Hydrothermal synthesis, structure and magnetic properties of Ru doped La0.5Sr0.5MnO3

Ling-Ling Wang, Jia-Nan Chu, Xuan Zhang, Yong-Hui Ma, Qiu-Cheng Ji, Wei Li, Hui Zhang, Gang Mu, Xiao-Ming Xie

PDF(4094 KB)
PDF(4094 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (1) : 13604. DOI: 10.1007/s11467-018-0860-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Hydrothermal synthesis, structure and magnetic properties of Ru doped La0.5Sr0.5MnO3

Author information +
History +

Abstract

Synthesis, structure and magnetic properties of Ru doped perovskite structured manganite La0.5Sr0.5MnO3 were investigated experimentally. A hydrothermal method was used for the preparation of the samples. A high-temperature annealing process was also employed to make a comparison. A slightly enhancement of the unit cell volume was observed with the increase of Ru concentration. Scanning electron microscopy shows that the materials are made up of cube-shaped particles with dimension of several micrometers. Importantly, it is found that both the Curie temperature TC and saturation moment can be reduced by Ru doping. The value of coercive field is not affected by the introduction of Ru.

Keywords

La0.5Sr0.5MnO3 / hydrothermal synthesis / Ru doping / Curie temperature

Cite this article

Download citation ▾
Ling-Ling Wang, Jia-Nan Chu, Xuan Zhang, Yong-Hui Ma, Qiu-Cheng Ji, Wei Li, Hui Zhang, Gang Mu, Xiao-Ming Xie. Hydrothermal synthesis, structure and magnetic properties of Ru doped La0.5Sr0.5MnO3. Front. Phys., 2019, 14(1): 13604 https://doi.org/10.1007/s11467-018-0860-5

References

[1]
J. G. Bednorz and K. A. Mäuller, Possible high TCsuperconductivity in the Ba-La-Cu-O system,Z. Phys. B 64, 189 (1986)
CrossRef ADS Google scholar
[2]
R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films, Phys. Rev. Lett. 71(14), 2331 (1993)
CrossRef ADS Google scholar
[3]
K. Chahara, T. Ohno, M. Kasai, and Y. Kozono, Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure, Appl. Phys. Lett. 63(14), 1990 (1993)
CrossRef ADS Google scholar
[4]
S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Thousandfold change in re-sistivity in magnetoresistive La-Ca-Mn-O Films, Science 264(5157), 413 (1994)
CrossRef ADS Google scholar
[5]
M. McCormack, S. Jin, T. H. Tiefel, R. M. Fleming, J. M. Phillips, and R. Ramesh, Very large magnetoresistance in perovskite-like La-Ca-Mn-O thin films, Appl. Phys. Lett. 64(22), 3045 (1994)
CrossRef ADS Google scholar
[6]
P. Schiffer, A. P. Ramirez, W. Bao, and S. W. Cheong, Low temperature magnetoresistance and the magnetic phase diagram of La1–xCaxMnO3, Phys. Rev. Lett. 75(18), 3336 (1995)
CrossRef ADS Google scholar
[7]
A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Insulator-metal transition and giant magnetoresistance in La1–xSrxMnO3, Phys. Rev. B 51(20), 14103 (1995)
CrossRef ADS Google scholar
[8]
A. Sundaresan, P. L. Paulose, R. Mallik, and E. V. Sampathkumaran, Bandwidth-controlled magnetic and electronic transitions in La0.5Ca0.5–xSrxMnO3 (0<~x<~0.5) distorted perovskite, Phys. Rev. B 57(5), 2690 (1998)
CrossRef ADS Google scholar
[9]
O. Chmaissem, B. Dabrowski, S. Kolesnik, J. Mais, J. D. Jorgensen, and S. Short, Structural and magnetic phase diagrams of La1–xSrxMnO3 and Pr1–ySryMnO3, Phys. Rev. B 67(9), 094431 (2003)
CrossRef ADS Google scholar
[10]
C. Autret-Lambert, M. Gervais, S. Roger, F. Gervais, M. Lethiecq, N. Raimboux, and P. Simon, Inhomogeneous magnetism studied by ESR in La1–xSrxMnO3 (0.45≤x≤0.62), Solid State Sci. 71, 139 (2017)
CrossRef ADS Google scholar
[11]
A. Maignan, C. Martin, and B. Raveau, Substitution of manganese by trivalent and tetravalent elements in the CMR perovskites Pr1–x(Ca, Sr)xMnO3, Z. Phys. B 102, 19 (1996)
CrossRef ADS Google scholar
[12]
K. Ghosh, S. B. Ogale, R. Ramesh, R. L. Greene, T. Venkatesan, K. M. Gapchup, R. Bathe, and S. I. Patil, Transition-element doping effects in La0.7Ca0.3MnO3, Phys. Rev. B 59(1), 533 (1999)
CrossRef ADS Google scholar
[13]
M. Rubinstein, D. J. Gillespie, J. E. Snyder, and T. M. Tritt, Effects of Gd, Co, and Ni doping in La2/3Ca1/3MnO3: Resistivity, thermopower, and paramagnetic resonance, Phys. Rev. B 56(9), 5412 (1997)
CrossRef ADS Google scholar
[14]
Y. Sun, X. Xu, L. Zheng, and Y. Zhang, Effects of Ga doping in the colossal magnetoresistance material La0.67Ca0.33MnO3, Phys. Rev. B 60(17), 12317 (1999)
CrossRef ADS Google scholar
[15]
R. K. Sahu and S. S. Manoharan, A Zener pair effect in lanthanum rutheno manganite, J. Appl. Phys. 91(10), 7517 (2002)
CrossRef ADS Google scholar
[16]
L. M. Wang, J. H. Lai, J. I. Wu, Y. K. Kuo, and C. L. Chang, Effects of Ru substitution for Mn on La0.7Sr0.3MnO3 perovskites, J. Appl. Phys. 102(2), 023915 (2007)
CrossRef ADS Google scholar
[17]
N. Zaidi, S. Mnefgui, J. Dhahri, and E. K. Hlil, Effect of Ru substitution on the physical properties of La0.6Pr0.1Sr0.3Mn1–xRuxO3 (x= 0.00, 0.05 and 0.15) perovskites, RSC Adv. 5, 31901 (2015)
CrossRef ADS Google scholar
[18]
Y. Ying, J. Fan, L. Pi, Z. Qu, W. Wang, B. Hong, S. Tan, and Y. Zhang, Effect of Ru doping in La0.5Sr0.5MnO3 and La0.45Sr0.55MnO3, Phys. Rev. B 74(14), 144433 (2006)
CrossRef ADS Google scholar
[19]
M. M. Saber, M. Egilmez, A. I. Mansour, I. Fan, K. H. Chow, and J. Jung, Evolution of Curie-Weiss behavior and cluster formation temperatures in Ru-doped Sm0.55Sr0.45MnO3 manganites, Phys. Rev. B 82(17), 172401 (2010)
CrossRef ADS Google scholar
[20]
I. Dhiman, A. Das, A. K. Nigam, and U. Gasser, Influence of B-site disorder in La0.5Ca0.5Mn1–xBxO3 (B= Fe, Ru, Al and Ga) manganites, J. Phys.: Condens. Matter 23(24), 246006 (2011)
CrossRef ADS Google scholar
[21]
Y. Ying, J. Zheng, L. Qiao, W. Li, W. Cai, S. Che, L. Jiang, J. Fan, and M. Lin, Double exchange interaction between Mn3+ and Ru4+ ions in La1–xSrxMn1–xRuxO3, J. Superconduct. Novel Magnet. 28(10), 3117 (2015)
CrossRef ADS Google scholar
[22]
D. Zhu, H. Zhu, and Y. Zhang, Microstructure and magnetization of single-crystal perovskite manganites nanowires prepared by hydrothermal method, J. Cryst. Growth 249(1–2), 172 (2003)
CrossRef ADS Google scholar
[23]
J. Spooren, R. I. Walton, and F. Millange, A study of the manganites La0.5M0.5MnO3 (M= Ca, Sr, Ba) prepared by hydrothermal synthesis, J. Mater. Chem. 15(15), 1542 (2005)
CrossRef ADS Google scholar
[24]
Y. Cheng, J. Dai, X. Zhu, D. Wu, and Y. Sun, Preparation, magnetic and microwave absorption properties of La0.5Sr0.5MnO3/La(OH)3 composites, Mater. Res. Bull. 45(6), 663 (2010)
CrossRef ADS Google scholar
[25]
B. Tang, J. Ge, and L. Zhuo, The fabrication of La(OH)3 nanospheres by a controllable-hydrothermal method with citric acid as a protective agent, Nanotechnology 15(12), 1749 (2004)
CrossRef ADS Google scholar
[26]
C. Dong, PowderX: Windows-95-based program for powder X-ray diffraction data processing, J. Appl. Cryst. 32(4), 838 (1999)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(4094 KB)

Accesses

Citations

Detail

Sections
Recommended

/