Electron mass enhancement and magnetic phase separation near the Mott transition in double-layer ruthenates

Jin Peng , X. M. Gu , G. T. Zhou , W. Wang , J. Y. Liu , Yu Wang , Z. Q. Mao , X. S. Wu , Shuai Dong

Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 137108

PDF (1035KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 137108 DOI: 10.1007/s11467-018-0813-z
RESEARCH ARTICLE

Electron mass enhancement and magnetic phase separation near the Mott transition in double-layer ruthenates

Author information +
History +
PDF (1035KB)

Abstract

We present a detailed investigation of the specific heat of Ca3(Ru1−xMx)2O7 (M= Ti, Fe, Mn) single crystals. Depending on the dopant and doping level, three distinct regions are present: a quasitwo- dimensional metallic state with antiferromagnetic (AFM) order formed by ferromagnetic bilayers (AFM-b), a Mott insulating state with G-type AFM order (G-AFM), and a localized state with a mixed AFM-b and G-AFM phase. Our specific heat data provide deep insights into the Mott transitions induced by Ti and Mn doping. We observed not only an anomalous large mass enhancement, but also an additional term in the specific heat, i.e., CT2, in the localized region. The CT2 term is most likely due to long-wavelength excitations with both FM and AFM components. A decrease in the Debye temperature is observed in the G-type AFM region, indicating lattice softening associated with the Mott transition.

Keywords

specific heat / ruthenates / Mott insulator / phase separation

Cite this article

Download citation ▾
Jin Peng, X. M. Gu, G. T. Zhou, W. Wang, J. Y. Liu, Yu Wang, Z. Q. Mao, X. S. Wu, Shuai Dong. Electron mass enhancement and magnetic phase separation near the Mott transition in double-layer ruthenates. Front. Phys., 2018, 13(4): 137108 DOI:10.1007/s11467-018-0813-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transitions, Rev. Mod. Phys. 70(4), 1039 (1998)

[2]

V. R. Shaginyan, A. Z. Msezane, G. S. Japaridze, K. G. Popov, and V. A. Khodel, Strongly correlated Fermi systems as a new state of matter, Front. Phys. 11(5), 117103 (2016)

[3]

L. F. Lin, L. Z. Wu, and S. Dong, Interfacial phase competition induced Kondo-like effect in manganiteinsulator composites, Front. Phys. 11(6), 117502 (2016)

[4]

Y. Xing, Y. Sun, M. Singh, Y. F. Zhao, M. H. W. Chan, and J. Wang, Electronic transport properties of topological insulator films and low dimensional superconductors, Front. Phys. 8(5), 491 (2013)

[5]

P. D. Dernier and M. Marezio, Crystal structure of the low-temperature antiferromagnetic phase of V2O3, Phys. Rev. B 2(9), 3771 (1970)

[6]

D. B. McWhan, A. Menth, J. P. Remeika, W. F. Brinkman, and T. M. Rice, Metal-insulator transitions in pure and doped V2O3, Phys. Rev. B 7(5), 1920 (1973)

[7]

C. Castellani, C. R. Natoli, and J. Ranninger, Metalinsulator transition in pure and Cr-doped V2O3, Phys. Rev. B 18(9), 5001 (1978)

[8]

S. A. Carter, T. F. Rosenbaum, P. Metcalf, J. M. Honig, and J. Spalek, Mass enhancement and magnetic order at the Mott–Hubbard transition, Phys. Rev. B 48(22), 16841 (1993)

[9]

S. N. Ruddlesden and P. Popper, New compounds of the K2NIF4 type, Acta Crystallogr. 10(8), 538 (1957)

[10]

Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz, and F. Lichtenberg, Superconductivity in a layered perovskite without copper, Nature 372(6506), 532 (1994)

[11]

K. Ishida, H. Mukuda, Y. Kitaoka, K. Asayama, Z. Q. Mao, Y. Mori, and Y. Maeno, Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift, Nature 396(6712), 658 (1998)

[12]

S. A. Grigera, R. S. Perry, A. J. Schofield, M. Chiao, S. R. Julian, G. G. Lonzarich, S. I. Ikeda, Y. Maeno, A. J. Millis, and A. P. Mackenzie, Magnetic field-tuned quantum criticality in the metallic ruthenate Sr3Ru2O7, Science 294(5541), 329 (2001)

[13]

J. M. Longo, P. M. Raccah, and J. B. Goodenough, Magnetic Properties of SrRuO3 and CaRuO3, J. Appl. Phys. 39(2), 1327 (1968)

[14]

S. Nakatsuji, S. I. Ikeda, and Y. Maeno, Ca2RuO4: New Mott insulators of layered ruthenate, J. Phys. Soc. Jpn. 66(7), 1868 (1997)

