
Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure
Zhi-Rong Zhong, Xin Wang, Wei Qin
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 130319.
Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure
We propose a method to entangle two vibrating microsize mirrors (i.e., mechanical oscillators) in a cavity optomechanical system. In this scheme, we discuss both the resonant and large-detuning conditions, and show that the entanglement of two mechanical oscillators can be achieved with the assistance of a two-level atom and cavity-radiation pressure. In the resonant case, the operation time is relatively short, which is desirable to minimize the effects of decoherence. While in the large-detuning case, the cavity is only virtually excited during the interaction. Therefore, the decay of the cavity is effectively suppressed, which makes the efficient decoherence time of the cavity to be greatly prolonged. Thus, we observe that this virtual-photon process of microscopic objects may induce the entanglement of macroscopic objects. Moreover, in both cases, the generation of entanglement is deterministic and no measurements on the atom and the cavity are required. These are experimentally important. Finally, the decoherence effect and the experimental feasibility of the proposal are briefly discussed.
cavity optomechanical system / atomic / entanglement
[1] |
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2010
CrossRef
ADS
Google scholar
|
[2] |
I. Buluta, S. Ashhab, and F. Nori, Natural and artificial atoms for quantum computation, Rep. Prog. Phys. 74(10), 104401 (2011)
CrossRef
ADS
Google scholar
|
[3] |
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)
CrossRef
ADS
Google scholar
|
[4] |
I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86(1), 153 (2014)
CrossRef
ADS
Google scholar
|
[5] |
Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85(2), 623 (2013)
CrossRef
ADS
Google scholar
|
[6] |
W. Qin, A. Miranowicz, P. B. Li, X. Y. Lü, J. Q. You, and F. Nori, Exponentially enhanced light-matter interaction, cooperativities, and steady-state entanglement using parametric amplification, Rev. Lett. 120(9), 093601 (2018)
CrossRef
ADS
Google scholar
|
[7] |
V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology, Phys. Rev. Lett. 96(1), 010401 (2006)
CrossRef
ADS
Google scholar
|
[8] |
V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nat. Photonics 5(4), 222 (2011)
CrossRef
ADS
Google scholar
|
[9] |
J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, Observation of strong radiation pressure forces from squeezed light on a mechanical oscillator, Nat. Phys. 12(7), 683 (2016)
|
[10] |
K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, A quantum-enhanced prototype gravitational-wave detector, Nat. Phys. 4(6), 472 (2008)
|
[11] |
U. B. Hoff, G. I. Harris, L. S. Madsen, H. Kerdoncuff, M. Lassen, B. M. Nielsen, W. P. Bowen, and U. L. Andersen, Quantum-enhanced micromechanical displacement sensitivity, Opt. Lett. 38(9), 1413 (2013)
CrossRef
ADS
Google scholar
|
[12] |
R. C. Pooser and B. Lawrie, Ultrasensitive measurement of microcantilever displacement below the shotnoise limit, Optica 2(5), 393 (2015)
CrossRef
ADS
Google scholar
|
[13] |
C. M. Caves, Quantum-mechanical noise in an interferometer, Phys. Rev. D 23(8), 1693 (1981)
CrossRef
ADS
Google scholar
|
[14] |
D. Kienzler, C. Flühmann, V. Negnevitsky, H. Y. Lo, M. Marinelli, D. Nadlinger, and J. P. Home, Observation of quantum interference between separated mechanical oscillator wave packets, Phys. Rev. Lett. 116(14), 140402 (2016)
CrossRef
ADS
Google scholar
|
[15] |
S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, Entangling macroscopic oscillators exploiting radiation pressure, Phys. Rev. Lett. 88(12), 120401 (2002)
CrossRef
ADS
Google scholar
|
[16] |
K. J. Vahala, Optical microcavities, Nature 424(6950), 839 (2003)
CrossRef
ADS
Google scholar
|
[17] |
J. Eisert, M. B. Plenio, S. Bose, and J. Hartley, Towards quantum entanglement in nanoelectromechanical devices, Phys. Rev. Lett. 93(19), 190402 (2004)
CrossRef
ADS
Google scholar
|
[18] |
X. B. Yan, W. Z. Jia, Y. Li, J. H. Wu, X. L. Li, and H. W. Mu, Optomechanically induced amplification and perfect transparency in double-cavity optomechanics, Front. Phys. 10(3), 351 (2015)
CrossRef
ADS
Google scholar
|
[19] |
J. D. Jost, J. P. Home, J. M. Amini, D. Hanneke, R. Ozeri, C. Langer, J. J. Bollinger, D. Leibfried, and D. J. Wineland, Entangled mechanical oscillators, Nature 459(7247), 683 (2009)
CrossRef
ADS
Google scholar
|
[20] |
Y. W. Hu, Y. F. Xiao, Y. C. Liu, and Q. Gong, Optomechanical sensing with on-chip microcavities, Front. Phys. 8(5), 475 (2013)
CrossRef
ADS
Google scholar
|
[21] |
J. Q. Liao and L. Tian, Macroscopic quantum superposition in cavity optomechanics, Phys. Rev. Lett. 116(16), 163602 (2016)
CrossRef
ADS
Google scholar
|
[22] |
C. F. Ockeloen-Korppi, E. Damskägg, J. M. Pirkkalainen, M. Asjad, A. Clerk, A. Massel, M. J. Woolley, and M. A. Sillanpää, Stabilized entanglement of massive mechanical oscillators, Nature 556(7702), 478 (2018)
CrossRef
ADS
Google scholar
|
[23] |
R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, Remote quantum entanglement between two micromechanical oscillators, Nature 556(7702), 473 (2018)
CrossRef
ADS
Google scholar
|
[24] |
C. G. Liao, R. X. Chen, X. Hong, and X. M. Lin, Reservoir-engineered entanglement in a hybrid modulated three-mode optomechanical system, Phys. Rev. A 97(4), 042314 (2018)
CrossRef
ADS
Google scholar
|
[25] |
R. X. Chen, C. G. Liao, and X. M. Lin, Dissipative generation of significant amount of mechanical entanglement in a coupled optomechanical system, Sci. Rep. 7(1), 14497 (2017)
CrossRef
ADS
Google scholar
|
[26] |
Q. Lin, B. He, R. Ghobadi, and C. Simon, Fully quantum approach to optomechanical entanglement, Phys. Rev. A 90(2), 022309 (2014)
CrossRef
ADS
Google scholar
|
[27] |
E. Verhagen, S. Deleglise, S. Weis, A. Schliesser, and T. J. Kippenberg, Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode, Nature 482(7383), 63 (2012)
CrossRef
ADS
Google scholar
|
[28] |
T. A. Palomaki, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert, Entangling mechanical motion with microwave fields, Science 342(6159), 710 (2013)
CrossRef
ADS
Google scholar
|
[29] |
M. J. Hartmann and M. B. Plenio, Steady state entanglement in the mechanical vibrations of two dielectric membranes, Phys. Rev. Lett. 101(20), 200503 (2008)
CrossRef
ADS
Google scholar
|
[30] |
C. Joshi, J. Larson, M. Jonson, E. Andersson, and P. Öhberg, Entanglement of distant optomechanical systems, Phys. Rev. A 85(3), 033805 (2012)
CrossRef
ADS
Google scholar
|
[31] |
Y. D. Wang and A. A. Clerk, Reservoir-engineered entanglement in optomechanical systems, Phys. Rev. Lett. 110(25), 253601 (2013)
CrossRef
ADS
Google scholar
|
[32] |
C. J. Yang, J. H. An, W. L. Yang, and Y. Li, Generation of stable entanglement between two cavity mirrors by squeezed-reservoir engineering, Phys. Rev. A 92(6), 062311 (2015)
CrossRef
ADS
Google scholar
|
[33] |
H. Flayac, M. Minkov, and V. Savona, Remote macroscopic entanglement on a photonic crystal architecture, Phys. Rev. A 92(4), 043812 (2015)
CrossRef
ADS
Google scholar
|
[34] |
J. Q. Liao, Q. Q. Wu, and F. Nori, Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system, Phys. Rev. A 89(1), 014302 (2014)
CrossRef
ADS
Google scholar
|
[35] |
R. X. Chen, L. T. Shen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, Enhancement of entanglement in distant mechanical vibrations via modulation in a coupled optomechanical system, Phys. Rev. A 89(2), 023843 (2014)
CrossRef
ADS
Google scholar
|
[36] |
X. W. Xu, Y. J. Zhao, and Y. X. Liu, Entangled-state engineering of vibrational modes in a multimembrane optomechanical system, Phys. Rev. A 88(2), 022325 (2013)
CrossRef
ADS
Google scholar
|
[37] |
J. Q. Liao, J. F. Huang, and L. Tian, Generation of macroscopic Schrodinger-cat states in qubitoscillator systems, Phys. Rev. A 93(3), 033853 (2016)
CrossRef
ADS
Google scholar
|
[38] |
L. Tian, Robust photon entanglement via quantum interference in optomechanical interfaces, Phys. Rev. Lett. 110(23), 233602 (2013)
CrossRef
ADS
Google scholar
|
[39] |
Y. D. Wang and A. A. Clerk, Reservoir-engineered entanglement in optomechanical systems, Phys. Rev. Lett. 110(25), 253601 (2013)
CrossRef
ADS
Google scholar
|
[40] |
Y. D. Wang, S. Chesi, and A. A. Clerk, Bipartite and tripartite output entanglement in three-mode optomechanical systems, Phys. Rev. A 91(1), 013807 (2015)
CrossRef
ADS
Google scholar
|
[41] |
Z. J. Deng, X. B. Yan, Y. D. Wang, and C. W. Wu, Optimizing the output-photon entanglement in multimode optomechanical systems, Phys. Rev. A 93(3), 033842 (2016)
CrossRef
ADS
Google scholar
|
[42] |
W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, Towards quantum superpositions of a mirror, Phys. Rev. Lett. 91(13), 130401 (2003)
CrossRef
ADS
Google scholar
|
[43] |
K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, Strong coupling of a mechanical oscillator and a single atom, Phys. Rev. Lett. 103(6), 063005 (2009)
CrossRef
ADS
Google scholar
|
[44] |
M. Wallquist, K. Hammerer, P. Zoller, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, J. Ye, and H. J. Kimble, Single-atom cavity QED and optomicromechanics, Phys. Rev. A 81(2), 023816 (2010)
CrossRef
ADS
Google scholar
|
[45] |
J. M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, Cavity optomechanics mediated by a quantum two-level system, Nat. Commun. 6(1), 6981 (2015)
CrossRef
ADS
Google scholar
|
[46] |
J. Restrepo, C. Cristiano, and I. Favero, Singlepolariton optomechanics, Phys. Rev. Lett. 112(1), 013601 (2014)
CrossRef
ADS
Google scholar
|
[47] |
M. Cotrufo, A. Fiore, and E. Verhagen, Coherent atomphonon interaction through mode field coupling in hybrid optomechanical systems, Phys. Rev. Lett. 118(13), 133603 (2017)
CrossRef
ADS
Google scholar
|
[48] |
C. Genes, D. Vitali, and P. Tombesi, Emergence of atom-light-mirror entanglement inside an optical cavity, Phys. Rev. A 77, 050307(R) (2008)
|
[49] |
B. Vogell, K. Stannigel, P. Zoller, K. Hammerer, M. T. Rakher, M. Korppi, A. Jöckel, and P. Treutlein, Cavityenhanced long-distance coupling of an atomic ensemble to a micromechanical membrane, Phys. Rev. A 87(2), 023816 (2013)
CrossRef
ADS
Google scholar
|
[50] |
K. Y. Zhang, L. Zhou, G. Dong, and W. Zhang, Cavity optomechanics with cold atomic gas, Front. Phys. 6(3), 237 (2011)
CrossRef
ADS
Google scholar
|
[51] |
Y. Wu, B. Zhu, S.-F Hu, Z. Zhou, and H.-H. Zhong, Floquet control of the gain and loss in a PT-symmetric optical coupler, Front. Phys. 12, 121102 (2017)
CrossRef
ADS
Google scholar
|
[52] |
S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, Self-cooling of a micromirror by radiation pressure, Nature 444(7115), 67 (2006)
CrossRef
ADS
Google scholar
|
[53] |
O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, Radiation-pressure cooling and optomechanical instability of a micromirror, Nature 444(7115), 71 (2006)
CrossRef
ADS
Google scholar
|
[54] |
I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett. 99(9), 093901 (2007)
CrossRef
ADS
Google scholar
|
[55] |
F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett. 99(9), 093902 (2007)
CrossRef
ADS
Google scholar
|
[56] |
A. Schliesser, R. Rivi’ere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, Resolved-sideband cooling of a micromechanical oscillator, Nat. Phys. 4(5), 415 (2008)
|
[57] |
S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity, Nat. Phys. 5(7), 485 (2009)
|
[58] |
T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A. Clerk, and K. C. Schwab, Preparation and detection of a mechanical resonator near the ground state of motion, Nature 463(7277), 72 (2010)
CrossRef
ADS
Google scholar
|
[59] |
A. Schliesser, O. Arcizet, R. Rivi’ere, G. Anetsberger, and T. J. Kippenberg, Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit, Nat. Phys. 5(7), 509 (2009)
|
[60] |
J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, Sideband cooling of micromechanical motion to the quantum ground state, Nature 475(7356), 359 (2011)
CrossRef
ADS
Google scholar
|
[61] |
J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, Laser cooling of a nanomechanical oscillator into its quantum ground state, Nature 478(7367), 89 (2011)
CrossRef
ADS
Google scholar
|
[62] |
E. Verhagen, S. Del’eglise, S. Weis, A. Schliesser, and T. J. Kippenberg, Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode, Nature 482(7383), 63 (2012)
CrossRef
ADS
Google scholar
|
[63] |
T. J. Kippenberg and K. J. Vahala, Cavity optomechanics: Back-action at the mesoscale, Science 321(5893), 1172 (2008)
CrossRef
ADS
Google scholar
|
[64] |
F. Marquardt and S. M. Girvin, Optomechanics, Physics (College Park Md.) 2, 40 (2009)
CrossRef
ADS
Google scholar
|
[65] |
X. Wang, H. R. Li, P. B. Li, C. W. Jiang, H. Gao, and F. L. Li, Preparing ground states and squeezed states of nanomechanical cantilevers by fast dissipation, Phys. Rev. A 90(1), 013838 (2014)
CrossRef
ADS
Google scholar
|
[66] |
T. Hong, H. Yang, H. Miao, and Y. Chen, Open quantum dynamics of single-photon optomechanical devices, Phys. Rev. A 88(2), 023812 (2013)
CrossRef
ADS
Google scholar
|
[67] |
J. Q. Liao, H. K. Cheung, and C. K. Law, Spectrum of single-photon emission and scattering in cavity optomechanics, Phys. Rev. A 85(2), 025803 (2012)
CrossRef
ADS
Google scholar
|
[68] |
B. He, Quantum optomechanics beyond linearization, Phys. Rev. A 85(6), 063820 (2012)
CrossRef
ADS
Google scholar
|
[69] |
H. Xie, G. W. Lin, X. Chen, Z. H. Chen, and X. M. Lin, Single-photon nonlinearities in a strongly driven optomechanical system with quadratic coupling, Phys. Rev. A 93(6), 063860 (2016)
CrossRef
ADS
Google scholar
|
[70] |
X. W. Xu, Y. J. Li, and Y. X. Liu, Photon-induced tunneling in optomechanical systems, Phys. Rev. A 87(2), 025803 (2013)
CrossRef
ADS
Google scholar
|
[71] |
A. Kronwald, M. Ludwig, and F. Marquardt, Full photon statistics of a light beam transmitted through an optomechanical system, Phys. Rev. A 87(1), 013847 (2013)
CrossRef
ADS
Google scholar
|
[72] |
G. F. Xu and C. K. Law, Dark states of a moving mirror in the single-photon strong-coupling regime, Phys. Rev. A 87(5), 053849 (2013)
CrossRef
ADS
Google scholar
|
[73] |
P. Rabl, Photon blockade effect in optomechanical systems, Phys. Rev. Lett. 107(6), 063601 (2011)
CrossRef
ADS
Google scholar
|
[74] |
J. Q. Liao and C. K. Law, Correlated two-photon scattering in cavity optomechanics, Phys. Rev. A 87(4), 043809 (2013)
CrossRef
ADS
Google scholar
|
[75] |
A. Miranowicz, J. Bajer, N. Lambert, Y. X. Liu, and F. Nori, Tunable multiphonon blockade in coupled nanomechanical resonators, Phys. Rev. A 93(1), 013808 (2016)
CrossRef
ADS
Google scholar
|
[76] |
A. Miranowicz, J. Bajer, M. Paprzycka, Y. X. Liu, A. M. Zagoskin, and F. Nori, State-dependent photon blockade via quantum-reservoir engineering, Phys. Rev. A 90(3), 033831 (2014)
CrossRef
ADS
Google scholar
|
[77] |
H. Wang, X. Gu, Y. X. Liu, A. Miranowicz, and F. Nori, Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system, Phys. Rev. A 92(3), 033806 (2015)
CrossRef
ADS
Google scholar
|
[78] |
D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Quantum dynamics of single trapped ions, Rev. Mod. Phys. 75(1), 281 (2003)
CrossRef
ADS
Google scholar
|
[79] |
J. R. Johansson, P. D. Nation, and F. Nori, Qutip: An open-source Python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 183(8), 1760 (2012)
CrossRef
ADS
Google scholar
|
[80] |
J. R. Johansson, P. D. Nation, and F. Nori, QuTiP2: A Python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 184(4), 1234 (2013)
CrossRef
ADS
Google scholar
|
[81] |
R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81(2), 865 (2009)
CrossRef
ADS
Google scholar
|
[82] |
S. B. Zheng and G. C. Guo, Efficient scheme for twoatom entanglement and quantum information processing in cavity QED, Phys. Rev. Lett. 85(11), 2392 (2000)
CrossRef
ADS
Google scholar
|
[83] |
W. H. Zurek, Decoherence and the transition from quantum to classical, Phys. Today 44(10), 36 (1991)
CrossRef
ADS
Google scholar
|
[84] |
L. F. Buchmann and D. M. Stamper-Kurn, Nondegenerate multimode optomechanics, Phys. Rev. A 92(1), 013851 (2015)
CrossRef
ADS
Google scholar
|
[85] |
C. H. Bennett, G. Brassard, C. Cr’epeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
CrossRef
ADS
Google scholar
|
[86] |
J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, Quantum state transfer and entanglement distribution among distant nodes in a quantum network, Phys. Rev. Lett. 78(16), 3221 (1997)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |