Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films
Guo-Feng Zhang, Yong-Gang Peng, Hai-Qing Xie, Bin Li, Zhi-Jie Li, Chang-Gang Yang, Wen-Li Guo, Cheng-Bing Qin, Rui-Yun Chen, Yan Gao, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia
Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films
Understanding of charge/energy exchange processes and interfacial interactions that occur between quantum dots (QDs) and the metal oxides is of critical importance to these QD-based optoelectronic devices. This work reports on linear dipole behavior of single near-infrared emitting CdSeTe/ZnS core/shell QDs which are encased in indium tin oxide (ITO) semiconductor nanoparticles films. A strong polarization anisotropy in photoluminescence emission is observed by defocused wide-field imaging and polarization measurement techniques, and the average polarization degree is up to 0.45. A possible mechanism for the observation is presented in which the electrons, locating at single QD surface from ITO by electron transfer due to the equilibration of the Fermi levels, result in a significant Stark distortion of the QD electron/hole wavefunctions. The Stark distortion results in the linear polarization property of the single QDs. The investigation of linear dipole behavior for single QDs encased in ITO films would be helpful for further improving QD-based device performance.
single quantum dots / linear dipole behavior / electron transfer / polarization property / metal oxide nanoparticles
[1] |
M. R. Kim and D. L. Ma, Quantum-dot-based solar cells: Recent advances, strategies, and challenges, J. Phys. Chem. Lett. 6(1), 85 (2015)
CrossRef
ADS
Google scholar
|
[2] |
J. Kwak, J. Lim, M. Park, S. Lee, K. Char, and C. Lee, High-power genuine ultraviolet light-emitting diodes based on colloidal nanocrystal quantum dots, Nano Lett. 15(6), 3793 (2015)
CrossRef
ADS
Google scholar
|
[3] |
C. H. M. Chuang, P. R. Brown, V. Bulovic, and M. G. Bawendi, Improved performance and stability in quantum dot solar cells through band alignment engineering, Nat. Mater. 13(8), 796 (2014)
CrossRef
ADS
Google scholar
|
[4] |
G. C. Shan, Z. Q. Yin, C. H. Shek, and W. Huang, Single photon sources with single semiconductor quantum dots, Front. Phys. 9(2), 170 (2014)
CrossRef
ADS
Google scholar
|
[5] |
S. Y. Jin, N. H. Song, and T. Q. Lian, Suppressed blinking dynamics of single QDs on ITO, ACS Nano 4(3), 1545 (2010)
CrossRef
ADS
Google scholar
|
[6] |
N. H. Song, H. M. Zhu, Z. Liu, Z. Q. Huang, D. Wu, and T. Q. Lian, Unraveling the exciton quenching mechanism of quantum dots on antimony-doped SnO2 films by transient absorption and single dot fluorescence spectroscopy, ACS Nano 7(2), 1599 (2013)
CrossRef
ADS
Google scholar
|
[7] |
H. Cho, J. Kwak, J. Lim, M. Park, D. Lee, W. K. Bae, Y. S. Kim, K. Char, S. Lee, and C. Lee, Soft contact transplanted nanocrystal quantum dots for light-emitting diodes: Effect of surface energy on device performance, ACS Appl. Mater. Interfaces 7(20), 10828 (2015)
CrossRef
ADS
Google scholar
|
[8] |
G. Luo, Z. Z. Zhang, H. O. Li, X. X. Song, G. W. Deng, G. Cao, M. Xiao, and G. P. Guo, Quantum dot behavior in transition metal dichalcogenides nanostructures, Front. Phys. 12(4), 128502 (2017)
CrossRef
ADS
Google scholar
|
[9] |
