Transformation devices with optical nihility media and reduced realizations

Lin Xu , Qian-Nan Wu , Yang-Yang Zhou , Huan-Yang Chen

Front. Phys. ›› 2019, Vol. 14 ›› Issue (4) : 42501

PDF (6989KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (4) : 42501 DOI: 10.1007/s11467-019-0891-6
Research article

Transformation devices with optical nihility media and reduced realizations

Author information +
History +
PDF (6989KB)

Abstract

Starting from optical nihility media (ONM), we design several intriguing devices with transformation optics method in two dimensions, such as a wave splitter, a concave lens, a field rotator, a concentrator, and an invisibility cloak. Though the extreme anisotropic property of ONM hinders the fabrication of these devices. We demonstrate that those devices could be effectively realized by simplified materials with Fabry–Pérot resonances (FPs) at discrete frequencies. Moreover, we propose a reduced version of simplified materials with FPs to construct a concentrator and a rotator, which is feasible in experimental fabrications. The simulations of total scattering cross-sections confirm their functionalities.

Keywords

transformation optics / optical nihility media / Fabry–Pérot resonances

Cite this article

Download citation ▾
Lin Xu, Qian-Nan Wu, Yang-Yang Zhou, Huan-Yang Chen. Transformation devices with optical nihility media and reduced realizations. Front. Phys., 2019, 14(4): 42501 DOI:10.1007/s11467-019-0891-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

U. Leonhardt, Optical conformal mapping, Science 312(5781), 1777 (2006)

[2]

J. B. Pendry, D. Schurig, and D. R. Smith, Controlling electromagnetic fields, Science 312(5781), 1780 (2006)

[3]

U. Leonhardt and T. G. Philbin, General relativity in electrical engineering, New J. Phys. 8(10), 247 (2006)

[4]

U. Leonhardt and T. Philbin, Geometry and Light: The Science of Invisibility, Dover Inc. Mineola, New York, 2010

[5]

A. Einstein, Die grundlage der allgemeinen relativitätstheorie, Ann. Phys. 354(7), 769 (1916)

[6]

H. Chen, C. T. Chan, and P. Sheng, Transformation optics and metamaterials, Nat. Mater. 9(5), 387 (2010)

[7]

A. V. Kildishev and V. M. Shalaev, Transformation optics and metamaterials, Phys. Uspekhi 54(1), 53 (2011)

[8]

B. Zhang, Electrodynamics of transformation-based invisibility cloaking, Light Sci. Appl. 1(10), e32 (2012)

[9]

P. Kinsler and M. W. McCall, The futures of transformations and metamaterials, Photon. Nanostructures 15, 10 (2015)

[10]

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, Transformation Optics: From Classic Theory and Applications to its New Branches, Laser Photon. Rev. 11(6), 1700034 (2017)

[11]

M. McCall, J. Pendry, V. Galdi, Y. Lai, S. Horsley, J. Li, J. Zhu, R. Mitchell-Thomas, O. Quevedo-Teruel, P. Tassin, V. Ginis, E. Martini, G. Minatti, S. Maci, M. Ebrahimpouri, Y. Hao, P. Kinsler, J. Gratus, J. M. Lukens, A. M. Weiner, U. Leonhardt, I. I. Smolyaninov, V. N. Smolyaninova, R. T. Thompson, M. Wegener, M. Kadic, and S. A. Cummer, Roadmap on transformation optics, J. Opt. 20(6), 063001 (2018)

[12]

L. Xu and H. Chen, Conformal transformation optics, Nat. Photon. 9(1), 15 (2015)

[13]

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science 314(5801), 977 (2006)

[14]

J. Li and J. Pendry, Hiding under the carpet: A new strategy for cloaking, Phys. Rev. Lett. 101(20), 203901 (2008)

[15]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, Broadband ground-plane cloak, Science 323(5912), 366 (2009)

[16]

H. F. Ma and T. J. Cui, Three-dimensional broadband ground-plane cloak made of metamaterials, Nat. Commun. 1(3), 21 (2010)

[17]

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations, Photon. Nanostructures 6(1), 87 (2008)

[18]

M. M. Sadeghi, S. Li, L. Xu, B. Hou, and H. Chen, Transformation optics with Fabry–Pérot resonances, Sci. Rep. 5(1), 8680 (2015)

[19]

P. Zhao, L. Xu, G. Cai, N. Liu, and H. Chen, A feasible approach to field concentrators of arbitrary shapes, Front. Phys. 13, 134205 (2018)

[20]

M. Y. Zhou, L. Xu, L. C. Zhang, J. Wu, Y. B. Li, and H. Y. Chen, Perfect invisibility concentrator with simplified material parameters, Front. Phys. 13(5), 134101 (2018)

[21]

H. Chen and C. Chan, Transformation media that rotate electromagnetic fields, Appl. Phys. Lett. 90(24), 241105 (2007)

[22]

H. Chen and C. Chan, Electromagnetic wave manipulation by layered systems using the transformation media concept, Phys. Rev. B 78(5), 054204 (2008)

[23]

H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. Chan, Design and experimental realization of a broadband transformation media field rotator at microwave frequencies, Phys. Rev. Lett. 102(18), 183903 (2009)

[24]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, Electromagnetic wormholes and virtual magnetic monopoles from metamaterials, Phys. Rev. Lett. 99(18), 183901 (2007)

[25]

H. Chen and C. T. Chan, Acoustic cloaking and transformation acoustics, J. Phys. D 43(11), 113001 (2010)

[26]

C. Li, L. Xu, L. Zhu, S. Zou, Q. H. Liu, Z. Wang, and H. Chen, Concentrators for water waves, Phys. Rev. Lett. 121(10), 104501 (2018)

[27]

H. Chen, J. Yang, J. Zi, and C. T. Chan, Transformation media for linear liquid surface waves, EPL 85(2), 24004 (2009)

[28]

M. Brun, S. Guenneau, and A. B. Movchan, Achieving control of in-plane elastic waves, Appl. Phys. Lett. 94(6), 061903 (2009)

[29]

A. Norris and A. Shuvalov, Elastic cloaking theory, Wave Motion 48(6), 525 (2011)

[30]

S. Narayana and Y. Sato, Heat flux manipulation with engineered thermal materials, Phys. Rev. Lett. 108(21), 214303 (2012)

[31]

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, Ultrathin three-dimensional thermal cloak, Phys. Rev. Lett. 112(5), 054301 (2014)

[32]

T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C. W. Qiu, Experimental demonstration of a bilayer thermal cloak, Phys. Rev. Lett. 112(5), 054302 (2014)

[33]

C. Fan, Y. Gao, and J. Huang, Shaped graded materials with an apparent negative thermal conductivity, Appl. Phys. Lett. 92(25), 251907 (2008)

[34]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. Chan, Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials, Nat. Mater. 10(8), 582 (2011)

[35]

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. Chan, and Y. Lai, Ultratransparent media and transformation optics with shifted spatial dispersions, Phys. Rev. Lett. 117(22), 223901 (2016)

[36]

A. Lakhtakia, On perfect lenses and nihility, Int. J. Infrared Millim. Waves 23(3), 339 (2002)

[37]

I. Liberal and N. Engheta, Near-zero refractive index photonics, Nat. Photon. 11(3), 149 (2017)

[38]

W. Yan, M. Yan, and M. Qiu, Generalized nihility media from transformation optics, J. Opt. 13(2), 024005 (2011)

[39]

Q. He, S. Xiao, X. Li, and L. Zhou, Optic-null medium: Realization and applications, Opt. Express 21(23), 28948 (2013)

[40]

F. Sun and S. He, Surface transformation with homogenous optic-null medium, Prog. Electromagnetics Res. 151, 169 (2015)

[41]

J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85(18), 3966 (2000)

[42]

D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84(18), 4184 (2000)

[43]

R. A. Shelby, D. R. Smith, and S. Schultz, Experimental verification of a negative index of refraction, Science 292(5514), 77 (2001)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (6989KB)

1394

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/