Transformation devices with optical nihility media and reduced realizations

Lin Xu, Qian-Nan Wu, Yang-Yang Zhou, Huan-Yang Chen

PDF(6989 KB)
PDF(6989 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (4) : 42501. DOI: 10.1007/s11467-019-0891-6
Research article
Research article

Transformation devices with optical nihility media and reduced realizations

Author information +
History +

Abstract

Starting from optical nihility media (ONM), we design several intriguing devices with transformation optics method in two dimensions, such as a wave splitter, a concave lens, a field rotator, a concentrator, and an invisibility cloak. Though the extreme anisotropic property of ONM hinders the fabrication of these devices. We demonstrate that those devices could be effectively realized by simplified materials with Fabry–Pérot resonances (FPs) at discrete frequencies. Moreover, we propose a reduced version of simplified materials with FPs to construct a concentrator and a rotator, which is feasible in experimental fabrications. The simulations of total scattering cross-sections confirm their functionalities.

Keywords

transformation optics / optical nihility media / Fabry–Pérot resonances

Cite this article

Download citation ▾
Lin Xu, Qian-Nan Wu, Yang-Yang Zhou, Huan-Yang Chen. Transformation devices with optical nihility media and reduced realizations. Front. Phys., 2019, 14(4): 42501 https://doi.org/10.1007/s11467-019-0891-6

References

[1]
U. Leonhardt, Optical conformal mapping, Science 312(5781), 1777 (2006)
CrossRef ADS Google scholar
[2]
J. B. Pendry, D. Schurig, and D. R. Smith, Controlling electromagnetic fields, Science 312(5781), 1780 (2006)
CrossRef ADS Google scholar
[3]
U. Leonhardt and T. G. Philbin, General relativity in electrical engineering, New J. Phys. 8(10), 247 (2006)
CrossRef ADS Google scholar
[4]
U. Leonhardt and T. Philbin, Geometry and Light: The Science of Invisibility, Dover Inc. Mineola, New York, 2010
[5]
A. Einstein, Die grundlage der allgemeinen relativitätstheorie, Ann. Phys. 354(7), 769 (1916)
CrossRef ADS Google scholar
[6]
H. Chen, C. T. Chan, and P. Sheng, Transformation optics and metamaterials, Nat. Mater. 9(5), 387 (2010)
CrossRef ADS Google scholar
[7]
A. V. Kildishev and V. M. Shalaev, Transformation optics and metamaterials, Phys. Uspekhi 54(1), 53 (2011)
CrossRef ADS Google scholar
[8]
B. Zhang, Electrodynamics of transformation-based invisibility cloaking, Light Sci. Appl. 1(10), e32 (2012)
CrossRef ADS Google scholar
[9]
P. Kinsler and M. W. McCall, The futures of transformations and metamaterials, Photon. Nanostructures 15, 10 (2015)
CrossRef ADS Google scholar
[10]
F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, Transformation Optics: From Classic Theory and Applications to its New Branches, Laser Photon. Rev. 11(6), 1700034 (2017)
CrossRef ADS Google scholar
[11]
M. McCall, J. Pendry, V. Galdi, Y. Lai, S. Horsley, J. Li, J. Zhu, R. Mitchell-Thomas, O. Quevedo-Teruel, P. Tassin, V. Ginis, E. Martini, G. Minatti, S. Maci, M. Ebrahimpouri, Y. Hao, P. Kinsler, J. Gratus, J. M. Lukens, A. M. Weiner, U. Leonhardt, I. I. Smolyaninov, V. N. Smolyaninova, R. T. Thompson, M. Wegener, M. Kadic, and S. A. Cummer, Roadmap on transformation optics, J. Opt. 20(6), 063001 (2018)
CrossRef ADS Google scholar
[12]
L. Xu and H. Chen, Conformal transformation optics, Nat. Photon. 9(1), 15 (2015)
CrossRef ADS Google scholar
[13]
D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science 314(5801), 977 (2006)
CrossRef ADS Google scholar
[14]
J. Li and J. Pendry, Hiding under the carpet: A new strategy for cloaking, Phys. Rev. Lett. 101(20), 203901 (2008)
CrossRef ADS Google scholar
[15]
R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, Broadband ground-plane cloak, Science 323(5912), 366 (2009)
CrossRef ADS Google scholar
[16]
H. F. Ma and T. J. Cui, Three-dimensional broadband ground-plane cloak made of metamaterials, Nat. Commun. 1(3), 21 (2010)
CrossRef ADS Google scholar
[17]
M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations, Photon. Nanostructures 6(1), 87 (2008)
CrossRef ADS Google scholar
[18]
M. M. Sadeghi, S. Li, L. Xu, B. Hou, and H. Chen, Transformation optics with Fabry–Pérot resonances, Sci. Rep. 5(1), 8680 (2015)
CrossRef ADS Google scholar
[19]
P. Zhao, L. Xu, G. Cai, N. Liu, and H. Chen, A feasible approach to field concentrators of arbitrary shapes, Front. Phys. 13, 134205 (2018)
CrossRef ADS Google scholar
[20]
M. Y. Zhou, L. Xu, L. C. Zhang, J. Wu, Y. B. Li, and H. Y. Chen, Perfect invisibility concentrator with simplified material parameters, Front. Phys. 13(5), 134101 (2018)
CrossRef ADS Google scholar
[21]
H. Chen and C. Chan, Transformation media that rotate electromagnetic fields, Appl. Phys. Lett. 90(24), 241105 (2007)
CrossRef ADS Google scholar
[22]
H. Chen and C. Chan, Electromagnetic wave manipulation by layered systems using the transformation media concept, Phys. Rev. B 78(5), 054204 (2008)
CrossRef ADS Google scholar
[23]
H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. Chan, Design and experimental realization of a broadband transformation media field rotator at microwave frequencies, Phys. Rev. Lett. 102(18), 183903 (2009)
CrossRef ADS Google scholar
[24]
A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, Electromagnetic wormholes and virtual magnetic monopoles from metamaterials, Phys. Rev. Lett. 99(18), 183901 (2007)
CrossRef ADS Google scholar
[25]
H. Chen and C. T. Chan, Acoustic cloaking and transformation acoustics, J. Phys. D 43(11), 113001 (2010)
CrossRef ADS Google scholar
[26]
C. Li, L. Xu, L. Zhu, S. Zou, Q. H. Liu, Z. Wang, and H. Chen, Concentrators for water waves, Phys. Rev. Lett. 121(10), 104501 (2018)
CrossRef ADS Google scholar
[27]
H. Chen, J. Yang, J. Zi, and C. T. Chan, Transformation media for linear liquid surface waves, EPL 85(2), 24004 (2009)
CrossRef ADS Google scholar
[28]
M. Brun, S. Guenneau, and A. B. Movchan, Achieving control of in-plane elastic waves, Appl. Phys. Lett. 94(6), 061903 (2009)
CrossRef ADS Google scholar
[29]
A. Norris and A. Shuvalov, Elastic cloaking theory, Wave Motion 48(6), 525 (2011)
CrossRef ADS Google scholar
[30]
S. Narayana and Y. Sato, Heat flux manipulation with engineered thermal materials, Phys. Rev. Lett. 108(21), 214303 (2012)
CrossRef ADS Google scholar
[31]
H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, Ultrathin three-dimensional thermal cloak, Phys. Rev. Lett. 112(5), 054301 (2014)
CrossRef ADS Google scholar
[32]
T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C. W. Qiu, Experimental demonstration of a bilayer thermal cloak, Phys. Rev. Lett. 112(5), 054302 (2014)
CrossRef ADS Google scholar
[33]
C. Fan, Y. Gao, and J. Huang, Shaped graded materials with an apparent negative thermal conductivity, Appl. Phys. Lett. 92(25), 251907 (2008)
CrossRef ADS Google scholar
[34]
X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. Chan, Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials, Nat. Mater. 10(8), 582 (2011)
CrossRef ADS Google scholar
[35]
J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. Chan, and Y. Lai, Ultratransparent media and transformation optics with shifted spatial dispersions, Phys. Rev. Lett. 117(22), 223901 (2016)
CrossRef ADS Google scholar
[36]
A. Lakhtakia, On perfect lenses and nihility, Int. J. Infrared Millim. Waves 23(3), 339 (2002)
CrossRef ADS Google scholar
[37]
I. Liberal and N. Engheta, Near-zero refractive index photonics, Nat. Photon. 11(3), 149 (2017)
CrossRef ADS Google scholar
[38]
W. Yan, M. Yan, and M. Qiu, Generalized nihility media from transformation optics, J. Opt. 13(2), 024005 (2011)
CrossRef ADS Google scholar
[39]
Q. He, S. Xiao, X. Li, and L. Zhou, Optic-null medium: Realization and applications, Opt. Express 21(23), 28948 (2013)
CrossRef ADS Google scholar
[40]
F. Sun and S. He, Surface transformation with homogenous optic-null medium, Prog. Electromagnetics Res. 151, 169 (2015)
CrossRef ADS Google scholar
[41]
J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85(18), 3966 (2000)
CrossRef ADS Google scholar
[42]
D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84(18), 4184 (2000)
CrossRef ADS Google scholar
[43]
R. A. Shelby, D. R. Smith, and S. Schultz, Experimental verification of a negative index of refraction, Science 292(5514), 77 (2001)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(6989 KB)

Accesses

Citations

Detail

Sections
Recommended

/