
One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED
You-Ji Fan, Zhen-Fei Zheng, Yu Zhang, Dao-Ming Lu, Chui-Ping Yang
Front. Phys. ›› 2019, Vol. 14 ›› Issue (2) : 21602.
One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED
We propose a single-step implementation of a muti-target-qubit controlled phase gate with one catstate qubit (cqubit) simultaneously controlling n–1 target cqubits. The two logic states of a cqubit are represented by two orthogonal cat states of a single cavity mode. In this proposal, the gate is implemented with n microwave cavities coupled to a superconducting transmon qutrit. Because the qutrit remains in the ground state during the gate operation, decoherence caused due to the qutrit’s energy relaxation and dephasing is greatly suppressed. The gate implementation is quite simple because only a single-step operation is needed and neither classical pulse nor measurement is required. Numerical simulations demonstrate that high-fidelity realization of a controlled phase gate with one cqubit simultaneously controlling two target cqubits is feasible with present circuit QED technology. This proposal can be extended to a wide range of physical systems to realize the proposed gate, such as multiple microwave or optical cavities coupled to a natural or artificial three-level atom.
circuit QED / cat-state / multi-target-qubit controlled phase gate
[1] |
D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer, Proc. R. Soc. Lond. A 400(1818), 97 (1985)
|
[2] |
P. W. Shor, in: Proceedings of the 35th Annual Symposium on Foundations of Computer Science IEEE Computer Society Press, Santa Fe, NM, 1994
|
[3] |
L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79(2), 325 (1997)
CrossRef
ADS
Google scholar
|
[4] |
A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, Elementary gates for quantum computation, Phys. Rev. A 52(5), 3457 (1995)
CrossRef
ADS
Google scholar
|
[5] |
M. Mötöen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, Quantum circuits for general multiqubit gates, Phys. Rev. Lett. 93(13), 130502 (2004)
CrossRef
ADS
Google scholar
|
[6] |
Y. Liu, G. L. Long, and Y. Sun, Analytic one-bit and CNOT gate constructions of general n-qubit controlled gates, Int. J. Quant. Inf. 6(03), 447 (2008)
CrossRef
ADS
Google scholar
|
[7] |
J. K. Pachos and P. L. Knight, Quantum computation with a one-dimensional optical lattice, Phys. Rev. Lett. 91(10), 107902 (2003)
CrossRef
ADS
Google scholar
|
[8] |
H. Ollivier and P. Milman, Proposal for realization of a Toffoli gate via cavity-assisted collision, arXiv: quantph/ 0306064 (2003)
|
[9] |
J. Zhang, W. Liu, Z. Deng, Z. Lu, and G. L. Long, Modularization of multi-qubit controlled phase gate and its NMR implementation, J. Opt. B 7, 22 (2005)
CrossRef
ADS
Google scholar
|
[10] |
A. Fedorov, L. Steffen, M. Baur, M. P. da Silva, and A. Wallraff, Implementation of a Toffoli gate with superconducting circuits, Nature 481(7380), 170 (2012)
CrossRef
ADS
Google scholar
|
[11] |
L. M. Duan, B. Wang, and H. J. Kimble, Robust quantum gates on neutral atoms with cavity-assisted photonscattering,Phys. Rev. A 72(3), 032333 (2005)
CrossRef
ADS
Google scholar
|
[12] |
X. Wang, A. Sørensen, and K. Mølmeret, Multibit gates for quantum computing, Phys. Rev. Lett. 86(17), 3907 (2001)
CrossRef
ADS
Google scholar
|
[13] |
X. Zou, Y. Dong, and G. C. Guo, Implementing a conditional zgate by a combination of resonant interaction and quantum interference, Phys. Rev. A 74(3), 032325 (2006)
CrossRef
ADS
Google scholar
|
[14] |
C. P. Yang and S. Han, n-qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator, Phys. Rev. A 72(3), 032311 (2005)
CrossRef
ADS
Google scholar
|
[15] |
C. P. Yang and S. Han, Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED, Phys. Rev. A 73(3), 032317 (2006)
CrossRef
ADS
Google scholar
|
[16] |
W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, One-step implementation of multi-qubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Qsilica microsphere cavity, Appl. Phys. Lett. 96(24), 241113 (2010)
CrossRef
ADS
Google scholar
|
[17] |
S. B. Zheng, Implementation of Toffoli gates with a single asymmetric Heisenberg XYinteraction, Phys. Rev. A 87(4), 042318 (2013)
CrossRef
ADS
Google scholar
|
[18] |
T. Monz, K. Kim, W. Hänsel, M. Riebe, A. S. Villar, P. Schindler, M. Chwalla, M. Hennrich, and R. Blatt, Realization of the quantum Toffoli gate with trapped ions, Phys. Rev. Lett. 102(4), 040501 (2009)
CrossRef
ADS
Google scholar
|
[19] |
H. R. Wei and F. G. Deng, Universal quantum gates for hybrid systems assisted by quantum dots inside doublesided optical microcavities, Phys. Rev. A 87(2), 022305 (2013)
CrossRef
ADS
Google scholar
|
[20] |
H. W. Wei and F. G. Deng, Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities,Sci. Rep. 4(1), 7551 (2014)
CrossRef
ADS
Google scholar
|
[21] |
M. Hua, M. J. Tao, and F. G. Deng, Universal quantum gates on microwave photons assisted by circuit quantum electrodynamics, Phys. Rev. A 90(1), 012328 (2014)
CrossRef
ADS
Google scholar
|
[22] |
M. Hua, M. J. Tao, and F. G. Deng, Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED, Sci. Rep. 5(1), 9274 (2015)
CrossRef
ADS
Google scholar
|
[23] |
C. P. Yang, Y. X. Liu, and F. Nori, Phase gate of one qubit simultaneously controlling n qubits in a cavity, Phys. Rev. A 81(6), 062323 (2010)
CrossRef
ADS
Google scholar
|
[24] |
C. P. Yang, S. B. Zheng, and F. Nori, Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity, Phys. Rev. A 82(6), 062326 (2010)
CrossRef
ADS
Google scholar
|
[25] |
C. P. Yang, Q. P. Su, F. Y. Zhang, and S. B. Zheng, Single-step implementation of a multiple-target-qubit controlled phase gate without need of classical pulses, Opt. Lett. 39(11), 3312 (2014)
CrossRef
ADS
Google scholar
|
[26] |
H. F. Wang, A. D. Zhu, and S. Zhang, One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities, Opt. Lett. 39(6), 1489 (2014)
CrossRef
ADS
Google scholar
|
[27] |
T. Liu, X. Z. Cao, Q. P. Su, S. J. Xiong, and C. P. Yang, Multi-target-qubit unconventional geometric phase gate in a multicavity system, Sci. Rep. 6(1), 21562 (2016)
CrossRef
ADS
Google scholar
|
[28] |
N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Extending the lifetime of a quantum bit with error correction in superconducting circuits, Nature 536(7617), 441 (2016)
CrossRef
ADS
Google scholar
|
[29] |
M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J. Schoelkopf, L. Jiang, and M. H. Devoret, Dynamically protected cat-qubits: a new paradigm for universal quantum computation, New J. Phys. 16(4), 045014 (2014)
CrossRef
ADS
Google scholar
|
[30] |
S. E. Nigg, Deterministic hadamard gate for microwave cat-state qubits in circuit QED, Phys. Rev. A 89(2), 022340 (2014)
CrossRef
ADS
Google scholar
|
[31] |
C. P. Yang, Q. P. Su, S. B. Zheng, F. Nori, and S. Han, Entangling two oscillators with arbitrary asymmetric initial states, Phys. Rev. A 95(5), 052341 (2017)
CrossRef
ADS
Google scholar
|
[32] |
R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H. Devoret, and R. J. Schoelkopf, Implementing a universal gate set on a logical qubit encoded in an oscillator, arXiv: 1608.02430 (2016)
|
[33] |
