Hydrothermal synthesis, structure and magnetic properties of Ru doped La0.5Sr0.5MnO3

Ling-Ling Wang , Jia-Nan Chu , Xuan Zhang , Yong-Hui Ma , Qiu-Cheng Ji , Wei Li , Hui Zhang , Gang Mu , Xiao-Ming Xie

Front. Phys. ›› 2019, Vol. 14 ›› Issue (1) : 13604

PDF (4094KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (1) : 13604 DOI: 10.1007/s11467-018-0860-5
RESEARCH ARTICLE

Hydrothermal synthesis, structure and magnetic properties of Ru doped La0.5Sr0.5MnO3

Author information +
History +
PDF (4094KB)

Abstract

Synthesis, structure and magnetic properties of Ru doped perovskite structured manganite La0.5Sr0.5MnO3 were investigated experimentally. A hydrothermal method was used for the preparation of the samples. A high-temperature annealing process was also employed to make a comparison. A slightly enhancement of the unit cell volume was observed with the increase of Ru concentration. Scanning electron microscopy shows that the materials are made up of cube-shaped particles with dimension of several micrometers. Importantly, it is found that both the Curie temperature TC and saturation moment can be reduced by Ru doping. The value of coercive field is not affected by the introduction of Ru.

Keywords

La0.5Sr0.5MnO3 / hydrothermal synthesis / Ru doping / Curie temperature

Cite this article

Download citation ▾
Ling-Ling Wang, Jia-Nan Chu, Xuan Zhang, Yong-Hui Ma, Qiu-Cheng Ji, Wei Li, Hui Zhang, Gang Mu, Xiao-Ming Xie. Hydrothermal synthesis, structure and magnetic properties of Ru doped La0.5Sr0.5MnO3. Front. Phys., 2019, 14(1): 13604 DOI:10.1007/s11467-018-0860-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. G. Bednorz and K. A. Mäuller, Possible high TCsuperconductivity in the Ba-La-Cu-O system,Z. Phys. B 64, 189 (1986)

[2]

R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films, Phys. Rev. Lett. 71(14), 2331 (1993)

[3]

K. Chahara, T. Ohno, M. Kasai, and Y. Kozono, Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure, Appl. Phys. Lett. 63(14), 1990 (1993)

[4]

S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Thousandfold change in re-sistivity in magnetoresistive La-Ca-Mn-O Films, Science 264(5157), 413 (1994)

[5]

M. McCormack, S. Jin, T. H. Tiefel, R. M. Fleming, J. M. Phillips, and R. Ramesh, Very large magnetoresistance in perovskite-like La-Ca-Mn-O thin films, Appl. Phys. Lett. 64(22), 3045 (1994)

[6]

P. Schiffer, A. P. Ramirez, W. Bao, and S. W. Cheong, Low temperature magnetoresistance and the magnetic phase diagram of La1–xCaxMnO3, Phys. Rev. Lett. 75(18), 3336 (1995)

[7]

A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Insulator-metal transition and giant magnetoresistance in La1–xSrxMnO3, Phys. Rev. B 51(20), 14103 (1995)

[8]

A. Sundaresan, P. L. Paulose, R. Mallik, and E. V. Sampathkumaran, Bandwidth-controlled magnetic and electronic transitions in La0.5Ca0.5–xSrxMnO3 (0<~x<~0.5) distorted perovskite, Phys. Rev. B 57(5), 2690 (1998)

[9]

O. Chmaissem, B. Dabrowski, S. Kolesnik, J. Mais, J. D. Jorgensen, and S. Short, Structural and magnetic phase diagrams of La1–xSrxMnO3 and Pr1–ySryMnO3, Phys. Rev. B 67(9), 094431 (2003)

[10]

C. Autret-Lambert, M. Gervais, S. Roger, F. Gervais, M. Lethiecq, N. Raimboux, and P. Simon, Inhomogeneous magnetism studied by ESR in La1–xSrxMnO3 (0.45≤x≤0.62), Solid State Sci. 71, 139 (2017)

[11]

A. Maignan, C. Martin, and B. Raveau, Substitution of manganese by trivalent and tetravalent elements in the CMR perovskites Pr1–x(Ca, Sr)xMnO3, Z. Phys. B 102, 19 (1996)

[12]

K. Ghosh, S. B. Ogale, R. Ramesh, R. L. Greene, T. Venkatesan, K. M. Gapchup, R. Bathe, and S. I. Patil, Transition-element doping effects in La0.7Ca0.3MnO3, Phys. Rev. B 59(1), 533 (1999)

[13]

M. Rubinstein, D. J. Gillespie, J. E. Snyder, and T. M. Tritt, Effects of Gd, Co, and Ni doping in La2/3Ca1/3MnO3: Resistivity, thermopower, and paramagnetic resonance, Phys. Rev. B 56(9), 5412 (1997)

[14]

Y. Sun, X. Xu, L. Zheng, and Y. Zhang, Effects of Ga doping in the colossal magnetoresistance material La0.67Ca0.33MnO3, Phys. Rev. B 60(17), 12317 (1999)

[15]

R. K. Sahu and S. S. Manoharan, A Zener pair effect in lanthanum rutheno manganite, J. Appl. Phys. 91(10), 7517 (2002)

[16]

L. M. Wang, J. H. Lai, J. I. Wu, Y. K. Kuo, and C. L. Chang, Effects of Ru substitution for Mn on La0.7Sr0.3MnO3 perovskites, J. Appl. Phys. 102(2), 023915 (2007)

[17]

N. Zaidi, S. Mnefgui, J. Dhahri, and E. K. Hlil, Effect of Ru substitution on the physical properties of La0.6Pr0.1Sr0.3Mn1–xRuxO3 (x= 0.00, 0.05 and 0.15) perovskites, RSC Adv. 5, 31901 (2015)

[18]

Y. Ying, J. Fan, L. Pi, Z. Qu, W. Wang, B. Hong, S. Tan, and Y. Zhang, Effect of Ru doping in La0.5Sr0.5MnO3 and La0.45Sr0.55MnO3, Phys. Rev. B 74(14), 144433 (2006)

[19]

M. M. Saber, M. Egilmez, A. I. Mansour, I. Fan, K. H. Chow, and J. Jung, Evolution of Curie-Weiss behavior and cluster formation temperatures in Ru-doped Sm0.55Sr0.45MnO3 manganites, Phys. Rev. B 82(17), 172401 (2010)

[20]

I. Dhiman, A. Das, A. K. Nigam, and U. Gasser, Influence of B-site disorder in La0.5Ca0.5Mn1–xBxO3 (B= Fe, Ru, Al and Ga) manganites, J. Phys.: Condens. Matter 23(24), 246006 (2011)

[21]

Y. Ying, J. Zheng, L. Qiao, W. Li, W. Cai, S. Che, L. Jiang, J. Fan, and M. Lin, Double exchange interaction between Mn3+ and Ru4+ ions in La1–xSrxMn1–xRuxO3, J. Superconduct. Novel Magnet. 28(10), 3117 (2015)

[22]

D. Zhu, H. Zhu, and Y. Zhang, Microstructure and magnetization of single-crystal perovskite manganites nanowires prepared by hydrothermal method, J. Cryst. Growth 249(1–2), 172 (2003)

[23]

J. Spooren, R. I. Walton, and F. Millange, A study of the manganites La0.5M0.5MnO3 (M= Ca, Sr, Ba) prepared by hydrothermal synthesis, J. Mater. Chem. 15(15), 1542 (2005)

[24]

Y. Cheng, J. Dai, X. Zhu, D. Wu, and Y. Sun, Preparation, magnetic and microwave absorption properties of La0.5Sr0.5MnO3/La(OH)3 composites, Mater. Res. Bull. 45(6), 663 (2010)

[25]

B. Tang, J. Ge, and L. Zhuo, The fabrication of La(OH)3 nanospheres by a controllable-hydrothermal method with citric acid as a protective agent, Nanotechnology 15(12), 1749 (2004)

[26]

C. Dong, PowderX: Windows-95-based program for powder X-ray diffraction data processing, J. Appl. Cryst. 32(4), 838 (1999)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (4094KB)

1347

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/