Electron mass enhancement and magnetic phase separation near the Mott transition in double-layer ruthenates

Jin Peng, X. M. Gu, G. T. Zhou, W. Wang, J. Y. Liu, Yu Wang, Z. Q. Mao, X. S. Wu, Shuai Dong

PDF(1035 KB)
PDF(1035 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 137108. DOI: 10.1007/s11467-018-0813-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Electron mass enhancement and magnetic phase separation near the Mott transition in double-layer ruthenates

Author information +
History +

Abstract

We present a detailed investigation of the specific heat of Ca3(Ru1−xMx)2O7 (M= Ti, Fe, Mn) single crystals. Depending on the dopant and doping level, three distinct regions are present: a quasitwo- dimensional metallic state with antiferromagnetic (AFM) order formed by ferromagnetic bilayers (AFM-b), a Mott insulating state with G-type AFM order (G-AFM), and a localized state with a mixed AFM-b and G-AFM phase. Our specific heat data provide deep insights into the Mott transitions induced by Ti and Mn doping. We observed not only an anomalous large mass enhancement, but also an additional term in the specific heat, i.e., CT2, in the localized region. The CT2 term is most likely due to long-wavelength excitations with both FM and AFM components. A decrease in the Debye temperature is observed in the G-type AFM region, indicating lattice softening associated with the Mott transition.

Keywords

specific heat / ruthenates / Mott insulator / phase separation

Cite this article

Download citation ▾
Jin Peng, X. M. Gu, G. T. Zhou, W. Wang, J. Y. Liu, Yu Wang, Z. Q. Mao, X. S. Wu, Shuai Dong. Electron mass enhancement and magnetic phase separation near the Mott transition in double-layer ruthenates. Front. Phys., 2018, 13(4): 137108 https://doi.org/10.1007/s11467-018-0813-z

References

[1]
M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transitions, Rev. Mod. Phys. 70(4), 1039 (1998)
CrossRef ADS Google scholar
[2]
V. R. Shaginyan, A. Z. Msezane, G. S. Japaridze, K. G. Popov, and V. A. Khodel, Strongly correlated Fermi systems as a new state of matter, Front. Phys. 11(5), 117103 (2016)
CrossRef ADS Google scholar
[3]
L. F. Lin, L. Z. Wu, and S. Dong, Interfacial phase competition induced Kondo-like effect in manganiteinsulator composites, Front. Phys. 11(6), 117502 (2016)
CrossRef ADS Google scholar
[4]
Y. Xing, Y. Sun, M. Singh, Y. F. Zhao, M. H. W. Chan, and J. Wang, Electronic transport properties of topological insulator films and low dimensional superconductors, Front. Phys. 8(5), 491 (2013)
CrossRef ADS Google scholar
[5]
P. D. Dernier and M. Marezio, Crystal structure of the low-temperature antiferromagnetic phase of V2O3, Phys. Rev. B 2(9), 3771 (1970)
CrossRef ADS Google scholar
[6]
D. B. McWhan, A. Menth, J. P. Remeika, W. F. Brinkman, and T. M. Rice, Metal-insulator transitions in pure and doped V2O3, Phys. Rev. B 7(5), 1920 (1973)
CrossRef ADS Google scholar
[7]
C. Castellani, C. R. Natoli, and J. Ranninger, Metalinsulator transition in pure and Cr-doped V2O3, Phys. Rev. B 18(9), 5001 (1978)
CrossRef ADS Google scholar
[8]
S. A. Carter, T. F. Rosenbaum, P. Metcalf, J. M. Honig, and J. Spalek, Mass enhancement and magnetic order at the Mott–Hubbard transition, Phys. Rev. B 48(22), 16841 (1993)
CrossRef ADS Google scholar
[9]
S. N. Ruddlesden and P. Popper, New compounds of the K2NIF4 type, Acta Crystallogr. 10(8), 538 (1957)
CrossRef ADS Google scholar
[10]
Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz, and F. Lichtenberg, Superconductivity in a layered perovskite without copper, Nature 372(6506), 532 (1994)
CrossRef ADS Google scholar
[11]
K. Ishida, H. Mukuda, Y. Kitaoka, K. Asayama, Z. Q. Mao, Y. Mori, and Y. Maeno, Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift, Nature 396(6712), 658 (1998)
CrossRef ADS Google scholar
[12]
S. A. Grigera, R. S. Perry, A. J. Schofield, M. Chiao, S. R. Julian, G. G. Lonzarich, S. I. Ikeda, Y. Maeno, A. J. Millis, and A. P. Mackenzie, Magnetic field-tuned quantum criticality in the metallic ruthenate Sr3Ru2O7, Science 294(5541), 329 (2001)
CrossRef ADS Google scholar
[13]
J. M. Longo, P. M. Raccah, and J. B. Goodenough, Magnetic Properties of SrRuO3 and CaRuO3, J. Appl. Phys. 39(2), 1327 (1968)
CrossRef ADS Google scholar
[14]
S. Nakatsuji, S. I. Ikeda, and Y. Maeno, Ca2RuO4: New Mott insulators of layered ruthenate, J. Phys. Soc. Jpn. 66(7), 1868 (1997)
CrossRef ADS Google scholar
[15]
J. H. Jung, Z. Fang, J. P. He, Y. Kaneko, Y. Okimoto, and Y. Tokura, Change of electronic structure in Ca2RuO4 induced by orbital ordering, Phys. Rev. Lett. 91(5), 056403 (2003)
CrossRef ADS Google scholar
[16]
Y. Yoshida, I. Nagai, S. I. Ikeda, N. Shirakawa, M. Kosaka, and N. Môri, Quasi-two-dimensional metallic ground state of Ca3Ru2O7, Phys. Rev. B 69(22), 220411 (2004)
CrossRef ADS Google scholar
[17]
Y. Yoshida, S. I. Ikeda, H. Matsuhata, N. Shirakawa, C. H. Lee, and S. Katano, Crystal and magnetic structure of Ca3Ru2O7, Phys. Rev. B 72(5), 054412 (2005)
CrossRef ADS Google scholar
[18]
K. Yoshimura, T. Imai, T. Kiyama, K. R. Thurber, A. W. Hunt, and K. Kosuge, O17 NMR observation of universal behavior of ferromagnetic spin fluctuations in the itinerant magnetic system Sr1−xCaxRuO3, Phys. Rev. Lett. 83(21), 4397 (1999)
CrossRef ADS Google scholar
[19]
J. Peng, M. Q. Gu, X. M. Gu, G. T. Zhou, X. Y. Gao, J. Y. Liu, W. F. Xu, G. Q. Liu, X. Ke, L. Zhang, H. Han, Z. Qu, D. W. Fu, H. L. Cai, F. M. Zhang, Z. Q. Mao, and X. S. Wu, Mott transition controlled by lattice-orbital coupling in 3 d-metal-doped double-layer ruthenates, Phys. Rev. B 96(20), 205105 (2017)
CrossRef ADS Google scholar
[20]
G. Cao, S. McCall, J. E. Crow, and R. P. Guertin, Observation of a metallic antiferromagnetic phase and metal to nonmetal transition in Ca3Ru2O7, Phys. Rev. Lett. 78(9), 1751 (1997)
CrossRef ADS Google scholar
[21]
W. Bao, Z. Q. Mao, Z. Qu, and J. W. Lynn, Spin valve effect and magnetoresistivity in single crystalline Ca3Ru2O7, Phys. Rev. Lett. 100(24), 247203 (2008)
CrossRef ADS Google scholar
[22]
X. Ke, J. Peng, D. J. Singh, T. Hong, W. Tian, C. R. Dela Cruz, and Z. Q. Mao, Emergent electronic and magnetic state in Ca3Ru2O7 induced by Ti doping, Phys. Rev. B 84(20), 201102 (2011)
CrossRef ADS Google scholar
[23]
J. Peng, X. Ke, G. Wang, J. E. Ortmann, D. Fobes, T. Hong, W. Tian, X. Wu, and Z. Q. Mao, From quasitwo- dimensional metal with ferromagnetic bilayers to Mott insulator with G-type antiferromagnetic order in Ca3(Ru1−xTix)2O7, Phys. Rev. B 87(8), 085125 (2013)
CrossRef ADS Google scholar
[24]
X. Ke, J. Peng, W. Tian, T. Hong, M. Zhu, and Z. Q. Mao, Commensurate-incommensurate magnetic phase transition in the Fe-doped bilayer ruthenate Ca3Ru2O7, Phys. Rev. B 89(22), 220407 (2014)
CrossRef ADS Google scholar
[25]
B. F. Woodfield, M. L. Wilson, and J. M. Byers, Lowtemperature specific heat of La1−xSrxMnO3+d, Phys. Rev. Lett. 78(16), 3201 (1997)
CrossRef ADS Google scholar
[26]
A. L. Cornelius, B. E. Light, and J. J. Neumeier, Evolution of the magnetic ground state in the electron-doped antiferromagnet CaMnO3, Phys. Rev. B 68(1), 014403 (2003)
CrossRef ADS Google scholar
[27]
C. He, S. Eisenberg, C. Jan, H. Zheng, J. F. Mitchell, and C. Leighton, Heat capacity study of magnetoelectronic phase separation in La1−xSrxCoO3 single crystals, Phys. Rev. B 80(21), 214411 (2009)
CrossRef ADS Google scholar
[28]
P. Raychaudhuri, C. Mitra, A. Paramekanti, R. Pinto, A. K. Nigam, and S. K. Dhar, The metal-insulator transition and ferromagnetism in the electron-doped layered manganites (x= 0, 0.3, 0.5), J. Phys. Condens. Matter 10(12), L191 (1998)
CrossRef ADS Google scholar
[29]
J. E. Gordon, R. A. Fisher, Y. X. Jia, N. E. Phillips, S. F. Reklis, D. A. Wright, and A. Zettl, Specific heat of Nd0.67Sr0.33MnO3, Phys. Rev. B 59(1), 127 (1999)
CrossRef ADS Google scholar
[30]
L. Ghivelder, I. Abrego Castillo, M. A. Gusmão, J. A. Alonso, and L. F. Cohen, Specific heat and magnetic order in LaMnO3+d, Phys. Rev. B 60(17), 12184 (1999)
CrossRef ADS Google scholar
[31]
K. Mamiya, T. Mizokawa, A. Fujimori, T. Miyadai, N. Chandrasekharan, S. R. Krishnakumar, D. D. Sarma, H. Takahashi, N. Môri, and S. Suga, Photoemission study of the metal-insulator transition in NiS2−xSex, Phys. Rev. B 58(15), 9611 (1998)
CrossRef ADS Google scholar
[32]
S. Ogawa, Magnetic properties of 3d transition-metal dichalcogenides with the pyrite structure, J. Appl. Phys. 50(B3), 2308 (1979)
CrossRef ADS Google scholar
[33]
T. Okuda, A. Asamitsu, Y. Tomioka, T. Kimura, Y. Taguchi, and Y. Tokura, Critical behavior of the metalinsulator transition in La1−xSrxMnO3, Phys. Rev. Lett. 81(15), 3203 (1998)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1035 KB)

Accesses

Citations

Detail

Sections
Recommended

/