On the existence of N*(890) resonance in S11 channel of πN scatterings

Yu-Fei Wang, De-Liang Yao, Han-Qing Zheng

PDF(895 KB)
PDF(895 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (2) : 24501. DOI: 10.1007/s11467-018-0877-9
LETTER
LETTER

On the existence of N*(890) resonance in S11 channel of πN scatterings

Author information +
History +

Abstract

Low-energy partial-wave πN scattering data is reexamined with the help of the production representation of partial-wave S matrix, where branch cuts and poles are thoroughly under consideration. The left-hand cut contribution to the phase shift is determined, with controlled systematic error estimates, by using the results of O(p3) chiral perturbative amplitudes obtained in the extended-onmass- shell scheme. In S11 and P11 channels, severe discrepancies are observed between the phase shift data and the sum of all known contributions. Statistically satisfactory fits to the data can only be achieved by adding extra poles in the two channels. We find that a S11 resonance pole locates at zr = (0.895±0.081)−(0.164±0.023)i GeV, on the complex s-plane. On the other hand, a P11 virtual pole, as an accompanying partner of the nucleon bound-state pole, locates at zv = (0.966±0.018) GeV, slightly above the nucleon pole on the real axis below threshold. Physical origin of the two newly established poles is explored to the best of our knowledge. It is emphasized that the O(p3) calculation greatly improves the fit quality comparing with the previous O(p2) one.

Keywords

dispersion relations / πN scatterings / nucleon resonance

Cite this article

Download citation ▾
Yu-Fei Wang, De-Liang Yao, Han-Qing Zheng. On the existence of N*(890) resonance in S11 channel of πN scatterings. Front. Phys., 2019, 14(2): 24501 https://doi.org/10.1007/s11467-018-0877-9

References

[1]
G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, Application of dispersion relations to low-energy mesonnucleon scattering, Phys. Rev. 106(6), 1337 (1957)
CrossRef ADS Google scholar
[2]
A. A. Logunov, L. D. Soloviev, and A. N. Tavkhelidze, Dispersion sum rules and high-energy scattering, Phys. Lett. B 24(4), 181 (1967)
CrossRef ADS Google scholar
[3]
K. Igi and S. Matsuda, New sum rules and singularities in the complex J plane, Phys. Rev. Lett. 18(15), 625 (1967)
CrossRef ADS Google scholar
[4]
R. Dolen, D. Horn, and C. Schmid, Finite energy sum rules and their application to πNcharge exchange, Phys. Rev. 166(5), 1768 (1968)
CrossRef ADS Google scholar
[5]
G. Höhler, Pion-Nucleon Scattering, Landolt-Börnstein, Vol. 962, edited by H. Schopper, Berlin: Springer, 1983
[6]
R. Koch and E. Pietarinen, Low-energy πN partial wave analysis, Nucl. Phys. A 336(3), 331 (1980)
CrossRef ADS Google scholar
[7]
R. Koch, A calculation of low-energy πN partial waves based on fixed t analyticity, Nucl. Phys. A 448(4), 707 (1986)
CrossRef ADS Google scholar
[8]
E. Matsinos, W. S. Woolcock, G. C. Oades, G. Rasche, and A. Gashi, Phase-shift analysis of low-energy π±pelastic-scattering data, Nucl. Phys. A 778(1–2), 95 (2006)
CrossRef ADS Google scholar
[9]
R. A. Arndt, W. J. Briscoe, I. I. Strakovsky, and R. L. Workman, Extended partial-wave analysis of πN scattering data, Phys. Rev. C 74(4), 045205 (2006)
CrossRef ADS Google scholar
[10]
E. E. Jenkins and A. V. Manohar, Baryon chiral perturbation theory using a heavy fermion Lagrangian, Phys. Lett. B 255(4), 558 (1991)
CrossRef ADS Google scholar
[11]
V. Bernard, N. Kaiser, and U. G. Meißner, Chiral dynamics in nucleons and nuclei, Int. J. Mod. Phys. E 4(02), 193 (1995)
CrossRef ADS Google scholar
[12]
V. Bernard, Chiral perturbation theory and baryon properties, Prog. Part. Nucl. Phys. 60(1), 82 (2008)
CrossRef ADS Google scholar
[13]
J. Gasser, M. E. Sainio, and A. Svarc, Nucleons with chiral loops, Nucl. Phys. B 307(4), 779 (1988)
CrossRef ADS Google scholar
[14]
T. Fuchs, J. Gegelia, G. Japaridze, and S. Scherer, Renormalization of relativistic baryon chiral perturbation theory and power counting, Phys. Rev. D 68(5), 056005 (2003)
CrossRef ADS Google scholar
[15]
J. M. Alarcon, J. Martin Camalich, and J. A. Oller, Improved description of the πN-scattering phenomenology in covariant baryon chiral perturbation theory, Ann. Phys. 336, 413 (2013)
CrossRef ADS Google scholar
[16]
Y. H. Chen, D. L. Yao, and H. Q. Zheng, Analyses of pion-nucleon elastic scattering amplitudes up to O(p4) in extended-on-mass-shell subtraction scheme, Phys. Rev. D 87(5), 054019 (2013)
CrossRef ADS Google scholar
[17]
D.-L. Yao, D. Siemens, V. Bernard, E. Epelbaum, A. M. Gasparyan, J. Gegelia, H. Krebs, and U.-G. Meißner, Pion-nucleon scattering in covariant baryon chiral perturbation theory with explicit Delta resonances, J. High Energy Phys. 2016, 38 (2016)
CrossRef ADS Google scholar
[18]
D. Siemens, V. Bernard, E. Epelbaum, A. Gasparyan, H. Krebs, and U. G. Meißner, Elastic pion-nucleon scattering in chiral perturbation theory: A fresh look, Phys. Rev. C 94(1), 014620 (2016)
CrossRef ADS Google scholar
[19]
D. Siemens, V. Bernard, E. Epelbaum, A. M. Gasparyan, H. Krebs, and U. G. Meißner, Elastic and inelastic pionnucleon scattering to fourth order in chiral perturbation theory, Phys. Rev. C 96(5), 055205 (2017)
CrossRef ADS Google scholar
[20]
M. Hoferichter, J. Ruiz de Elvira, B. Kubis, and U. G. Meißner, Roy–Steiner-equation analysis of pion-nucleon scattering, Phys. Rep. 625, 1 (2016)
CrossRef ADS Google scholar
[21]
A. Gasparyan and M. F. M. Lutz, Photon- and pionnucleon interactions in a unitary and causal effective field theory based on the chiral Lagrangian, Nucl. Phys. A 848(1–2), 126 (2010)
[22]
V. Mathieu, I. V. Danilkin, C. Fernndez-Ramrez, M. R. Pennington, D. Schott, A. P. Szczepaniak, and G. Fox, Toward complete pion nucleon amplitudes, Phys. Rev. D 92(7), 074004 (2015)
CrossRef ADS Google scholar
[23]
Y. F. Wang, D. L. Yao, and H. Q. Zheng, New insights on low energy πN scattering amplitudes, Eur. Phys. J. C 78(7), 543 (2018)
CrossRef ADS Google scholar
[24]
Z. Xiao and H. Q. Zheng, Left-hand singularities, hadron form-factors and the properties of the sigma meson, Nucl. Phys. A 695(1–4), 273 (2001)
CrossRef ADS Google scholar
[25]
H. Q. Zheng, Z. Y. Zhou, G. Y. Qin, Z. Xiao, J. J. Wang, and N. Wu, The kappa resonance in s wave πK scatterings, Nucl. Phys. A 733(3–4), 235 (2004)
CrossRef ADS Google scholar
[26]
Z. Y. Zhou and H. Q. Zheng, An improved study of the kappa resonance and the non-exotic s wave πKscatterings up to s= 2.1 GeV of LASS data, Nucl. Phys. A 775(3–4), 212 (2006)
CrossRef ADS Google scholar
[27]
Z. Y. Zhou, G. Y. Qin, P. Zhang, Z. Xiao, H. Q. Zheng, and N. Wu, The Pole structure of the unitary, crossing symmetric low energy pp scattering amplitudes, J. High Energy Phys. 02, 043 (2005)
[28]
I. Caprini, G. Colangelo, and H. Leutwyler, Mass and width of the lowest resonance in QCD, Phys. Rev. Lett. 96(13), 132001 (2006)
CrossRef ADS Google scholar
[29]
S. Descotes-Genon and B. Moussallam, The K*0 (800) scalar resonance from Roy-Steiner representations of πKscattering, Eur. Phys. J. C 48(2), 553 (2006)
CrossRef ADS Google scholar
[30]
Z. H. Guo, J. J. Sanz Cillero, and H. Q. Zheng, Partial waves and large NCresonance sum rules, J. High Energy Phys. 06, 030 (2007)
[31]
Z. H. Guo, J. J. Sanz-Cillero, and H. Q. Zheng, O(p6) extension of the large-NC partial wave dispersion relations, Phys. Lett. B 661, 342 (2008)
CrossRef ADS Google scholar
[32]
V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester, and J. J. de Swart, Partial wave analysis of all nucleonnucleon scattering data below 350-MeV, Phys. Rev. C 48(2), 792 (1993)
CrossRef ADS Google scholar
[33]
D. R. Entem and J. A. Oller, The N/D method with non-perturbative left-hand-cut discontinuity and the 1S0NNpartial wave, Phys. Lett. B 773, 498 (2017)
CrossRef ADS Google scholar
[34]
Y. F. Wang, D. L. Yao, and H. Q. Zheng, New insights on low energy πNscattering amplitudes II: Comprehensive analyses at O(p3) level, arXiv: 1811.09748 (2018)

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(895 KB)

Accesses

Citations

Detail

Sections
Recommended

/