Regularity of atomic nuclei with random interactions: sd bosons

Y. M. Zhao

PDF(4819 KB)
PDF(4819 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (6) : 132114. DOI: 10.1007/s11467-018-0820-0
REVIEW ARTICLE
REVIEW ARTICLE

Regularity of atomic nuclei with random interactions: sd bosons

Author information +
History +

Abstract

Atomic nuclei are complex systems with gigantic configuration spaces, therefore truncations of model spaces are indispensable. Due to the short-range nature of the nuclear interactions, one may resort to a truncation by using coherent nucleon-pairs which are conveniently further simplified as bosons, such as sd bosons. The discovery of the spin-zero ground state dominance with random two-body interactions led to a series of studies on regular structure for sd bosons in the presence of random interactions, and this review article summarizes studies along this line in last two decades. We concentrate on various patterns exhibited in sd boson systems, and demonstrate that many random samples which were thought to be noisy exhibit very regular patterns, some of which are interpreted in terms of the U(5), O(6), O(6 ) ¯, SU(3), and SU(3) ¯ dynamical symmetries of the sd interacting boson model.

Keywords

regularity / random interactions / sd bosons

Cite this article

Download citation ▾
Y. M. Zhao. Regularity of atomic nuclei with random interactions: sd bosons. Front. Phys., 2018, 13(6): 132114 https://doi.org/10.1007/s11467-018-0820-0

References

[1]
C. W. Johnson, G. F. Bertsch, and D. J. Dean, Orderly spectra from random interactions, Phys. Rev. Lett. 80(13), 2749 (1998)
CrossRef ADS Google scholar
[2]
C. Johnson, G. Bertsch, D. Dean, and I. Talmi, Generalized seniority from random Hamiltonians, Phys. Rev. C 61(1), 014311 (1999)
CrossRef ADS Google scholar
[3]
D. Mulhall, A. Volya, and V. Zelevinsky, Geometric chaoticity leads to ordered spectra for randomly interacting fermions, Phys. Rev. Lett. 85(19), 4016 (2000)
CrossRef ADS Google scholar
[4]
V. Zelevinsky and A. Volya, Nuclear structure, random interactions and mesoscopic physics, Phys. Rep. 391(3–6), 311 (2004)
CrossRef ADS Google scholar
[5]
Y. M. Zhao and A. Arima, Towards understanding the probability of 0+ ground states in even-even many-body systems, Phys. Rev. C 64(4), 041301 (2001)
CrossRef ADS Google scholar
[6]
P. Chau Huu-Tai, A. Frank, N. A. Smirnova, and P. Van Isacker, Geometry of random interactions, Phys. Rev. C 66(6), 061302 (2002)
CrossRef ADS Google scholar
[7]
Y. M. Zhao, A. Arima, and N. Yoshinaga, Simple approach to the angular momentum distribution in the ground states of many-body systems, Phys. Rev. C 66(3), 034302 (2002)
CrossRef ADS Google scholar
[8]
T. Papenbrock and H. A. Weidenmüller, Distribution of spectral widths and preponderance of spin-0 ground states in nuclei, Phys. Rev. Lett. 93(13), 132503 (2004)
CrossRef ADS Google scholar
[9]
N. Yoshinaga, A. Arima, and Y. M. Zhao, Lowest bound of energies for random interactions and the origin of spin-zero ground state dominance in even-even nuclei, Phys. Rev. C 73(1), 017303 (2006)
CrossRef ADS Google scholar
[10]
Y. M. Zhao, A. Arima, and N. Yoshinaga, Manybody systems interacting via a two-body random ensemble (I): Angular momentum distribution in the ground states, Phys. Rev. C 66(6), 064322 (2002)
CrossRef ADS Google scholar
[11]
Y. M. Zhao, A. Arima, and N. Yoshinaga, Angular momentum distribution of the ground states in the presence of random interactions: Boson systems, Phys. Rev. C 68(1), 014322 (2003)
CrossRef ADS Google scholar
[12]
Y. Lu, Y. M. Zhao, and A. Arima, Spin I ground state probabilities of integrable systems under random interactions, Phys. Rev. C 91(2), 027301 (2015)
CrossRef ADS Google scholar
[13]
Y. M. Zhao, A. Arima, and N. Yoshinaga, Regularities of many-body systems interacting by a two-body random ensemble, Phys. Rep. 400(1), 1 (2004)
CrossRef ADS Google scholar
[14]
H. A. Weidenmüller and G. E. Mitchell, Random matrices and chaos in nuclear physics: Nuclear structure, Rev. Mod. Phys. 81(2), 539 (2009)
CrossRef ADS Google scholar
[15]
Y. M. Zhao, A. Arima, N. Shimizu, K. Ogawa, N. Yoshinaga, and O. Scholten, Patterns of the ground states in the presence of random interactions: Nucleon systems, Phys. Rev. C 70(5), 054322 (2004)
CrossRef ADS Google scholar
[16]
T. Papenbrock and H. A. Weidenmüller, Abundance of ground states with positive parity, Phys. Rev. C 78(5), 054305 (2008)
CrossRef ADS Google scholar
[17]
N. Shimizu and T.Otsuka, Ground state properties with a random two-body interaction, Prog. Theor. Phys. 118(3), 491 (2007)
CrossRef ADS Google scholar
[18]
M. Horoi, A. Volya, and V. Zelevinsky, Random interactions, isospin, and the ground states of odd-A and odd-odd nuclei, Phys. Rev. C 66(2), 024319 (2002)
CrossRef ADS Google scholar
[19]
V. Velázquez, J. G. Hirsch, A. Frank, and A. P. Zuker, A study of randomness, correlations, and collectivity in the nuclear shell model, Phys. Rev. C 67(3), 034311 (2003)
CrossRef ADS Google scholar
[20]
C. W. Johnson and H. A. Nam, New puzzle for manybody systems with random two-body interactions,Phys. Rev. C 75(4), 047305 (2007)
CrossRef ADS Google scholar
[21]
G. J. Fu, J. J. Shen, Y. M. Zhao, and A. Arima, Regularities in low-lying states of atomic nuclei with random interactions, Phys. Rev. C 91(5), 054319 (2015)
CrossRef ADS Google scholar
[22]
G. J. Fu, L. Y. Jia, Y. M. Zhao, and A. Arima, Monopole pairing correlations with random interactions, Phys. Rev. C 96(4), 044306 (2017)
CrossRef ADS Google scholar
[23]
Y. Lei, Z. Y. Xu, Y. M. Zhao, S. Pittel, and A. Arima, Emergence of generalized seniority in low-lying states with random interactions, Phys. Rev. C 83(2), 024302 (2011)
CrossRef ADS Google scholar
[24]
G. J. Fu, L. Y. Jia, Y. M. Zhao, and A. Arima, Monopole pairing correlations with random interactions, Phys. Rev. C 96(4), 044306 (2017)
CrossRef ADS Google scholar
[25]
M. W. Kirson and J. A. Mizrahi, Random interactions with isospin, Phys. Rev. C 76(6), 064305 (2007)
CrossRef ADS Google scholar
[26]
M. Horoi, A. Volya, and V. Zelevinsky, Random interactions, isospin, and the ground states of odd-A and odd-odd nuclei, Phys. Rev. C 66(2), 024319 (2002)
CrossRef ADS Google scholar
[27]
Y. M. Zhao, A. Arima, and N. Yoshinaga, Many-body systems interacting via a two-body random ensemble. I. Angular momentum distribution in the ground states, Phys. Rev. C 66(6), 064322 (2002)
CrossRef ADS Google scholar
[28]
A. Arima and F. Iachello, Interacting boson model of collective states I: The vibrational limit, Ann. Phys. 99(2), 253 (1976)
CrossRef ADS Google scholar
[29]
A. Arima and F. Iachello, Interacting boson model of collective nuclear states II: The rotational limit, Ann. Phys. 111(1), 209 (1978)
[30]
A. Arima and F. Iachello, Interacting boson model of collective nuclear states IV: The O(6) limit, Ann. Phys. 123(2), 468 (1979)
CrossRef ADS Google scholar
[31]
M. G. Mayer, On closed shells in nuclei (II), Phys. Rev. 75(12), 1969 (1949)
CrossRef ADS Google scholar
[32]
J. H. D. Jensen, J. Suess, and O. Haxel, Modellmäßige deutung der ausgezeichneten nucleonenzahlen im kernbau, Naturwissenschaften 36(5), 155 (1949)
CrossRef ADS Google scholar
[33]
O. Haxel, J. H. D. Jensen, and H. E. Suess, On the “magic numbers” in nuclear structure, Phys. Rev. 75(11), 1766 (1949)
CrossRef ADS Google scholar
[34]
A. Bohr and B. R. Mottelson, Nuclear Structure, Volumes I and II, Benjamin, New York; World Scientific, Singapore, 1998
[35]
F. Iachello and A. Arima, The Interacting Boson Model, Cambridge University Press, 1987
CrossRef ADS Google scholar
[36]
R. Bijker and A. Frank, Band structure from random interactions, Phys. Rev. Lett. 84(3), 420 (2000)
CrossRef ADS Google scholar
[37]
Y. M. Zhao, J. L. Ping, and A. Arima, Collectivity of low-lying states under random two-body interactions, Phys. Rev. C 76(5), 054318 (2007)
CrossRef ADS Google scholar
[38]
J. N. Ginocchio, An exact fermion model with monopole and quadrupole pairing, Phys. Lett. B 79, 173 (1978)
CrossRef ADS Google scholar
[39]
J. N. Ginocchio, On a generalization of quasispin to onopole and quadrupole pairing, Phys. Lett. B 85, 9 (1979)
CrossRef ADS Google scholar
[40]
J. N. Ginocchio, A schematic model for monopole and quadrupole pairing in nuclei, Ann. Phys. 126(1), 234 (1980)
CrossRef ADS Google scholar
[41]
C. L. Wu, X. G. Chen, J. Q. Chen, and M. W. Guidry, Fermion dynamical symmetry model of nuclei: Basis, Hamiltonian, and symmetries, Phys. Rev. C 36(3), 1157 (1987)
CrossRef ADS Google scholar
[42]
C. L. Wu, D. H. Feng, and M. W. Guidry, The fermion dynamical symmetry model, Adv. Nucl. Phys. 21, 227 (1994)
[43]
R. Bijker and A. Frank, Collective states in nuclei and many-body random interactions, Phys. Rev. C 62(1), 014303 (2000)
CrossRef ADS Google scholar
[44]
N. Yoshida, Y. M. Zhao, and A. Arima, Proton-neutron interacting boson model under random two-body interactions, Phys. Rev. C 80(6), 064324 (2009)
CrossRef ADS Google scholar
[45]
T. Otsuka, A. Arima, F. Iachello, and I. Talmi, Shell model description of interacting bosons, Phys. Lett. B 76(2), 139 (1978)
CrossRef ADS Google scholar
[46]
C. W. Johnson, Orderly spectra from random interactions: Robust results, Rev. Mex. Fis. 45(S2), 25 (1999)
[47]
Y. M. Zhao, S. Pittel, R. Bijker, A. Frank, and A. Arima, Generic rotation in a collective SD nucleon-pair subspace, Phys. Rev. C 66(4), 041301 (2002)
CrossRef ADS Google scholar
[48]
C. A. Mallmann, System of levels in even-even nuclei, Phys. Rev. Lett. 2(12), 507 (1959)
CrossRef ADS Google scholar
[49]
J. N. Ginocchio and M. W. Kirson, Relationship between the bohr collective hamiltonian and the interacting-boson model, Phys. Rev. Lett. 44(26), 1744 (1980)
CrossRef ADS Google scholar
[50]
A. E. L. Dieperink, O. Scholten, and F. Iachello, Classical limit of the interacting-boson model, Phys. Rev. Lett. 44(26), 1747 (1980)
CrossRef ADS Google scholar
[51]
A. Bohr and B. R. Mottelson, Features of nuclear deformations produced by the alignment of individual particles or pairs, Phys. Scr. 22(5), 468 (1980)
CrossRef ADS Google scholar
[52]
T. Otsuka, A. Arima, and F. Iachello, Nuclear shell model and interacting bosons, Nucl. Phys. A 309(1–2), 1 (1978)
CrossRef ADS Google scholar
[53]
K. Nomura, N. Shimizu, D. Vretenar, T. Niksic, and T. Otsuka, Robust regularity in g-soft nuclei and its microscopic realization, Phys. Rev. Lett. 108(13), 132501 (2012)
CrossRef ADS Google scholar
[54]
R. Bijker and A. Frank, Mean-field analysis of interacting boson models with random interactions, Phys. Rev. C 64(6), 061303 (2001)
CrossRef ADS Google scholar
[55]
F. Iachello, Algebraic methods for molecular rotationvibration spectra, Chem. Phys. Lett. 78(3), 581 (1981)
CrossRef ADS Google scholar
[56]
F. Iachello and R. D. Levine, Algebraic approach to molecular rotation-vibration spectra (I): Diatomic molecules, J. Chem. Phys. 77(6), 3046 (1982)
CrossRef ADS Google scholar
[57]
R. Bijker and A. Frank, Regular spectra in the vibron model with random interactions, Phys. Rev. C 65(4), 044316 (2002)
CrossRef ADS Google scholar
[58]
Y. Lei, Y. M. Zhao, N. Yoshida, and A. Arima, Correlations of excited states for SD bosons in the presence of random interactions, Phys. Rev. C 83(4), 044302 (2011)
CrossRef ADS Google scholar
[59]
Y. Lu, Y. M. Zhao, N. Yoshida, and A. Arima, Correlations between low-lying yrast states for s d bosons with random interactions, Phys. Rev. C 90(6), 064313 (2014)
CrossRef ADS Google scholar
[60]
G. J. Fu, Y. M. Zhao, J. L. Ping, and A. Arima, Excited states of many-body systems in the fermion dynamical symmetry model with random interactions, Phys. Rev. C 88(3), 037302 (2013)
CrossRef ADS Google scholar
[61]
G. J. Fu, Y. M. Zhao, and A. Arima, Regularities of low-lying states with random interactions in the fermion dynamical symmetry model, Phys. Rev. C 90(6), 064320 (2014)
CrossRef ADS Google scholar
[62]
G. J. Fu, Y. Zhang, Y. M. Zhao, and A. Arima, Collective modes of low-lying states in the interacting boson model with random interactions, Phys. Rev. C 98(3), 034301 (2018)
CrossRef ADS Google scholar
[63]
R. F. Casten, edited by F. Iachello, Interacting Bose– Fermi Systems in Nuclei, Plenum, 1981
[64]
H. Ejiri, M. Ishihara, M. Sakai, K. Katori, and T. Inamura, Conversion electrons from (α, xn) reactions on Sm isotopes and nuclear structures of Gd nuclei, J. Phys. Soc. Jpn. 24(6), 1189 (1968)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
PDF(4819 KB)

Accesses

Citations

Detail

Sections
Recommended

/