompsom, Resonatinggroup method for nuclear many-body problems, Phys. Rep. 47, 167 (1978)

[142]

M. Dufour and P. Descouvemont, Molecular states in a microscopic four α model, Nucl. Phys. A 927, 134 (2014)

[143]

B. Zhou, New trial wave function for the nuclear cluster structure of nuclei, Prog. Theor. Exp. Phys. 2018, 041D01 (2018)

[144]

A. Tohsaki-Suzuki, New computational methods of analytical derivation of exchange kernels, Prog. Theor. Phys. Suppl. 62, 191 (1977)

[145]

Y. Tang, Microscopic cluster theory for nuclear systems, Nucl. Phys. A 463, 377 (1987)

[146]

K. Toshitaka, M. Takehiro, and A. Akito, Effect of breathing excitations of the triton nucleus on the alphatriton cluster structure of 7Li, Nucl. Phys. A 414, 185 (1984)

[147]

N. Itagaki, M. Kimura, C. Kurokawa, M. Ito, and W. von Oertzen, Alpha condensed state with a core nucleus, Phys. Rev. C 75, 037303 (2007)

[148]

N. Itagaki, T. Kokalova, and W. Von Oertzen, Three alpha state around 40Ca, Mod. Phys. Lett. A 25, 1947 (2010)

[149]

T. Ichikawa, N. Itagaki, T. Kawabata, T. Kokalova, and W. von Oertzen, Gas-like state of clusters around a 16O core in 24Mg, Phys. Rev. C 83, 061301 (2011)

[150]

A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Colloquium status of α-particle condensate structure of the Hoyle state, Rev. Mod. Phys. 89, 011002 (2017)

[151]

B. Bayman and A. Bohr, On the connection between the cluster model and the SU3 coupling scheme for particles in a harmonic oscillator potential, Nucl. Phys. 9, 596 (1958)

[152]

H. Horiuchi, Coexistence of cluster states and mean-fieldtype states, J. Phys. G Nucl. Part. Phys. 37, 064021 (2010)

[153]

J. K. Perring and T. H. R. Skyrme, The alpha-particle and shell models of the nucleus, Proc. Phys. Soc. A 69, 600 (1956)

[154]

K. Wildermuth and T. Kanellopoulos, The “cluster model” of the atomic nuclei, Nucl. Phys. 7, 150 (1958)

[155]

K. Wildermuth and T. Kanellopoulos, On the structure of rotational levels of atomic nuclei, Nucl. Phys. 9, 449 (1958)

[156]

M. G. Mayer and J. H. D. Jensen, Elementary Theory of Nuclear Shell Structure, Wiley, 1960

[157]

R. K. Shelline and K. Wildermuth, Experimental evidence for cluster structures in light and medium weight nuclei, Nucl. Phys. 21, 196 (1960)

[158]

M. Kimura and H. Horiuchi, 16O+16O molecular band and their relation to the superdeformed band of 32S, Nucl. Phys. A 738, 236 (2004)

[159]

T. Kawabata, H. Akimune, H. Fujita, Y. Fujita, M. Fujiwara, K. Hara, K. Hatanaka, M. Itoh, Y. Kanada-En’yo, S. Kishi, K. Nakanishi, H. Sakaguchi, Y. Shimbara, A. Tamii, S. Terashima, M. Uchida, T. Wakasa, Y. Yasuda, H. Yoshida, and M. Yosoi, Cluster structure in 11B, Phys. Lett. B 646, 6 (2007)

[160]

R. Tamagaki and H. Tanaka, Repulsive core of effective α-α potential, Prog. Theor. Phys. 34, 191 (1965)

[161]

H. Horiuchi, Multi-cluster allowed states and spectroscopic amplitude of cluster transfer, Prog. Theor. Phys. 58, 204 (1977)

[162]

Y. Fujiwara and H. Horiuchi, Generator coordinate theory of normalization kernels of cluster systems (II), Prog. Theor. Phys. 65, 1632 (1981)

[163]

M. Kimura, Deformed-basis antisymmetrized molecular dynamics and its application to 20Ne, Phys. Rev. C 69, 044319 (2004)

[164]

Y. Kanada-En’yo and H. Horiuchi, Clustering in Yrast States of 20Ne studied with antisymmetrized molecular dynamics, Prog. Theor. Phys. 93, 115 (1995)

[165]

M. Kimura and H. Horiuchi, Coexistence of cluster structure and superdeformation in 44Ti, Nucl. Phys. A 767, 58 (2006)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (10188KB)

1539

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/