Q. B. Zeng, S. Chen, L. You, and R. Lu, Transport through a quantum dot coupled to two majorana bound states, Front. Phys. 12(4), 127302 (2017)
CrossRef
ADS
Google scholar
|
[10] |
S. Y. Jin and T. Q. Lian, Electron transfer dynamics from single CdSe/ZnS quantum dots to TiO2 nanoparticles, Nano Lett. 9(6), 2448 (2009)
CrossRef
ADS
Google scholar
|
[11] |
J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese, R. J. Ellingson, and A. J. Nozik, Schottky solar cells based on colloidal nanocrystal films, Nano Lett. 8(10), 3488 (2008)
CrossRef
ADS
Google scholar
|
[12] |
W. Ma, S. L. Swisher, T. Ewers, J. Engel, V. E. Ferry, H. A. Atwater, and A. P. Alivisatos, Photovoltaic performance of ultrasmall PbSe quantum dots,ACS Nano 5(10), 8140 (2011)
CrossRef
ADS
Google scholar
|
[13] |
J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, Quantum junction solar cells, Nano Lett. 12(9), 4889 (2012)
CrossRef
ADS
Google scholar
|
[14] |
Z. Ning, Y. Ren, S. Hoogland, O. Voznyy, L. Levina, P. Stadler, X. Lan, D. Zhitomirsky, and E. H. Sargent, Allinorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation, Adv. Mater. 24(47), 6295 (2012)
CrossRef
ADS
Google scholar
|
[15] |
A. Issac, S. Y. Jin, and T. Q. Lian, Intermittent electron transfer activity from single CdSe/ZnS quantum dots, J. Am. Chem. Soc. 130(34), 11280 (2008)
CrossRef
ADS
Google scholar
|
[16] |
P. P. Jha and P. Guyot-Sionnest, Trion decay in colloidal quantum dots, ACS Nano 3(4), 1011 (2009)
CrossRef
ADS
Google scholar
|
[17] |
S. E. Yalcin, B. Q. Yang, J. A. Labastide, and M. D. Barnes, Electrostatic force microscopy and spectral studies of electron attachment to single quantum dots on indium tin oxide substrates, J. Phys. Chem. C 116(29), 15847 (2012)
CrossRef
ADS
Google scholar
|
[18] |
Y. Nagao, H. Fujiwara, and K. Sasaki, Analysis of trapstate dynamics of single CdSe/ZnS quantum dots on a TiO2 substrate with different Nb concentrations, J. Phys. Chem. C 118(35), 20571 (2014)
CrossRef
ADS
Google scholar
|
[19] |
H. W. Cheng, C. T. Yuan, J. S. Wang, T. N. Lin, J. L. Shen, Y. J. Hung, J. Tang, and F. G. Tseng, Modification of photon emission statistics from single colloidal CdSe quantum dots by conductive materials, J. Phys. Chem. C 118(31), 18126 (2014)
CrossRef
ADS
Google scholar
|
[20] |
B. Li, G. Zhang, Z. Wang, Z. Li, R. Chen, C. Qin, Y. Gao, L. Xiao, and S. Jia, Suppressing the fluorescence blinking of single quantum dots encased in N-type semiconductor nanoparticles, Sci. Rep. 6(1), 32662 (2016)
CrossRef
ADS
Google scholar
|
[21] |
Z. J. Li, G. F. Zhang, B. Li, R. Y. Chen, C. B. Qin, Y. Gao, L. T. Xiao, and S. T. Jia, Enhanced biexciton emission from single quantum dots encased in N-type semiconductor nanoparticles, Appl. Phys. Lett. 111(15), 153106 (2017)
CrossRef
ADS
Google scholar
|
[22] |
P. P. Jha and P. Guyot-Sionnest, Electrochemical switching of the photoluminescence of single quantum dots, J. Phys. Chem. C 114(49), 21138 (2010)
CrossRef
ADS
Google scholar
|
[23] |
C. Lethiec, J. Laverdant, H. Vallon, C. Javaux, B. Dubertret, J. M. Frigerio, C. Schwob, L. Coolen, and A. Maitre, Measurement of three-dimensional dipole orientation of a single fluorescent nanoemitter by emission polarization analysis, Phys. Rev. X 4(2), 021037 (2014)
CrossRef
ADS
Google scholar
|
[24] |