C. Wang, Y. Y. Gao, P. Reinhold, R. W. Heeres, N. Ofek, K. Chou, C. Axline, M. Reagor, J. Blumoff, K. M. Sliwa, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, A Schrödinger cat living in two boxes, Science 352(6289), 1087 (2016)
CrossRef
ADS
Google scholar
|
[34] |
C. P. Yang, S. I. Chu, and S. Han, Possible realization of entanglement, logical gates, and quantuminformation transfer with superconducting-quantuminterference-device qubits in cavity QED, Phys. Rev. A 67(4), 042311 (2003)
CrossRef
ADS
Google scholar
|
[35] |
J. Q. You and F. Nori, Quantum information processing with superconducting qubits in a microwave field,Phys. Rev. B 68(6), 064509 (2003)
CrossRef
ADS
Google scholar
|
[36] |
A. Blais, R. S. Huang, A. Wallra, S. M. Girvin, and R. J. Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Phys. Rev. A 69(6), 062320 (2004)
CrossRef
ADS
Google scholar
|
[37] |
J. Q. You and F. Nori, Superconducting circuits and quantum information, Phys. Today 58(11), 42 (2005)
CrossRef
ADS
Google scholar
|
[38] |
J. Clarke and F. K. Wilhelm, Superconducting quantum bits, Nature 453(7198), 1031 (2008)
CrossRef
ADS
Google scholar
|
[39] |
J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474(7353), 589 (2011)
CrossRef
ADS
Google scholar
|
[40] |
Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85(2), 623 (2013)
CrossRef
ADS
Google scholar
|
[41] |
X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep.718–719, 1 (2017)
CrossRef
ADS
Google scholar
|
[42] |
M. AbuGhanem, A. H. Homid, and M. Abdel-Aty, Cavity control as a new quantum algorithms implementation treatment, Front. Phys. 13, 130303 (2018)
CrossRef
ADS
Google scholar
|
[43] |
H. P. Cui, Y. Shan, J. Zou, and B. Shao, Entanglement reciprocation between two charge qubits and cavity field, Front. Phys. China 3, 258 (2008)
CrossRef
ADS
Google scholar
|
[44] |
P. B. Li, Y. C. Liu, S. Y. Gao, Z. L. Xiang, P. Rabl, Y. F. Xiao, and F. L. Li, Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities,Phys. Rev. Applied 4, 044003 (2015)
CrossRef
ADS
Google scholar
|
[45] |
P. B. Li, S. Y. Gao, and F. L. Li, Engineering two-mode entangled states between two superconducting resonators by dissipation, Phys. Rev. A 86, 012318 (2012)
CrossRef
ADS
Google scholar
|
[46] |
M. Šašura and V. Buzek, Multiparticle entanglement with quantum logic networks: Application to cold trapped ions, Phys. Rev. A 64(1), 012305 (2001)
CrossRef
ADS
Google scholar
|
[47] |
F. Gaitan, Quantum Error Correction and Fault Tolerant Quantum Computing, CRC Press, USA, 2008
CrossRef
ADS
Google scholar
|
[48] |
T. Beth and M. Rötteler, Quantum Information, Springer, Berlin, 2001, Vol. 173, Ch. 4, p. 96
CrossRef
ADS
Google scholar
|
[49] |
S. L. Braunstein, V. Buzek, and M. Hillery, Quantuminformation distributors: Quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit, Phys. Rev. A 63(5), 052313 (2001)
CrossRef
ADS
Google scholar
|
[50] |
J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Charge-insensitive qubit design derived from the Cooper pair box, Phys. Rev. A 76(4), 042319 (2007)
CrossRef
ADS
Google scholar
|
[51] |
D. Sank, Z. Chen, M. Khezri, J. Kelly, R. Barends, B. Campbell, Y. Chen, B. Chiaro, A. Dunsworth, A. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Mutus, M. Neeley, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, T. White, J. Wenner, A. N. Korotkov, and J. M. Martinis, Measurement-induced state transitions in a superconducting qubit: beyond the rotating wave approximation, Phys. Rev. Lett. 117(19), 190503 (2016)
CrossRef
ADS
Google scholar
|
[52] |
P. J. Leek, S. Filipp, P. Maurer, M. Baur, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, and A. Wallraff, Using sideband transitions for two-qubit operations in superconducting circuits, Phys. Rev. B 79(18), 180511 (2009)
CrossRef
ADS
Google scholar
|
[53] |
R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. O’Malley, P. Roushan, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, Coherent Josephson qubit suitable for scalable quantum integrated circuits, Phys. Rev. Lett. 111(8), 080502 (2013)
CrossRef
ADS
Google scholar
|
[54] |
M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, and J. M. Martinis, Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state, Nat. Phys. 4(7), 523 (2008)
|
[55] |
M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, and P. Delsing, Tuning the field in a microwave resonator faster than the photon lifetime, Appl. Phys. Lett. 92(20), 203501 (2008)
CrossRef
ADS
Google scholar
|
[56] |
Z. L. Wang, Y. P. Zhong, L. J. He, H. Wang, J. M. Martinis, A. N. Cleland, and Q. W. Xie, Quantum state characterization of a fast tunable superconducting resonator, Appl. Phys. Lett. 102(16), 163503 (2013)
CrossRef
ADS
Google scholar
|
[57] |
D. F. James and J. Jerke, Effective hamiltonian theory and its applications in quantum information, Can. J. Phys. 85(6), 625 (2007)
CrossRef
ADS
Google scholar
|
[58] |
Q. P. Su, H. H. Zhu, L. Yu, Y. Zhang, S. J. Xiong, J. M. Liu, and C. P. Yang, Generating double NOON states of photons in circuit QED, Phys. Rev. A 95(2), 022339 (2017)
CrossRef
ADS
Google scholar
|
[59] |
C. P. Yang, Q. P. Su, S. B. Zheng, and S. Han, One-step transfer or exchange of arbitrary multipartite quantum states with a single-qubit coupler, Phys. Rev. B 92(5), 054509 (2015)
CrossRef
ADS
Google scholar
|
[60] |
Y. X. Liu, S. K. Özdemir, A. Miranowicz, and N. Imoto, Kraus representation of a damped harmonic oscillator and its application, Phys. Rev. A 70, 042308 (2004)
CrossRef
ADS
Google scholar
|
[61] |
C. P. Yang, Q. P. Su, S. B. Zheng, and F. Nori, Crosstalkinsensitive method for simultaneously coupling multiple pairs of resonators, Phys. Rev. A 93(4), 042307 (2016)
CrossRef
ADS
Google scholar
|
[62] |
J. A. Schreier, A. A. Houck, J. Koch, D. I. Schuster, B. R. Johnson, J. M. Chow, J. M. Gambetta, J. Majer, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Suppressing charge noise decoherence in superconducting charge qubits, Phys. Rev. B 77, 180502(R) (2008)
|
[63] |
T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, Circuit quantum electrodynamics in the ultrastrong-coupling regime, Nat. Phys. 6(10), 772 (2010)
|
[64] |
For a transmon qutrit, the |g〉↔|f〉 transition is much weaker than those of the |g〉↔|e〉 and |e〉↔|g〉 transitions. Thus, we have γ–1eg, γ–1fg.
|
[65] |
C. Rigetti, S. Poletto, J. M. Gambetta, B. L. T. Plourde, J. M. Chow, et al., Superconducting qubit in waveguide cavity with coherence time approaching 0.1 ms, Phys. Rev. B 86, 100506(R) (2012)
|
[66] |
M. J. Peterer, S. J. Bader, X. Jin, F. Yan, A. Kamal, T. J. Gudmundsen, P. J. Leek, T. P. Orlando, W. D. Oliver, and S. Gustavsson, Coherence and decay of higher energy levels of a superconducting transmon qubit, Phys. Rev. Lett. 114, 010501 (2015)
CrossRef
ADS
Google scholar
|
[67] |
A. Fedorov, L. Steffen, M. Baur, M. P. da Silva, and A. Wallraff, Implementation of a Toffoli gate with superconducting circuits, Nature 481, 170 (2011)
CrossRef
ADS
Google scholar
|
[68] |
M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek, K. Sliwa, E. Holland, C. Wang, J. Blumoff, K. Chou, M. J. Hatridge, L. Frunzio, M. H. Devoret, L. Jiang, and R. J. Schoelkopf, A quantum memory with near-millisecond coherence in circuit QED, Phys. Rev. B 94(1), 014506 (2016)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |