A theoretical study of step edge geometry on sapphire(0001) and its effect on ZnO nucleation

Ping Yang, Li-Xin Zhang

Front. Phys. ›› 2019, Vol. 14 ›› Issue (2) : 23606.

PDF(10115 KB)
PDF(10115 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (2) : 23606. DOI: 10.1007/s11467-018-0873-0
RESEARCH ARTICLE
RESEARCH ARTICLE

A theoretical study of step edge geometry on sapphire(0001) and its effect on ZnO nucleation

Author information +
History +

Abstract

Step-edge-induced nucleation plays a key role in controlling the growth of novel nanostructures and low-dimensional materials. However, it is difficult to experimentally determine the step edge structures of complex metal oxides. In this work, we present a detailed theoretical study of the stability of stoichiometric steps on sapphire(0001). Based on first-principles calculations and excess charge computation by Finnis’ approach, a pair of non-polar step edges are determined to be the most stable. By studying the adsorption characteristics of ZnO and combining previous works, we successfully explained how growth temperature and deposition rate affect the in-plane orientation of ZnO grown on sapphire(0001). The knowledge on the step edge structures and nucleation patterns would benefit the study on step-edge-guided nanostructure growth.

Keywords

stepped sapphire surface / first-principles / excess charge / step-edge-induced nucleation

Cite this article

Download citation ▾
Ping Yang, Li-Xin Zhang. A theoretical study of step edge geometry on sapphire(0001) and its effect on ZnO nucleation. Front. Phys., 2019, 14(2): 23606 https://doi.org/10.1007/s11467-018-0873-0

References

[1]
I. Akasaki, Nobel Lecture: Fascinated journeys into blue light, Rev. Mod. Phys. 87(4), 1119 (2015)
CrossRef ADS Google scholar
[2]
U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98(4), 041301 (2005)
CrossRef ADS Google scholar
[3]
M. Yoshimoto, T. Maeda, T. Ohnishi, H. Koinuma, O. Ishiyama, M. Shinohara, M. Kubo, R. Miura, and A. Miyamoto, Atomic-scale formation of ultrasmooth surfaces on sapphire substrates for high-quality thin-film fabrication, Appl. Phys. Lett. 67(18), 2615 (1995)
CrossRef ADS Google scholar
[4]
C. C. Kim, J. H. Je, P. Ruterana, F. Degave, G. Nouet, M. S. Yi, D. Y. Noh, and Y. Hwu, Microstructures of GaN islands on a stepped sapphire surface, J. Appl. Phys. 91(7), 4233 (2002)
CrossRef ADS Google scholar
[5]
C. Munuera, J. Zúñiga-Pérez, J. F. Rommeluere, V. Sallet, R. Triboulet, F. Soria, V. Muñoz-Sanjosé, and C. Ocal, Morphology of ZnO grown by MOCVD on sapphire substrates, J. Cryst. Growth 264(1–3), 70 (2004)
CrossRef ADS Google scholar
[6]
I. Ohkubo, A. Ohtomo, T. Ohnishi, Y. Mastumoto, H. Koinuma, and M. Kawasaki, In-plane and polar orientations of ZnO thin films grown on atomically flat sapphire, Surf. Sci. 443(1–2), L1043 (1999)
CrossRef ADS Google scholar
[7]
D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazić, M. Gibertini, N. Marzari, O. L. Sanchez, Y. C. Kung, D. Krasnozhon, M. W. Chen, S. Bertolazzi, P. Gillet, A. Fontcuberta i Morral, A. Radenovic, and A. Kis, Largearea epitaxial monolayer MoS2, ACS Nano 9(4), 4611 (2015)
CrossRef ADS Google scholar
[8]
J. Y. Son, S. J. Lim, J. H. Cho, W. K. Seong, and H. Kim, Synthesis of horizontally aligned ZnO nanowires localized at terrace edges and application for high sensitivity gas sensor, Appl. Phys. Lett. 93(5), 053109 (2008)
CrossRef ADS Google scholar
[9]
K. Fujiwara, A. Ishii, T. Ebisuzaki, T. Abe, and K. Ando, Theoretical investigation on the structural properties of ZnO grown on sapphire, e-J. Surf. Sci. Nanotech. 4, 544 (2006)
CrossRef ADS Google scholar
[10]
C. Yang, Y. R. Li, and J. S. Li, Ab initio total energy study of ZnO adsorption on a sapphire (0001) surface, Phys. Rev. B 70(4), 045413 (2004)
CrossRef ADS Google scholar
[11]
J. Ohta, H. Fujioka, M. Oshima, K. Fujiwara, and A. Ishii, Experimental and theoretical investigation on the structural properties of GaN grown on sapphire, Appl. Phys. Lett. 83(15), 3075 (2003)
CrossRef ADS Google scholar
[12]
L. Chen, B. Liu, M. Ge, Y. Ma, A. N. Abbas, and C. Zhou, Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode, ACS Nano 9(8), 8368 (2015)
CrossRef ADS Google scholar
[13]
A. Ismach, L. Segev, E. Wachtel, and E. Joselevich, Atomic-step-templated formation of single wall carbon nanotube patterns, Angew. Chem. Int. Ed. 43(45), 6140 (2004)
CrossRef ADS Google scholar
[14]
D. Tsivion, M. Schvartzman, R. Popovitz-Biro, P. von Huth, and E. Joselevich, Guided growth of millimeterlong horizontal nanowires with controlled orientations, Science 333(6045), 1003 (2011)
CrossRef ADS Google scholar
[15]
D. Tsivion, M. Schvartzman, R. Popovitz-Biro, and E. Joselevich, Guided growth of horizontal ZnO nanowires with controlled orientations on flat and faceted sapphire surfaces, ACS Nano 6(7), 6433 (2012)
CrossRef ADS Google scholar
[16]
L. Pham Van, O. Kurnosikov, and J. Cousty, Evolution of steps on vicinal (0001) surfaces of a-alumina, Surf. Sci. 411(3), 263 (1998)
CrossRef ADS Google scholar
[17]
O. Kurnosikov, L. Pham Van, and J. Cousty, Hightemperature transformation of vicinal (0001) Al2O3-αsurfaces: An AFM study, Surf. Interface Anal. 29(9), 608 (2000)
CrossRef ADS Google scholar
[18]
F. Cuccureddu, S. Murphy, I. V. Shvets, M. Porcu, H. W. Zandbergen, N. S. Sidorov, and S. I. Bozhko, Surface morphology of c-plane sapphire (a-alumina) produced by high temperature anneal, Surf. Sci. 604(15–16), 1294 (2010)
CrossRef ADS Google scholar
[19]
Y. Shiratsuchi, M. Yamamoto, and Y. Kamada, Surface structure of self-organized sapphire(0001) substrates with various inclined angles, Jpn. J. Appl. Phys. 41(Part 1, No. 9), 5719 (2002)
[20]
B. Qi, B. Agnarsson, S. Ólafsson, H. P. Gíslason, and M. Göthelid, Room temperature deposition of self-assembled Al nanoclusters on stepped sapphire(0001) surface and subsequent nitridation, Thin Solid Films 520(1), 64 (2011)
CrossRef ADS Google scholar
[21]
G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef ADS Google scholar
[22]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef ADS Google scholar
[23]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[24]
S. D. Mo and W. Y. Ching, Electronic and optical properties of α-Al2O3 and comparison to θ-Al2O3, Phys. Rev. B 57(24), 15219 (1998)
CrossRef ADS Google scholar
[25]
J. Ahn and J. W. Rabalais, Composition and structure of the Al2O3{0001}-(1×1) surface, Surf. Sci. 388(1–3), 121 (1997)
CrossRef ADS Google scholar
[26]
T. Kurita, K. Uchida, and A. Oshiyama, Atomic and electronic structures of α-Al2O3 surfaces, Phys. Rev. B 82(15), 155319 (2010)
CrossRef ADS Google scholar
[27]
J. Stausholm-Møller, H. H. Kristoffersen, U. Martinez, and B. Hammer, A density functional theory study of atomic steps on stoichiometric rutile TiO2 (110), J. Chem. Phys. 139(23), 234704 (2013)
CrossRef ADS Google scholar
[28]
B. Lee and D. R. Trinkle, Energetics of rutile TiO2 vicinal surfaces with<001>steps from the energy density method, J. Phys. Chem. C 119(32), 18203 (2015)
CrossRef ADS Google scholar
[29]
S. M. Kozlov, F. Viñes, N. Nilius, S. Shaikhutdinov, and K. M. Neyman, Absolute surface step energies: Accurate theoretical methods applied to ceria nanoislands, J. Phys. Chem. Lett. 3(15), 1956 (2012)
CrossRef ADS Google scholar
[30]
P. W. Tasker, The stability of ionic crystal surfaces, J. Phys. C Solid State Phys. 12(22), 4977 (1979)
CrossRef ADS Google scholar
[31]
S. Köstlmeier, C. Elsässer, B. Meyer, and M. W. Finnis, A density functional study of interactions at the metal– ceramic interfaces Al/MgAl2O4 and Ag/MgAl2O4, Phys. Status Solidi (a) 166(1), 417(1998)
CrossRef ADS Google scholar
[32]
V. E. Henrich and S. K. Shaikhutdinov, Atomic geometry of steps on metal-oxide single crystals, Surf. Sci. 574(2–3), 306 (2005)
CrossRef ADS Google scholar
[33]
H. Q. Wang, E. I. Altman, and V. E. Henrich, Steps on Fe3O4(100): STM measurements and theoretical calculations, Phys. Rev. B 73(23), 235418 (2006)
CrossRef ADS Google scholar
[34]
R. D. Vispute, V. Talyansky, Z. Trajanovic, S. Choopun, M. Downes, R. P. Sharma, T. Venkatesan, M. C. Woods, R. T. Lareau, K. A. Jones, and A. A. Iliadis, High quality crystalline ZnO buffer layers on sapphire(001) by pulsed laser deposition for III–V nitrides, Appl. Phys. Lett. 70(20), 2735 (1997)
CrossRef ADS Google scholar
[35]
Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization, J. Appl. Phys. 84(7), 3912 (1998)
CrossRef ADS Google scholar
[36]
J. Coraux, A. T N’Diaye, M. Engler, C. Busse, D. Wall, N. Buckanie, F.-J. M. zu Heringdorf, R. van Gastel, B. Poelsema, and T. Michely, Growth of graphene on Ir(111), New J. Phys. 11(2), 023006 (2009)
CrossRef ADS Google scholar
[37]
T. Shiota, H. Ito, N. Wakiya, J. Cross, O. Sakurai, and K. Shinozaki, Effect of step edges on the growth of Pt thin films on oxide single-crystal substrates, J. Ceram. Soc. Jpn. 121(1411), 278 (2013)
CrossRef ADS Google scholar
[38]
B. J. Murray, E. C. Walter, and R. M. Penner, Amine vapor sensing with silver mesowires, Nano Lett. 4(4), 665 (2004)
CrossRef ADS Google scholar
[39]
D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazić, M. Gibertini, N. Marzari, O. L. Sanchez, Y. C. Kung, D. Krasnozhon, M. W. Chen, S. Bertolazzi, P. Gillet, A. Fontcuberta i Morral, A. Radenovic, and A. Kis, Largearea epitaxial monolayer MoS2, ACS Nano 9(4), 4611 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(10115 KB)

Accesses

Citations

Detail

Sections
Recommended

/