A. G. Silva, C. A. Parra-Murillo, P. T. Valentim, J. S. Morais, F. Plentz, P. S. Guimaraes, H. Vinck-Posada, B. A. Rodriguez, M. S. Skolnick, A. Tahraoui, and M. Hopkinson, Quantum dot dipole orientation and excitation efficiency of micropillar modes, Opt. Express 16(23), 19201 (2008)
CrossRef
ADS
Google scholar
|
[25] |
X. Brokmann, L. Coolen, J. P. Hermier, and M. Dahan, Emission properties of single CdSe/ZnS quantum dots close to a dielectric interface, Chem. Phys. 318(1–2), 91 (2005)
CrossRef
ADS
Google scholar
|
[26] |
Q. A. Li, X. J. Chen, Y. Xu, S. Lan, H. Y. Liu, Q. F. Dai, and L. J. Wu, Photoluminescence properties of the CdSe quantum dots accompanied with rotation of the defocused wide-field fluorescence images, J. Phys. Chem. C 114(32), 13427 (2010)
CrossRef
ADS
Google scholar
|
[27] |
W. D. Sheng, M. Korkusinski, A. D. Guclu, M. Zielinski, P. Potasz, E. S. Kadantsev, O. Voznyy, and P. Hawrylak, Electronic and optical properties of semiconductor and graphene quantum dots, Front. Phys. 7(3), 328 (2012)
CrossRef
ADS
Google scholar
|
[28] |
J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, Imaging and time-resolved spectroscopy of single molecules at an interface, Science 272(5259), 255 (1996)
CrossRef
ADS
Google scholar
|
[29] |
P. Dedecker, B. Muls, A. Deres, H. Uji-i, J. Hotta, M. Sliwa, J. P. Soumillion, K. Müllen, J. Enderlein, and J. Hofkens, Defocused wide-field imaging unravels structural and temporal heterogeneity in complex systems, Adv. Mater. 21(10–11), 1079 (2009)
CrossRef
ADS
Google scholar
|
[30] |
G. F. Zhang, L. T. Xiao, F. Zhang, X. B. Wang, and S. T. Jia, Single molecules reorientation reveals the dynamics of polymer glasses surface, Phys. Chem. Chem. Phys. 12(10), 2308 (2010)
CrossRef
ADS
Google scholar
|
[31] |
T. Ha, T. Enderle, S. Chemla, R. Selvin, and S. Weiss, Single molecule dynamics studied by polarization modulation, Phys. Rev. Lett. 77(19), 3979 (1996)
CrossRef
ADS
Google scholar
|
[32] |
R. Y. Chen, G. F. Zhang, C. B. Qin, Y. Gao, L. T. Xiao, and S. T. Jia, Modification of single molecule fluorescence using external fields, Front. Phys. 12(5), 128101 (2017)
CrossRef
ADS
Google scholar
|
[33] |
A. L. Efros, Luminescence polarization of CdSe microcrystals, Phys. Rev. B 46(12), 7448 (1992)
CrossRef
ADS
Google scholar
|
[34] |
A. L. Efros and A. V. Rodina, Band-edge absorption and luminescence of nonspherical nanometer-size crystals, Phys. Rev. B 47(15), 10005 (1993)
CrossRef
ADS
Google scholar
|
[35] |
J. T. Hu, L. S. Li, W. D. Yang, L. Manna, L. W. Wang, and A. P. Alivisatos, Linearly polarized emission from colloidal semiconductor quantum rods, Science 292(5524), 2060 (2001)
CrossRef
ADS
Google scholar
|
[36] |
H. Htoon, M. Furis, S. A. Crooker, S. Jeong, and V. I. Klimov, Linearly polarized ‘fine structure’ of the bright exciton state in individual CdSe nanocrystal quantum dots, Phys. Rev. B 77(3), 035328 (2008)
CrossRef
ADS
Google scholar
|
[37] |
D. Montiel and H. Yang, Observation of correlated emission intensity and polarization fluctuations in single CdSe/ZnS quantum dots, J. Phys. Chem. A 112(39), 9352 (2008)
CrossRef
ADS
Google scholar
|
[38] |
C. Lethiec, F. Pisanello, L. Carbone, A. Bramati, L. Coolen, and A. Maitre, Polarimetry-based analysis of dipolar transitions of single colloidal CdSe/CdS dot-inrods, New J. Phys. 16(9), 093014 (2014)
CrossRef
ADS
Google scholar
|
[39] |
