
A theoretical study of step edge geometry on sapphire(0001) and its effect on ZnO nucleation
Ping Yang, Li-Xin Zhang
Front. Phys. ›› 2019, Vol. 14 ›› Issue (2) : 23606.
A theoretical study of step edge geometry on sapphire(0001) and its effect on ZnO nucleation
Step-edge-induced nucleation plays a key role in controlling the growth of novel nanostructures and low-dimensional materials. However, it is difficult to experimentally determine the step edge structures of complex metal oxides. In this work, we present a detailed theoretical study of the stability of stoichiometric steps on sapphire(0001). Based on first-principles calculations and excess charge computation by Finnis’ approach, a pair of non-polar step edges are determined to be the most stable. By studying the adsorption characteristics of ZnO and combining previous works, we successfully explained how growth temperature and deposition rate affect the in-plane orientation of ZnO grown on sapphire(0001). The knowledge on the step edge structures and nucleation patterns would benefit the study on step-edge-guided nanostructure growth.
stepped sapphire surface / first-principles / excess charge / step-edge-induced nucleation
[1] |
I. Akasaki, Nobel Lecture: Fascinated journeys into blue light, Rev. Mod. Phys. 87(4), 1119 (2015)
CrossRef
ADS
Google scholar
|
[2] |
U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98(4), 041301 (2005)
CrossRef
ADS
Google scholar
|
[3] |
M. Yoshimoto, T. Maeda, T. Ohnishi, H. Koinuma, O. Ishiyama, M. Shinohara, M. Kubo, R. Miura, and A. Miyamoto, Atomic-scale formation of ultrasmooth surfaces on sapphire substrates for high-quality thin-film fabrication, Appl. Phys. Lett. 67(18), 2615 (1995)
CrossRef
ADS
Google scholar
|
[4] |
C. C. Kim, J. H. Je, P. Ruterana, F. Degave, G. Nouet, M. S. Yi, D. Y. Noh, and Y. Hwu, Microstructures of GaN islands on a stepped sapphire surface, J. Appl. Phys. 91(7), 4233 (2002)
CrossRef
ADS
Google scholar
|
[5] |
C. Munuera, J. Zúñiga-Pérez, J. F. Rommeluere, V. Sallet, R. Triboulet, F. Soria, V. Muñoz-Sanjosé, and C. Ocal, Morphology of ZnO grown by MOCVD on sapphire substrates, J. Cryst. Growth 264(1–3), 70 (2004)
CrossRef
ADS
Google scholar
|
[6] |
I. Ohkubo, A. Ohtomo, T. Ohnishi, Y. Mastumoto, H. Koinuma, and M. Kawasaki, In-plane and polar orientations of ZnO thin films grown on atomically flat sapphire, Surf. Sci. 443(1–2), L1043 (1999)
CrossRef
ADS
Google scholar
|
[7] |
D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazić, M. Gibertini, N. Marzari, O. L. Sanchez, Y. C. Kung, D. Krasnozhon, M. W. Chen, S. Bertolazzi, P. Gillet, A. Fontcuberta i Morral, A. Radenovic, and A. Kis, Largearea epitaxial monolayer MoS2, ACS Nano 9(4), 4611 (2015)
CrossRef
ADS
Google scholar
|
[8] |
J. Y. Son, S. J. Lim, J. H. Cho, W. K. Seong, and H. Kim, Synthesis of horizontally aligned ZnO nanowires localized at terrace edges and application for high sensitivity gas sensor, Appl. Phys. Lett. 93(5), 053109 (2008)
CrossRef
ADS
Google scholar
|
[9] |
K. Fujiwara, A. Ishii, T. Ebisuzaki, T. Abe, and K. Ando, Theoretical investigation on the structural properties of ZnO grown on sapphire, e-J. Surf. Sci. Nanotech. 4, 544 (2006)
CrossRef
ADS
Google scholar
|
[10] |
C. Yang, Y. R. Li, and J. S. Li, Ab initio total energy study of ZnO adsorption on a sapphire (0001) surface, Phys. Rev. B 70(4), 045413 (2004)
CrossRef
ADS
Google scholar
|
[11] |
J. Ohta, H. Fujioka, M. Oshima, K. Fujiwara, and A. Ishii, Experimental and theoretical investigation on the structural properties of GaN grown on sapphire, Appl. Phys. Lett. 83(15), 3075 (2003)
CrossRef
ADS
Google scholar
|
[12] |
L. Chen, B. Liu, M. Ge, Y. Ma, A. N. Abbas, and C. Zhou, Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode, ACS Nano 9(8), 8368 (2015)
CrossRef
ADS
Google scholar
|
[13] |
A. Ismach, L. Segev, E. Wachtel, and E. Joselevich, Atomic-step-templated formation of single wall carbon nanotube patterns, Angew. Chem. Int. Ed. 43(45), 6140 (2004)
CrossRef
ADS
Google scholar
|
[14] |
D. Tsivion, M. Schvartzman, R. Popovitz-Biro, P. von Huth, and E. Joselevich, Guided growth of millimeterlong horizontal nanowires with controlled orientations, Science 333(6045), 1003 (2011)
CrossRef
ADS
Google scholar
|
[15] |
D. Tsivion, M. Schvartzman, R. Popovitz-Biro, and E. Joselevich, Guided growth of horizontal ZnO nanowires with controlled orientations on flat and faceted sapphire surfaces, ACS Nano 6(7), 6433 (2012)
CrossRef
ADS
Google scholar
|
[16] |
L. Pham Van, O. Kurnosikov, and J. Cousty, Evolution of steps on vicinal (0001) surfaces of a-alumina, Surf. Sci. 411(3), 263 (1998)
CrossRef
ADS
Google scholar
|
[17] |
O. Kurnosikov, L. Pham Van, and J. Cousty, Hightemperature transformation of vicinal (0001) Al2O3-αsurfaces: An AFM study, Surf. Interface Anal. 29(9), 608 (2000)
CrossRef
ADS
Google scholar
|
[18] |
F. Cuccureddu, S. Murphy, I. V. Shvets, M. Porcu, H. W. Zandbergen, N. S. Sidorov, and S. I. Bozhko, Surface morphology of c-plane sapphire (a-alumina) produced by high temperature anneal, Surf. Sci. 604(15–16), 1294 (2010)
CrossRef
ADS
Google scholar
|
[19] |
Y. Shiratsuchi, M. Yamamoto, and Y. Kamada, Surface structure of self-organized sapphire(0001) substrates with various inclined angles, Jpn. J. Appl. Phys. 41(Part 1, No. 9), 5719 (2002)
|
[20] |
B. Qi, B. Agnarsson, S. Ólafsson, H. P. Gíslason, and M. Göthelid, Room temperature deposition of self-assembled Al nanoclusters on stepped sapphire(0001) surface and subsequent nitridation, Thin Solid Films 520(1), 64 (2011)
CrossRef
ADS
Google scholar
|
[21] |
G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef
ADS
Google scholar
|
[22] |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef
ADS
Google scholar
|
[23] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[24] |
S. D. Mo and W. Y. Ching, Electronic and optical properties of α-Al2O3 and comparison to θ-Al2O3, Phys. Rev. B 57(24), 15219 (1998)
CrossRef
ADS
Google scholar
|
[25] |
J. Ahn and J. W. Rabalais, Composition and structure of the Al2O3{0001}-(1×1) surface, Surf. Sci. 388(1–3), 121 (1997)
CrossRef
ADS
Google scholar
|
[26] |
T. Kurita, K. Uchida, and A. Oshiyama, Atomic and electronic structures of α-Al2O3 surfaces, Phys. Rev. B 82(15), 155319 (2010)
CrossRef
ADS
Google scholar
|
[27] |
J. Stausholm-Møller, H. H. Kristoffersen, U. Martinez, and B. Hammer, A density functional theory study of atomic steps on stoichiometric rutile TiO2 (110), J. Chem. Phys. 139(23), 234704 (2013)
CrossRef
ADS
Google scholar
|
[28] |
B. Lee and D. R. Trinkle, Energetics of rutile TiO2 vicinal surfaces with<001>steps from the energy density method, J. Phys. Chem. C 119(32), 18203 (2015)
CrossRef
ADS
Google scholar
|
[29] |
S. M. Kozlov, F. Viñes, N. Nilius, S. Shaikhutdinov, and K. M. Neyman, Absolute surface step energies: Accurate theoretical methods applied to ceria nanoislands, J. Phys. Chem. Lett. 3(15), 1956 (2012)
CrossRef
ADS
Google scholar
|
[30] |
P. W. Tasker, The stability of ionic crystal surfaces, J. Phys. C Solid State Phys. 12(22), 4977 (1979)
CrossRef
ADS
Google scholar
|
[31] |
S. Köstlmeier, C. Elsässer, B. Meyer, and M. W. Finnis, A density functional study of interactions at the metal– ceramic interfaces Al/MgAl2O4 and Ag/MgAl2O4, Phys. Status Solidi (a) 166(1), 417(1998)
CrossRef
ADS
Google scholar
|
[32] |
V. E. Henrich and S. K. Shaikhutdinov, Atomic geometry of steps on metal-oxide single crystals, Surf. Sci. 574(2–3), 306 (2005)
CrossRef
ADS
Google scholar
|
[33] |
H. Q. Wang, E. I. Altman, and V. E. Henrich, Steps on Fe3O4(100): STM measurements and theoretical calculations, Phys. Rev. B 73(23), 235418 (2006)
CrossRef
ADS
Google scholar
|
[34] |
R. D. Vispute, V. Talyansky, Z. Trajanovic, S. Choopun, M. Downes, R. P. Sharma, T. Venkatesan, M. C. Woods, R. T. Lareau, K. A. Jones, and A. A. Iliadis, High quality crystalline ZnO buffer layers on sapphire(001) by pulsed laser deposition for III–V nitrides, Appl. Phys. Lett. 70(20), 2735 (1997)
CrossRef
ADS
Google scholar
|
[35] |
Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization, J. Appl. Phys. 84(7), 3912 (1998)
CrossRef
ADS
Google scholar
|
[36] |
J. Coraux, A. T N’Diaye, M. Engler, C. Busse, D. Wall, N. Buckanie, F.-J. M. zu Heringdorf, R. van Gastel, B. Poelsema, and T. Michely, Growth of graphene on Ir(111), New J. Phys. 11(2), 023006 (2009)
CrossRef
ADS
Google scholar
|
[37] |
T. Shiota, H. Ito, N. Wakiya, J. Cross, O. Sakurai, and K. Shinozaki, Effect of step edges on the growth of Pt thin films on oxide single-crystal substrates, J. Ceram. Soc. Jpn. 121(1411), 278 (2013)
CrossRef
ADS
Google scholar
|
[38] |
B. J. Murray, E. C. Walter, and R. M. Penner, Amine vapor sensing with silver mesowires, Nano Lett. 4(4), 665 (2004)
CrossRef
ADS
Google scholar
|
[39] |
D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazić, M. Gibertini, N. Marzari, O. L. Sanchez, Y. C. Kung, D. Krasnozhon, M. W. Chen, S. Bertolazzi, P. Gillet, A. Fontcuberta i Morral, A. Radenovic, and A. Kis, Largearea epitaxial monolayer MoS2, ACS Nano 9(4), 4611 (2015)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |