Three-dimensional atom localization via spontaneous emission in a four-level atom

Fei Song, Jin-Yu Chen, Zhi-Ping Wang, Ben-Li Yu

PDF(1238 KB)
PDF(1238 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 134208. DOI: 10.1007/s11467-018-0817-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Three-dimensional atom localization via spontaneous emission in a four-level atom

Author information +
History +

Abstract

We investigate high-precision three-dimensional (3D) atom localization in a coherently-driven, fourlevel atomic system via spontaneous emission. Space-dependent atom-field interactions allow atomic position information to be obtained by measuring spontaneous emission. By properly varying system parameters, atoms within a certain range can be localized with nearly a probability of 100% and a maximal resolution of ~0.04λ. This scheme may be useful for the high-precision measurement of the center-of-mass wave functions of moving atoms and in atom nanolithography.

Keywords

atom localization / spontaneous emission / dressed-state picture

Cite this article

Download citation ▾
Fei Song, Jin-Yu Chen, Zhi-Ping Wang, Ben-Li Yu. Three-dimensional atom localization via spontaneous emission in a four-level atom. Front. Phys., 2018, 13(5): 134208 https://doi.org/10.1007/s11467-018-0817-8

References

[1]
G. S. Agarwal, Quantum Optics, edited by G. Höhler, Springer Tracts in Modern Physics Vol. 70, Berlin: Springer, 1974
[2]
S. Y. Zhu and M. O. Scully, Spectral line elimination and spontaneous emission cancellation via quantum interference, Phys. Rev. Lett. 76(3), 388 (1996)
CrossRef ADS Google scholar
[3]
P. Zhou and S. Swain, Quantum interference in probe absorption: Narrow resonances, transparency, and gain without population inversion, Phys. Rev. Lett. 78(5), 832 (1997)
CrossRef ADS Google scholar
[4]
E. Paspalakis, C. H. Keitel, and P. L. Knight, Fluorescence control through multiple interference mechanisms, Phys. Rev. A 58(6), 4868 (1998)
CrossRef ADS Google scholar
[5]
E. Paspalakis, N. J. Kylstra, and P. L. Knight, Transparency induced via decay interference, Phys. Rev. Lett. 82(10), 2079 (1999)
CrossRef ADS Google scholar
[6]
F. Ghafoor, S. Y. Zhu, and M. S. Zubairy, Amplitude and phase control of spontaneous emission, Phys. Rev. A 62(1), 013811 (2000)
CrossRef ADS Google scholar
[7]
M. A. Antón, O. G. Calderon, and F. Carreno, Spontaneously generated coherence effects in a laser-driven four-level atomic system, Phys. Rev. A 72(2), 023809 (2005)
CrossRef ADS Google scholar
[8]
E. Paspalakis and P. L. Knight, Phase control of spontaneous emission, Phys. Rev. Lett. 81(2), 293 (1998)
CrossRef ADS Google scholar
[9]
J. H. Wu, A. J. Li, Y. Ding, Y. C. Zhao, and J. Y. Gao, Control of spontaneous emission from a coherently driven four-level atom, Phys. Rev. A 72(2), 023802 (2005)
CrossRef ADS Google scholar
[10]
J. H. Li, J. B. Liu, A. X. Chen, and C. C. Qi, Spontaneous emission spectra and simulating multiple spontaneous generation coherence in a five-level atomic medium, Phys. Rev. A 74(3), 033816 (2006)
CrossRef ADS Google scholar
[11]
A. J. Li, X. L. Song, X. G. Wei, L. Wang, and J. Y. Gao, Effects of spontaneously generated coherence in a microwave-driven four-level atomic system, Phys. Rev. A 77(5), 053806 (2008)
CrossRef ADS Google scholar
[12]
C. L. Wang, Z. H. Kang, S. C. Tian, Y. Jiang, and J. Y. Gao, Effect of spontaneously generated coherence on absorption in a V-type system: Investigation in dressed states, Phys. Rev. A 79(4), 043810 (2009)
CrossRef ADS Google scholar
[13]
A. M. Herkommer, W. P. Schleich, and M. S. Zubairy, Autler-Townes microscopy on a single atom, J. Mod. Opt. 44(11–12), 2507 (1997)
CrossRef ADS Google scholar
[14]
S. Qamar, S. Y. Zhu, and M. S. Zubairy, Atom localization via resonance fluorescence, Phys. Rev. A 61(6), 063806 (2000)
CrossRef ADS Google scholar
[15]
F. Ghafoor, S. Qamar, and M. S. Zubairy, Atom localization via phase and amplitude control of the driving field, Phys. Rev. A 65(4), 043819 (2002)
CrossRef ADS Google scholar
[16]
F. Ghafoor, Subwavelength atom localization via quantum coherence in a three-level atomic system, Phys. Rev. A 84(6), 063849 (2011)
CrossRef ADS Google scholar
[17]
R. G. Wan, J. Kou, L. Jiang, Y. Jiang, and J. Y. Gao, Two-dimensional atom localization via controlled spontaneous emission from a driven tripod system, J. Opt. Soc. Am. B 28(1), 10 (2011)
CrossRef ADS Google scholar
[18]
R. G. Wan and T. Y. Zhang, Two-dimensional sub-halfwavelength atom localization via controlled spontaneous emission, Opt. Express 19(25), 25823 (2011)
CrossRef ADS Google scholar
[19]
C. L. Ding, J. H. Li, Z. M. Zhang, and X. X. Yang, Twodimensional atom localization via spontaneous emission in a coherently driven five-level M-type atomic system, Phys. Rev. A 83(6), 063834 (2011)
CrossRef ADS Google scholar
[20]
C. L. Ding, J. H. Li, R. Yu, Y. Hao, and Y. Wu, Highprecision atom localization via controllable spontaneous emission in a cycle-configuration atomic system, Opt. Express 20(7), 7870 (2012)
CrossRef ADS Google scholar
[21]
Z. P. Wang and B. Yu, High-precision three-dimensional atom localization via spontaneous emission in a fourlevel atomic system, Laser Phys. Lett. 13(6), 065203 (2016)
CrossRef ADS Google scholar
[22]
Z. P. Wang, J. Y. Chen, and B. L. Yu, High-dimensional atom localization via spontaneously generated coherence in a microwave-driven atomic system, Opt. Express 25(4), 3358 (2017)
CrossRef ADS Google scholar
[23]
J. Chen, F. Song, Z. Wang, and B. Yu, Threedimensional atom localization via spontaneous emission from two different decay channels, Laser Phys. Lett. 15(6), 065205 (2018)
CrossRef ADS Google scholar
[24]
V. S. Ivanov, Y. V. Rozhdestvensky, and K. A. Suominen, Three-dimensional atom localization by laser fields in a four-level tripod system, Phys. Rev. A 90(6), 063802 (2014)
CrossRef ADS Google scholar
[25]
Z. Zhu, W. X. Yang, X. T. Xie, S. Liu, S. Liu, and R. K. Lee, Three-dimensional atom localization from spatial interference in a double two-level atomic system, Phys. Rev. A 94(1), 013826 (2016)
CrossRef ADS Google scholar
[26]
H. R. Hamedi and G. Juzeliunas, Phase-sensitive atom localization for closed-loop quantum systems, Phys. Rev. A 94(1), 013842 (2016)
CrossRef ADS Google scholar
[27]
Z. H. Zhu, A. X. Chen, S. P. Liu, and W. X. Yang, High-precision three-dimensional atom localization via three-wave mixing in V-type three-level atoms, Phys. Lett. A 380(46), 3956 (2016)
CrossRef ADS Google scholar
[28]
D. Zhang, R. Yu, Z. Sun, C. Ding, and M. S. Zubairy, High-precision three-dimensional atom localization via phase-sensitive absorption spectra in a four-level atomic system, J. Phys. B 51(2), 025501 (2018)
CrossRef ADS Google scholar
[29]
J. H. Li, R. Yu, M. Liu, C. L. Ding, and X. X. Yang, Efficient two-dimensional atom localization via phasesensitive absorption spectrum in a radio-frequencydriven four-level atomic system, Phys. Lett. A 375(45), 3978 (2011)
CrossRef ADS Google scholar
[30]
Z. H. Zhu, W. X. Yang, A. X. Chen, S. P. Liu, and R. K. Lee, Two-dimensional atom localization via phase-sensitive absorption-gain spectra in five-level hyper inverted-Y atomic systems, J. Opt. Soc. Am. B 32(6), 1070 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1238 KB)

Accesses

Citations

Detail

Sections
Recommended

/