S. Vezzoli, M. Manceau, G. Lemenager, Q. Glorieux, E. Giacobino, L. Carbone, M. De Vittorio, and A. Bramati, Exciton fine structure of CdSe/CdS nanocrystals determined by polarization microscopy at room temperature, ACS Nano 9(8), 7992 (2015)
CrossRef
ADS
Google scholar
|
[40] |
K. T. Early, K. D. McCarthy, M. Y. Odoi, P. K. Sudeep, T. Emrick, and M. D. Barnes, Linear dipole behavior in single CdSe-oligo(phenylene vinylene) nanostructures, ACS Nano 3(2), 453 (2009)
CrossRef
ADS
Google scholar
|
[41] |
K. T. Early, P. K. Sudeep, T. Emrick, and M. D. Barnes, Polarization-driven stark shifts in quantum dot luminescence from single CdSe/oligo-PPV nanoparticles, Nano Lett. 10(5), 1754 (2010)
CrossRef
ADS
Google scholar
|
[42] |
N. I. Hammer, K. T. Early, K. Sill, M. Y. Odoi, T. Emrick, and M. D. Barnes, Coverage-mediated suppression of blinking in solid state quantum dot conjugated organic composite nanostructures, J. Phys. Chem. B 110(29), 14167 (2006)
CrossRef
ADS
Google scholar
|
[43] |
M. Y. Odoi, K. T. Early, R. Tangirala, P. K. Sudeep, T. Emrick, and M. D. Barnes, Probing multiexcitonic emission in single CdSe-oligo(phenylenevinylene) composite nanostructures, J. Phys. Chem. C 113(31), 13462 (2009)
CrossRef
ADS
Google scholar
|
[44] |
S. Rühle, Tabulated values of the shockley-queisser limit for single junction solar cells, Sol. Energy 130, 139 (2016)
CrossRef
ADS
Google scholar
|
[45] |
A. Deres, G. A. Floudas, K. Müllen, M. Van der Auweraer, F. De Schryver, J. Enderlein, H. Uji-i, and J. Hofkens, The origin of heterogeneity of polymer dynamics near the glass temperature as probed by defocused imaging, Macromolecules 44(24), 9703 (2011)
CrossRef
ADS
Google scholar
|
[46] |
M. Böhmer and J. Enderlein, Orientation imaging of single molecules by wide-field epifluorescence microscopy, J. Opt. Soc. Am. B 20(3), 554 (2003)
CrossRef
ADS
Google scholar
|
[47] |
D. Patra, I. Gregor, and J. Enderlein, Image analysis of defocused single-molecule images for three-dimensional molecule orientation studies, J. Phys. Chem. A 108(33), 6836 (2004)
CrossRef
ADS
Google scholar
|
[48] |
T. Ihara, R. Sato, T. Teranishi, and Y. Kanemitsu, Delocalized and localized charged excitons in single CdSe/CdS dot-in-rods revealed by polarized photoluminescence blinking, Phys. Rev. B 90(3), 035309 (2014)
CrossRef
ADS
Google scholar
|
[49] |
F. Hu, B. Lv, C. Yin, C. Zhang, X. Wang, B. Lounis, and M. Xiao, Carrier multiplication in a single semiconductor nanocrystal, Phys. Rev. Lett. 116(10), 106404 (2016)
CrossRef
ADS
Google scholar
|
[50] |
D. Patra, I. Gregor, J. Enderlein, and M. Sauer, Defocused imaging of quantum-dot angular distribution of radiation, Appl. Phys. Lett. 87(10), 101103 (2005)
CrossRef
ADS
Google scholar
|
[51] |
R. Schuster, M. Barth, A. Gruber, and F. Cichos, Defocused wide field fluorescence imaging of single CdSe/ZnS quantum dots, Chem. Phys. Lett. 413(4–6), 280 (2005)
CrossRef
ADS
Google scholar
|
[52] |
A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states, Phys. Rev. B 54(7), 4843 (1996)
CrossRef
ADS
Google scholar
|
[53] |
C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots, Nature 479(7372), 203 (2011)
CrossRef
ADS
Google scholar
|
[54] |
L. W. Wang, Calculating the influence of external charges on the photoluminescence of a CdSe quantum dot, J. Phys. Chem. B 105(12), 2360 (2001)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |