Impurity-induced bound states as a signature of pairing symmetry in multiband superconducting CeCu2Si2
Dong-Dong Wang, Bin Liu, Min Liu, Yi-Feng Yang, Shi-Ping Feng
Impurity-induced bound states as a signature of pairing symmetry in multiband superconducting CeCu2Si2
The notion of multiband superconductivity with dominant two-gap features has been recently applied to the unconventional superconductor CeCu2Si2 for challenging the previously accepted concept of nodal d-wave pairing. In the proposed study, the realistic multiband Fermi surface topology of CeCu2Si2 was obtained through first-principles calculations, and analysis was conducted with an effective two-band hybridization model including detailed band structure. Within the T-matrix approximation, the obtained calculation results show that different pairing candidates, including fully gapped s-wave, loop-nodal s-wave, and d-wave pairings, could yield qualitatively distinct features characterized by impurity-induced bound states. These features can be verified through high-resolution scanning tunneling microscopy or spectroscopy and provide corroborative justification that would be beneficial for the ongoing research regarding the superconducting gap symmetry of CeCu2Si2 at ambient pressure.
heavy-fermion superconductivity / pairing symmetry / impurity effect / local density of states
[1] |
F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schafer, Superconductivity in the presence of strong pauli paramagnetism: CeCu2Si2, Phys. Rev. Lett. 43(25), 1892 (1979)
CrossRef
ADS
Google scholar
|
[2] |
H. Q. Yuan, F. M. Grosche, M. Deppe, C. Geibel, G. Sparn, and F. Steglich, Observation of two distinct superconducting phases in CeCu2Si2, Science 302(5653), 2104 (2003)
CrossRef
ADS
Google scholar
|
[3] |
F. Steglich, Twenty-five years of heavy-fermion superconductivity, Physica B359–361, 326 (2005)
CrossRef
ADS
Google scholar
|
[4] |
C. Bredl, H. Spille, U. Rauchschwalbe, W. Lieke, F. Steglich, G. Cordier, W. Assmus, M. Herrmann, and J. Aarts, Gapless superconductivity and variation of Tcin the heavy-fermion system CeCu2Si2, J. Magn. Magn. Mater. 31–34, 373 (1983)
CrossRef
ADS
Google scholar
|
[5] |
J. Arndt, O. Stockert, K. Schmalzl, E. Faulhaber, H. S. Jeevan, C. Geibel, W. Schmidt, M. Loewenhaupt, and F. Steglich, Spin fluctuations in normal state CeCu2Si2 on approaching the quantum critical point, Phys. Rev. Lett. 106(24), 246401 (2011)
CrossRef
ADS
Google scholar
|
[6] |
K. Ueda, Y. Kitaoka, H. Yamada, Y. Kohori, T. Kohara, and K. Asayama, 29Si knight shift in the heavy-fermion superconductor CeCu2Si2, J. Phys. Soc. Jpn. 56(3), 867 (1987)
CrossRef
ADS
Google scholar
|
[7] |
Y. Kitaoka, K. Ueda, K. Fujiwara, H. Arimoto, H. Iida, and K. Asayama, NMR investigation of superconductivity and Kondo-coherency in CeCu2Si2, J. Phys. Soc. Jpn. 55(3), 723 (1986)
CrossRef
ADS
Google scholar
|
[8] |
K. Fujiwara, Y. Hata, K. Kobayashi, K. Miyoshi, J. Takeuchi, Y. Shimaoka, H. Kotegawa, T. C. Kobayashi, C. Geibel, and F. Steglich, High pressure NQR measurement in CeCu2Si2 up to sudden disappearance of superconductivity, J. Phys. Soc. Jpn. 77(12), 123711 (2008)
CrossRef
ADS
Google scholar
|
[9] |
O. Stockert, J. Arndt, E. Faulhaber, C. Geibel, H. S. Jeevan, S. Kirchner, M. Loewenhaupt, K. Schmalzl, W. Schmidt, Q. Si, and F. Steglich, Magnetically driven superconductivity in CeCu2Si2, Nat. Phys. 7(2), 119 (2011)
|
[10] |
H. A. Vieyra, N. Oeschler, S. Seiro, H. S. Jeevan, C. Geibel, D. Parker, and F. Steglich, Determination of gap symmetry from angle-dependent Hc2 measurements on CeCu2Si2, Phys. Rev. Lett. 106(20), 207001 (2011)
CrossRef
ADS
Google scholar
|
[11] |
I. Eremin, G. Zwicknagl, P. Thalmeier, and P. Fulde, Feedback spin resonance in superconducting CeCu2Si2 and CeCoIn5, Phys. Rev. Lett. 101(18), 187001 (2008)
CrossRef
ADS
Google scholar
|
[12] |
S. Kittaka, Y. Aoki, Y. Shimura, T. Sakakibara, S. Seiro, C. Geibel, F. Steglich, H. Ikeda, and K. Machida, Multiband superconductivity with unexpected deficiency of nodal quasiparticles in CeCu2Si2, Phys. Rev. Lett. 112(6), 067002 (2014)
CrossRef
ADS
Google scholar
|
[13] |
S. Kittaka, Y. Aoki, Y. Shimura, T. Sakakibara, S. Seiro, C. Geibel, F. Steglich, Y. Tsutsumi, H. Ikeda, and K. Machida, Thermodynamic study of gap structure and pair-breaking effect by magnetic field in the heavyfermion superconductor CeCu2Si2, Phys. Rev. B 94(5), 054514 (2016)
CrossRef
ADS
Google scholar
|
[14] |
M. Enayat, Z. Sun, A. Maldonado, H. Suderow, S. Seiro, C. Geibel, S. Wirth, F. Steglich, and P. Wahl, Superconducting gap and vortex lattice of the heavy-fermion compound CeCu2Si2, Phys. Rev. B 93(4), 045123 (2016)
CrossRef
ADS
Google scholar
|
[15] |
G. M. Pang, M. Smidman, J. L. Zhang, L. Jiao, Z. F. Weng, E. M. Nica, Y. Chen, W. B. Jiang, Y. J. Zhang, H. S. Jeevan, P. Gegenwart, F. Steglich, Q. Si, and H. Q. Yuan, Fully gapped d-wave superconductivity in CeCu2Si2, Proc. Nat. Acad. Sci. 115, 5343 (2018), arXiv: 1605.04786
|
[16] |
T. Takenaka, Y. Mizukami, J. A. Wilcox, M. Konczykowski, S. Seiro, C. Geibel, Y. Tokiwa, Y. Kasahara, C. Putzke, Y. Matsuda, A. Carrington, and T. Shibauchi, Full-gap superconductivity robust against disorder in heavy-fermion CeCu2Si2, Phys. Rev. Lett. 119(7), 077001 (2017)
CrossRef
ADS
Google scholar
|
[17] |
Y. Li, M. Liu, Z. Fu, X. Chen, F. Yang, and Y. F. Yang, Gap symmetry of the heavy fermion superconductor CeCu2Si2 at ambient pressure, Phys. Rev. Lett. 120(21), 217001 (2018)
CrossRef
ADS
Google scholar
|
[18] |
H. Ikeda, M. Suzuki, and R. Arita, Emergent loop-nodal s±-wave superconductivity in CeCu2Si2: Similarities to the iron-based superconductors, Phys. Rev. Lett. 114(14), 147003 (2015)
CrossRef
ADS
Google scholar
|
[19] |
Ø. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Renner, Scanning tunneling spectroscopy of hightemperature superconductors, Rev. Mod. Phys. 79(1), 353 (2007)
CrossRef
ADS
Google scholar
|
[20] |
G. Knebel, D. Aoki, and J. Flouquet, Antiferromagnetism and superconductivity in cerium based heavy-fermion compounds,C. R. Phys. 12(5–6), 542 (2011)
CrossRef
ADS
Google scholar
|
[21] |
G. Stewart, Non-Fermi-liquid behavior in d- and felectron metals, Rev. Mod. Phys. 73(4), 797 (2001)
CrossRef
ADS
Google scholar
|
[22] |
G. R. Stewart, Heavy-fermion systems, Rev. Mod. Phys. 56(4), 755 (1984)
CrossRef
ADS
Google scholar
|
[23] |
P. Aynajian, E. H. da Silva Neto, A. Gyenis, R. E. Baumbach, J. D. Thompson, Z. Fisk, E. D. Bauer, and A. Yazdani, Visualizing heavy fermions emerging in a quantum critical Kondo lattice, Nature 486(7402), 201 (2012)
CrossRef
ADS
Google scholar
|
[24] |
M. P. Allan, F. Massee, D. K. Morr, J. van Dyke, A. W. Rost, A. P. Mackenzie, C. Petrovic, and J. C. Davis, Imaging Cooper pairing of heavy fermions in CeCoIn5, Nat. Phys. 9(8), 468 (2013)
|
[25] |
B. B. Zhou, S. Misra, E. H. da Silva Neto, P. Aynajian, R. E. Baumbach, J. D. Thompson, E. D. Bauer, and A. Yazdani, Visualizing nodal heavy fermion superconductivity in CeCoIn5, Nat. Phys. 9(8), 474 (2013)
|
[26] |
B. Liu, Nonmagnetic impurity resonance states as a test of superconducting pairing symmetry in CeCoIn5, Phys. Rev. B 88(24), 245127 (2013)
CrossRef
ADS
Google scholar
|
[27] |
G. Zhang, B. Liu, Y. Yang, and S. Feng, Spatial modulation of unitary impurity-induced resonances in superconducting CeCoIn5, Front. Phys. 11(3), 117402 (2016)
CrossRef
ADS
Google scholar
|
[28] |
G. Zwicknagl and U. Pulst, CeCu2Si2: Renormalized band structure, quasiparticles and co-operative phenomena, Physica B186–188, 895 (1993)
CrossRef
ADS
Google scholar
|
[29] |
A. V. Balatsky, I. Vekhter, and J. X. Zhu, Impurityinduced states in conventional and unconventional superconductors, Rev. Mod. Phys. 78(2), 373 (2006)
CrossRef
ADS
Google scholar
|
[30] |
S. H. Pan, E. W. Hudson, K. M. Lang, H. Eisaki, S. Uchida, and J. C. Davis, Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+d, Nature 403(6771), 746 (2000)
CrossRef
ADS
Google scholar
|
[31] |
S. H. Pan, J. P. O’Neal, R. L. Badzey, C. Chamon, H. Ding, J. R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A. K. Gupta, K.W. Ng, E. W. Hudson, K. M. Lang, and J. C. Davis, Microscopic electronic inhomogeneity in the high-Tcsuperconductor Bi2Sr2CaCu2O8+x, Nature 413(6853), 282 (2001)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |