Time-resolved imaging of mode-conversion process of terahertz transients in subwavelength waveguides

Yao Lu , Qiang Wu , Qi Zhang , Ri-De Wang , Bin Zhang , Wen-Juan Zhao , Deng Zhang , Hao Xiong , Cheng-Liang Yang , Ji-Wei Qi , Chong-Pei Pan , Jing-Jun Xu

Front. Phys. ›› 2019, Vol. 14 ›› Issue (4) : 42502

PDF (9629KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (4) : 42502 DOI: 10.1007/s11467-019-0892-5
Letter

Time-resolved imaging of mode-conversion process of terahertz transients in subwavelength waveguides

Author information +
History +
PDF (9629KB)

Abstract

We studied the mode-conversion process of terahertz pulses from a planar subwavelength waveguide to a tilted rectangular subwavelength waveguide. An unusual wavefront rotation, which led to an extra conversion time, was observed using a time-resolved imaging technique. We simulated the mode conversion process by a finite-difference time-domain method, and the results agreed well with the experiments. According to the simulations, the conversion time was demonstrated to become longer as the tilt angle or width of the rectangular waveguide increased. This work provides the possibility to optimize the future high-speed communications and terahertz integrated platforms.

Keywords

ultrafast phenomenon / mode conversion / subwavelength waveguides / terahertz waves

Cite this article

Download citation ▾
Yao Lu, Qiang Wu, Qi Zhang, Ri-De Wang, Bin Zhang, Wen-Juan Zhao, Deng Zhang, Hao Xiong, Cheng-Liang Yang, Ji-Wei Qi, Chong-Pei Pan, Jing-Jun Xu. Time-resolved imaging of mode-conversion process of terahertz transients in subwavelength waveguides. Front. Phys., 2019, 14(4): 42502 DOI:10.1007/s11467-019-0892-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, Ultrafast all-optical graphene modulator, Nano Lett. 14(2), 955 (2014)

[2]

M. E. Fermann and I. Hartl, Ultrafast fiber laser technology, IEEE J. Sel. Top. Quantum Electron. 15(1), 191 (2009)

[3]

S. Sugiura and H. Iizuka, Deep-subwavelength MIMO using graphene-based nanoscale communication channel, IEEE Access 2, 1240 (2014)

[4]

L. R. Chen, J. Wang, B. Naghdi, and I. Glesk, Subwavelength grating waveguide devices for telecommunications applications, IEEE J. Sel. Top. Quantum Electron. 25(3), 8200111 (2019)

[5]

C. Yang, Q. Wu, J. Xu, K. A. Nelson, and C. A. Werley, Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide, Opt. Express 18(25), 26351 (2010)

[6]

Y. Lu, Q. Wu, Q. Zhang, R. Wang, W. Zhao, D. Zhang, C. Pan, J. Qi, and J. Xu, Propagation of THz pulses in rectangular subwavelength dielectric waveguides, J. Appl. Phys. 123(22), 223103 (2018)

[7]

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, and H. Meng, Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip, Nature 556(7701), 349 (2018)

[8]

W. Zhang and J. Yao, A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing, Nat. Commun. 9(1), 1396 (2018)

[9]

B. le Feber, N. Rotenberg, and L. Kuipers, Nanophotonic control of circular dipole emission, Nat. Commun. 6(1), 6695 (2015)

[10]

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P.T. Rakich, Control of coherent information via onchip photonic-phononic emitter-receivers, Nat. Commun. 6, 6427 (2015)

[11]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer, Nat. Photon. 9, 374 (2015)

[12]

Y. Tan, H. Wu, S. Wang, C. Li, and D. Dai, Silicon-based hybrid demultiplexer for wavelength- and mode-division multiplexing, Opt. Lett. 43(9), 1962 (2018)

[13]

D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, and H. K. Tsang, 10-channel mode (de)multiplexer with dual polarizations, Laser Photon. Rev. 12(1), 1700109 (2018)

[14]

S. Koenig, D. Lopezdiaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, Wireless sub-THz communication system with high data rate, Nat. Photon. 7(12), 977 (2013)

[15]

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, The 2017 terahertz science and technology roadmap, J. Phys. D Appl. Phys. 50(4), 043001 (2017)

[16]

D. L. Woolard, R. Brown, M. Pepper, and M. Kemp, Terahertz frequency sensing and imaging: A time of reckoning future applications? Proc. IEEE 93(10), 1722 (2005)

[17]

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, Terahertz spectroscopy of explosives and drugs, Mater. Today 11(3), 18 (2008)

[18]

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, Antennaintegrated 0.6 THz FET direct detectors based on CVD graphene, Nano Lett. 14(10), 5834 (2014)

[19]

Q. Zhang, J. Qi, Q. Wu, Y. Lu, W. Zhao, R. Wang, C. Pan, S. Wang, and J. Xu, Surface enhancement of THz wave by coupling a subwavelength LiNbO3 slab waveguide with a composite antenna structure, Sci. Rep. 7(1), 17602 (2017)

[20]

G. Scalari, C. Maissen, D. Turcinkova, D. Hagenmuller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial, Science 335(6074), 1323 (2012)

[21]

B. Zhang, Q. Wu, C. Pan, R. Feng, J. Xu, C. Lou, X. Wang, and F. Yang, THz band-stop filter using metamaterials surfaced on LiNbO3 sub-wavelength slab waveguide, Opt. Express 23(12), 16042 (2015)

[22]

P. Sivarajah, A. Steinbacher, B. Dastrup, and K. Nelson, THz-frequency cavity magnon-phonon-polaritons in the strong coupling regime, arXiv: 1707.03503 (2017)

[23]

C. Pan, Q. Wu, Q. Zhang, W. Zhao, J. Qi, J. Yao, C. Zhang, W. T. Hill, and J. Xu, Direct visualization of light confinement and standing wave in THz Fabry–Perot resonator with Bragg mirrors, Opt. Express 25(9), 9768 (2017)

[24]

T. P. Dougherty, G. P. Wiederrecht, K. A. Nelson, M. H. Garrett, H. P. Jensen, and C. Warde, Femtosecond resolution of soft mode dynamics in structural phase transitions, Science 258(5083), 770 (1992)

[25]

T. P. Dougherty, G. P. Wiederrecht, and K. A. Nel-son, Impulsive stimulated Raman scattering experiments in the polariton regime, J. Opt. Soc. Am. B 9(12), 2179 (1992)

[26]

Q. Wu, C. A. Werley, K. H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide, Opt. Express 17(11), 9219 (2009)

[27]

C. H. Henry and J. J. Hopfield, Raman scattering by polaritons, Phys. Rev. Lett. 15, 964 (1965)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (9629KB)

1076

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/