Influence of surface charges on the emission polarization properties of single CdSe/CdS dot-in-rods

Guo-Feng Zhang, Chang-Gang Yang, Yong Ge, Yong-Gang Peng, Rui-Yun Chen, Cheng-Bing Qin, Yan Gao, Lei Zhang, Hai-Zheng Zhong, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia

PDF(3261 KB)
PDF(3261 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (6) : 63601. DOI: 10.1007/s11467-019-0916-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Influence of surface charges on the emission polarization properties of single CdSe/CdS dot-in-rods

Author information +
History +

Abstract

We report an experimental investigation of the influence of surface charges on the emission polarization properties of single CdSe/CdS dot-in-rods (DRs), which is important for their polarization-based practical applications. By covering the single DRs with N-type semiconductor indium tin oxide (ITO) nanoparticles, the surface of single DRs is charged by ITO through interfacial electron transfer. This is confirmed by the experimental observations of the reduced photoluminescence intensities and lifetimes as well as the suppressing blinking. It is found that the full width at half maximum of histogram of polarization degrees of the single DRs is broadened from 0.24 (on glass) to 0.41 (in ITO). In order to explain the exprimental results, the band-edge exciton fine structure of single DRs is calculated by taking into account the sample parameters, the emission polarization, and the surface charges. The calculation results show that the level ordering of the emitting states determines the polarization degrees tending to increase or decrease under the influence of surface electrons. The surface electrons can induce an increase in the spacing between the emitting levels to change the populations and thus change the polarization degrees. In addition, different numbers of surface electrons may randomly distribute on the long CdSe/CdS rods, leading to the heterogeneous influences on the single DRs causing the broadening of polarization degrees also.

Keywords

single CdSe/CdS dot-in-rods / polarization properties / surface charges / band-edge exciton fine structure

Cite this article

Download citation ▾
Guo-Feng Zhang, Chang-Gang Yang, Yong Ge, Yong-Gang Peng, Rui-Yun Chen, Cheng-Bing Qin, Yan Gao, Lei Zhang, Hai-Zheng Zhong, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Influence of surface charges on the emission polarization properties of single CdSe/CdS dot-in-rods. Front. Phys., 2019, 14(6): 63601 https://doi.org/10.1007/s11467-019-0916-1

References

[1]
Z. G. Xiao, R. A. Kerner, L. F. Zhao, N. L. Tran, K. M. Lee, T. W. Koh, G. D. Scholes, and B. P. Rand, Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites, Nat. Photonics 11(2), 108 (2017)
CrossRef ADS Google scholar
[2]
D. Han, M. Imran, M. Zhang, S. Chang, X. Wu, X. Zhang, J. Tang, M. Wang, S. Ali, X. Li, G. Yu, J. Han, L. Wang, B. Zou, and H. Zhong, Efficient light-emitting diodes based on in situ fabricated FAPbBr3 nanocrystals: The enhancing role of the ligand-assisted reprecipitation process, ACS Nano 12(8), 8808 (2018)
CrossRef ADS Google scholar
[3]
V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. Eisler, and M. G. Bawendi, Optical gain and stimulated emission in nanocrystal quantum dots, Science 290(5490), 314 (2000)
CrossRef ADS Google scholar
[4]
D. C. Oertel, M. G. Bawendi, A. C. Arango, and V. Bulovic, Photodetectors based on treated CdSe quantumdot films, Appl. Phys. Lett. 87(21), 213505 (2005)
CrossRef ADS Google scholar
[5]
G. C. Shan, Z. Q. Yin, C. H. Shek, and W. Huang, Single photon sources with single semiconductor quantum dots, Front. Phys. 9(2), 170 (2014)
CrossRef ADS Google scholar
[6]
W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, Iodide management in formamidiniumlead- halide-based perovskite layers for efficient solar cells, Science 356(6345), 1376 (2017)
CrossRef ADS Google scholar
[7]
W. D. Sheng, M. Korkusinski, A. D. Guclu, M. Zielinski, P. Potasz, E. S. Kadantsev, O. Voznyy, and P. Hawrylak, Electronic and optical properties of semiconductor and graphene quantum dots, Front. Phys. 7(3), 328 (2012)
CrossRef ADS Google scholar
[8]
Y. Y. Fan, H. L. Liu, R. C. Han, L. Huang, H. Shi, Y. L. Sha, and Y. Q. Jiang, Extremely high brightness from polymer-encapsulated quantum dots for two-photon cellular and deep-tissue imaging, Sci. Rep. 5(1), 9908 (2015)
CrossRef ADS Google scholar
[9]
E. M. Thomas, S. Ghimire, R. Kohara, A. N. Anil, K. Yuyama, Y. Takano, K. G. Thomas, and V. Biju, Blinking suppression in highly excited CdSe/ZnS quantum dots by electron transfer under large positive Gibbs (free) energy change, ACS Nano 12(9), 9060 (2018)
CrossRef ADS Google scholar
[10]
G. Luo, Z. Z. Zhang, H. O. Li, X. X. Song, G. W. Deng, G. Cao, M. Xiao, and G. P. Guo, Quantum dot behavior in transition metal dichalcogenides nanostructures, Front. Phys. 12(4), 128502 (2017)
CrossRef ADS Google scholar
[11]
H. Huang, L. Polavarapu, J. A. Sichert, A. S. Susha, A. S. Urban, and A. L. Rogach, Colloidal lead halide perovskite nanocrystals: Synthesis, optical properties and applications, NPG Asia Mater. 8(11), e328 (2016)
CrossRef ADS Google scholar
[12]
H. Yuan, E. Debroye, E. Bladt, G. Lu, M. Keshavarz, K. P. F. Janssen, M. B. J. Roeffaers, S. Bals, E. H. Sargent, and J. Hofkens, Imaging heterogeneously distributed photo-active traps in perovskite single crystals, Adv. Mater. 30(13), 1705494 (2018)
CrossRef ADS Google scholar
[13]
Q. S. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, All-inorganic perovskite nanocrystal scintillators, Nature 561(7721), 88 (2018)
CrossRef ADS Google scholar
[14]
Q. B. Zeng, S. Chen, L. You, and R. Lu, Transport through a quantum dot coupled to two Majorana bound states, Front. Phys. 12(4), 127302 (2017)
CrossRef ADS Google scholar
[15]
A. Sitt, I. Hadar, and U. Banin, Band-gap engineering, optoelectronic properties and applications of colloidal heterostructured semiconductor nanorods, Nano Today 8(5), 494 (2013)
CrossRef ADS Google scholar
[16]
T. Kodanek, H. M. Banbela, S. Naskar, P. Adel, N. C. Bigall, and D. Dorfs, Phase transfer of 1- and 2-dimensional Cd-based nanocrystals, Nanoscale 7(45), 19300 (2015)
CrossRef ADS Google scholar
[17]
D. V. Talapin, R. Koeppe, S. Gotzinger, A. Kornowski, J. M. Lupton, A. L. Rogach, O. Benson, J. Feldmann, and H. Weller, Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality, Nano Lett. 3(12), 1677 (2003)
CrossRef ADS Google scholar
[18]
I. Coropceanu, A. Rossinelli, J. R. Caram, F. S. Freyria, and M. G. Bawendi, Slow-injection growth of seeded CdSe/CdS nanorods with unity fluorescence quantum yield and complete shell to core energy transfer, ACS Nano 10(3), 3295 (2016)
CrossRef ADS Google scholar
[19]
M. Saba, S. Minniberger, F. Quochi, J. Roither, M. Marceddu, A. Gocalinska, M. V. Kovalenko, D. V. Talapin, W. Heiss, A. Mura, and G. Bongiovanni, Excitonexciton interaction and optical gain in colloidal CdSe/ CdS dot/rod nanocrystals, Adv. Mater. 21(48), 4942 (2009)
CrossRef ADS Google scholar
[20]
C. D. Sonnichsen, T. Kipp, X. Tang, and P. Kambhampati, Efficient optical gain in CdSe/CdS dots-in-rods, ACS Photonics 6(2), 382 (2019)
CrossRef ADS Google scholar
[21]
Y. Gao, V. D. Ta, X. Zhao, Y. Wang, R. Chen, E. Mutlugun, K. E. Fong, S. T. Tan, C. Dang, X. W. Sun, H. Sun, and H. V. Demir, Observation of polarized gain from aligned colloidal nanorods, Nanoscale 7(15), 6481 (2015)
CrossRef ADS Google scholar
[22]
M. Allione, A. Ballester, H. B. Li, A. Comin, J. L. Movilla, J. I. Climente, L. Manna, and I. Moreels, Twophoton-induced blue shift of core and shell optical transitions in colloidal CdSe/CdS quasi-type II quantum rods, ACS Nano 7(3), 2443 (2013)
CrossRef ADS Google scholar
[23]
A. Shabaev and A. L. Efros, 1D exciton spectroscopy of semiconductor nanorods, Nano Lett. 4(10), 1821 (2004)
CrossRef ADS Google scholar
[24]
N. Le Thomas, E. Herz, O. Schops, U. Woggon, and M. V. Artemyev, Exciton fine structure in single CdSe nanorods, Phys. Rev. Lett. 94(1), 016803 (2005)
CrossRef ADS Google scholar
[25]
Y. Louyer, L. Biadala, J. B. Trebbia, M. J. Fernee, P. Tamarat, and B. Lounis, Efficient biexciton emission in elongated CdSe/ZnS nanocrystals, Nano Lett. 11(10), 4370 (2011)
CrossRef ADS Google scholar
[26]
S. Vezzoli, M. Manceau, G. Lemenager, Q. Glorieux, E. Giacobino, L. Carbone, M. De Vittorio, and A. Bramati, Exciton fine structure of CdSe/CdS nanocrystals determined by polarization microscopy at room temperature, ACS Nano 9(8), 7992 (2015)
CrossRef ADS Google scholar
[27]
J. Planelles, F. Rajadell, and J. I. Climente, Electronic origin of linearly polarized emission in CdSe/CdS dot-inrod heterostructures, J. Phys. Chem. C 120(48), 27724 (2016)
CrossRef ADS Google scholar
[28]
I. Hadar, G. B. Hitin, A. Sitt, A. Faust, and U. Banin, Polarization properties of semiconductor nanorod heterostructures: From single particles to the ensemble, J. Phys. Chem. Lett. 4(3), 502 (2013)
CrossRef ADS Google scholar
[29]
B. T. Diroll, A. Koschitzky, and C. B. Murray, Tunable optical anisotropy of seeded CdSe/CdS nanorods, J. Phys. Chem. Lett. 5(1), 85 (2014)
CrossRef ADS Google scholar
[30]
I. Angeloni, W. Raja, A. Polovitsyn, F. De Donato, R. P. Zaccaria, and I. Moreels, Band-edge oscillator strength of colloidal CdSe/CdS dot-in-rods: Comparison of absorption and time-resolved fluorescence spectroscopy, Nanoscale 9(14), 4730 (2017)
CrossRef ADS Google scholar
[31]
J. Müller, J. M. Lupton, A. L. Rogach, J. Feldmann, D. V. Talapin, and H. Weller, Monitoring surface charge movement in single elongated semiconductor nanocrystals, Phys. Rev. Lett. 93(16), 167402 (2004)
CrossRef ADS Google scholar
[32]
J. Müller,J. M. Lupton, A. L. Rogach, J. Feldmann, D. V. Talapin, and H. Weller, Monitoring surface charge migration in the spectral dynamics of single CdSe/CdS nanodot/nanorod heterostructures, Phys. Rev. B 72(20), 205339 (2005)
CrossRef ADS Google scholar
[33]
S. H. Lohmann, C. Strelow, A. Mews, and T. Kippe, Surface charges on CdSe-dot/CdS-rod nanocrystals: Measuring and modeling the diffusion of exciton-fluorescence rates and energies, ACS Nano 11(12), 12185 (2017)
CrossRef ADS Google scholar
[34]
S. H. Lohmann, P. Harder, F. Bourier, C. Strelow, A. Mews, and T. Kipp, Influence of interface-driven strain on the spectral diffusion properties of core/shell CdSe/CdS dot/rod nanoparticles, J. Phys. Chem. C 123(8), 5099 (2019)
CrossRef ADS Google scholar
[35]
M. J. Fernée, B. Littleton, T. Plakhotnik, H. Rubinsztein-Dunlop, D. E. Gomez, and P. Mulvaney, Charge hopping revealed by jitter correlations in the photoluminescence spectra of single CdSe nanocrystals, Phys. Rev. B 81(15), 155307 (2010)
CrossRef ADS Google scholar
[36]
M. J. Fernée, T. Plakhotnik, Y. Louyer, B. N. Littleton, C. Potzner, P. Tamarat, P. Mulvaney, and B. Lounis, Spontaneous spectral diffusion in CdSe quantum dots, J. Phys. Chem. Lett. 3(12), 1716 (2012)
CrossRef ADS Google scholar
[37]
K. T. Early, P. K. Sudeep, T. Emrick, and M. D. Barnes, Polarization-driven stark shifts in quantum dot luminescence from single CdSe/oligo-PPV nanoparticles, Nano Lett. 10(5), 1754 (2010)
CrossRef ADS Google scholar
[38]
T. Ihara and Y. Kanemitsu, Spectral diffusion of neutral and charged exciton transitions in single CdSe/ZnS nanocrystals due to quantum-confined stark effect, Phys. Rev. B 90(19), 195302 (2014)
CrossRef ADS Google scholar
[39]
D. Braam, A. Molleken, G. M. Prinz, C. Notthoff, M. Geller, and A. Lorke, Role of the ligand layer for photoluminescence spectral diffusion of CdSe/ZnS nanoparticles, Phys. Rev. B 88(12), 125302 (2013)
CrossRef ADS Google scholar
[40]
S. E. Yalcin, B. Q. Yang, J. A. Labastide, and M. D. Barnes, Electrostatic force microscopy and spectral studies of electron attachment to single quantum dots on indiumtin oxide substrates, J. Phys. Chem. C 116(29), 15847 (2012)
CrossRef ADS Google scholar
[41]
S. Y. Jin, N. H. Song, and T. Q. Lian, Suppressed blinking dynamics of single QDs on ITO, ACS Nano 4(3), 1545 (2010)
CrossRef ADS Google scholar
[42]
H. Cheng, C. Yuan, J. Wang, T. Lin, J. Shen, Y. Hung, J. Tang, and F. Tseng, Modification of photon emission statistics from single colloidal CdSe quantum dots by conductive materials, J. Phys. Chem. C 118(31), 18126 (2014)
CrossRef ADS Google scholar
[43]
B. Li, G. Zhang, Z. Wang, Z. Li, R. Chen, C. Qin, Y. Gao, L. Xiao, and S. Jia, Suppressing the fluorescence blinking of single quantum dots encased in N-type semiconductor nanoparticles, Sci. Rep. 6(1), 32662 (2016)
CrossRef ADS Google scholar
[44]
Z. J. Li, G. F. Zhang, B. Li, R. Y. Chen, C. B. Qin, Y. Gao, L. T. Xiao, and S. T. Jia, Enhanced biexciton emission from single quantum dots encased in N-type semiconductor nanoparticles, Appl. Phys. Lett. 111(15), 153106 (2017)
CrossRef ADS Google scholar
[45]
K. T. Early, K. D. McCarthy, M. Y. Odoi, P. K. Sudeep, T. Emrick, and M. D. Barnes, Linear dipole behavior in single CdSe-oligo(phenylene vinylene) nanostructures, ACS Nano 3(2), 453 (2009)
CrossRef ADS Google scholar
[46]
G. F. Zhang, Y. G. Peng, H. Q. Xie, B. Li, Z. J. Li, C. G. Yang, W. L. Guo, C. B. Qin, R. Y. Chen, Y. Gao, Y. J. Zheng, L. T. Xiao, and S. T. Jia, Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films, Front. Phys. 14(2), 23605 (2019)
CrossRef ADS Google scholar
[47]
A. P. Litvin, I. V. Martynenko, F. Purcell-Milton, A. V. Baranov, A. V. Fedorov, and Y. K. Gun’ko, Colloidal quantum dots for optoelectronics, J. Mater. Chem. A 5(26), 13252 (2017)
CrossRef ADS Google scholar
[48]
Y. Jiang, S. Cho, and M. Shim, Light-emitting diodes of colloidal quantum dots and nanorod heterostructures for future emissive displays,J. Mater. Chem. C 6(11), 2618 (2018)
CrossRef ADS Google scholar
[49]
L. Meng, C. Yang, J. Meng, Y. Wang, Y. Ge, Z. Shao, G. Zhang, A. L. Rogach, and H. Zhong, In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: Shape tuning and polarized emission, Nano Res. 12(6), 1411 (2019)
CrossRef ADS Google scholar
[50]
T. Ihara, R. Sato, T. Teranishi, and Y. Kanemitsu, Delocalized and localized charged excitons in single CdSe/CdS dot-in-rods revealed by polarized photoluminescence blinking, Phys. Rev. B 90(3), 035309 (2014)
CrossRef ADS Google scholar
[51]
F. Hu, B. Lv, C. Yin, C. Zhang, X. Wang, B. Lounis, and M. Xiao, Carrier multiplication in a single semiconductor nanocrystal, Phys. Rev. Lett. 116(10), 106404 (2016)
CrossRef ADS Google scholar
[52]
G. C. Yuan, D. E. Gomez, N. Kirkwood, K. Boldt, and P. Mulvaney, Two mechanisms determine quantum dot blinking, ACS Nano 12(4), 3397 (2018)
CrossRef ADS Google scholar
[53]
B. Li, H. Huang, G. Zhang, C. Yang, W. Guo, R. Chen, C. Qin, Y. Gao, V. P. Biju, A. L. Rogach, L. Xiao, and S. Jia, Excitons and biexciton dynamics in single CsPbBr3 perovskite quantum dots, J. Phys. Chem. Lett. 9(24), 6934 (2018)
CrossRef ADS Google scholar
[54]
H. Yuan, E. Debroye, G. Caliandro, K. P. Janssen, J. van Loon, C. E. Kirschhock, J. A. Martens, J. Hofkens, and M. B. Roeffaers, Photoluminescence blinking of singlecrystal methylammonium lead iodide perovskite nanorods induced by surface traps, ACS Omega 1(1), 148 (2016)
CrossRef ADS Google scholar
[55]
B. Li, G. Zhang, C. Yang, Z. Li, R. Chen, C. Qin, Y. Gao, H. Huang, L. Xiao, and S. Jia, Fast recognition of single quantum dots from high multi-exciton emission and clustering effects, Opt. Express 26(4), 4674 (2018)
CrossRef ADS Google scholar
[56]
H. Zang, P. K. Routh, Y. Huang, J. S. Chen, E. Sutter, P. Sutter, and M. Cotlet, Nonradiative energy transfer from individual CdSe/ZnS quantum dots to single-layer and few-layer tin disulfide, ACS Nano 10(4), 4790 (2016)
CrossRef ADS Google scholar
[57]
W. He, C. Qin, Z. Qiao, Y. Gong, X. Zhang, G. Zhang, R. Chen, Y. Gao, L. Xiao, and S. Jia, In situ manipulation of fluorescence resonance energy transfer between quantum dots and monolayer graphene oxide by laser irradiation, Nanoscale 11(3), 1236 (2019)
CrossRef ADS Google scholar
[58]
C. Lethiec, J. Laverdant, H. Vallon, C. Javaux, B. Dubertret, J. M. Frigerio, C. Schwob, L. Coolen, and A. Maitre, Measurement of three-dimensional dipole orientation of a single fluorescent nanoemitter by emission polarization analysis, Phys. Rev. X 4(2), 021037 (2014)
CrossRef ADS Google scholar
[59]
A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states, Phys. Rev. B 54(7), 4843 (1996)
CrossRef ADS Google scholar
[60]
A. Sihvola, Dielectric polarization and particle shape effects, J. Nanomater. 2007, 45090 (2007)
CrossRef ADS Google scholar
[61]
J. S. Kamal, R. Gomes, Z. Hens, M. Karvar, K. Neyts, S. Compernolle, and F. Vanhaecke, Direct determination of absorption anisotropy in colloidal quantum rods, Phys. Rev. B 85(3), 035126 (2012)
CrossRef ADS Google scholar
[62]
S. L. Chuang and C. S. Chang, K·Pmethod for strained Wurtzite semiconductors, Phys. Rev. B 54(4), 2491 (1996)
CrossRef ADS Google scholar
[63]
L. Carbone, C. Nobile, M. De Giorgi, F. D. Sala, G. Morello, P. Pompa, M. Hytch, E. Snoeck, A. Fiore, I. R. Franchini, M. Nadasan, A. F. Silvestre, L. Chiodo, S. Kudera, R. Cingolani, R. Krahne, and L. Manna, Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach, Nano Lett. 7(10), 2942 (2007)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(3261 KB)

Accesses

Citations

Detail

Sections
Recommended

/