[15]

J. H. Jung, Z. Fang, J. P. He, Y. Kaneko, Y. Okimoto, and Y. Tokura, Change of electronic structure in Ca2RuO4 induced by orbital ordering, Phys. Rev. Lett. 91(5), 056403 (2003)

[16]

Y. Yoshida, I. Nagai, S. I. Ikeda, N. Shirakawa, M. Kosaka, and N. Môri, Quasi-two-dimensional metallic ground state of Ca3Ru2O7, Phys. Rev. B 69(22), 220411 (2004)

[17]

Y. Yoshida, S. I. Ikeda, H. Matsuhata, N. Shirakawa, C. H. Lee, and S. Katano, Crystal and magnetic structure of Ca3Ru2O7, Phys. Rev. B 72(5), 054412 (2005)

[18]

K. Yoshimura, T. Imai, T. Kiyama, K. R. Thurber, A. W. Hunt, and K. Kosuge, O17 NMR observation of universal behavior of ferromagnetic spin fluctuations in the itinerant magnetic system Sr1−xCaxRuO3, Phys. Rev. Lett. 83(21), 4397 (1999)

[19]

J. Peng, M. Q. Gu, X. M. Gu, G. T. Zhou, X. Y. Gao, J. Y. Liu, W. F. Xu, G. Q. Liu, X. Ke, L. Zhang, H. Han, Z. Qu, D. W. Fu, H. L. Cai, F. M. Zhang, Z. Q. Mao, and X. S. Wu, Mott transition controlled by lattice-orbital coupling in 3 d-metal-doped double-layer ruthenates, Phys. Rev. B 96(20), 205105 (2017)

[20]

G. Cao, S. McCall, J. E. Crow, and R. P. Guertin, Observation of a metallic antiferromagnetic phase and metal to nonmetal transition in Ca3Ru2O7, Phys. Rev. Lett. 78(9), 1751 (1997)

[21]

W. Bao, Z. Q. Mao, Z. Qu, and J. W. Lynn, Spin valve effect and magnetoresistivity in single crystalline Ca3Ru2O7, Phys. Rev. Lett. 100(24), 247203 (2008)

[22]

X. Ke, J. Peng, D. J. Singh, T. Hong, W. Tian, C. R. Dela Cruz, and Z. Q. Mao, Emergent electronic and magnetic state in Ca3Ru2O7 induced by Ti doping, Phys. Rev. B 84(20), 201102 (2011)

[23]

J. Peng, X. Ke, G. Wang, J. E. Ortmann, D. Fobes, T. Hong, W. Tian, X. Wu, and Z. Q. Mao, From quasitwo- dimensional metal with ferromagnetic bilayers to Mott insulator with G-type antiferromagnetic order in Ca3(Ru1−xTix)2O7, Phys. Rev. B 87(8), 085125 (2013)

[24]

X. Ke, J. Peng, W. Tian, T. Hong, M. Zhu, and Z. Q. Mao, Commensurate-incommensurate magnetic phase transition in the Fe-doped bilayer ruthenate Ca3Ru2O7, Phys. Rev. B 89(22), 220407 (2014)

[25]

B. F. Woodfield, M. L. Wilson, and J. M. Byers, Lowtemperature specific heat of La1−xSrxMnO3+d, Phys. Rev. Lett. 78(16), 3201 (1997)

[26]

A. L. Cornelius, B. E. Light, and J. J. Neumeier, Evolution of the magnetic ground state in the electron-doped antiferromagnet CaMnO3, Phys. Rev. B 68(1), 014403 (2003)

[27]

C. He, S. Eisenberg, C. Jan, H. Zheng, J. F. Mitchell, and C. Leighton, Heat capacity study of magnetoelectronic phase separation in La1−xSrxCoO3 single crystals, Phys. Rev. B 80(21), 214411 (2009)

[28]

P. Raychaudhuri, C. Mitra, A. Paramekanti, R. Pinto, A. K. Nigam, and S. K. Dhar, The metal-insulator transition and ferromagnetism in the electron-doped layered manganites (x= 0, 0.3, 0.5), J. Phys. Condens. Matter 10(12), L191 (1998)

[29]

J. E. Gordon, R. A. Fisher, Y. X. Jia, N. E. Phillips, S. F. Reklis, D. A. Wright, and A. Zettl, Specific heat of Nd0.67Sr0.33MnO3, Phys. Rev. B 59(1), 127 (1999)

[30]

L. Ghivelder, I. Abrego Castillo, M. A. Gusmão, J. A. Alonso, and L. F. Cohen, Specific heat and magnetic order in LaMnO3+d, Phys. Rev. B 60(17), 12184 (1999)

[31]

K. Mamiya, T. Mizokawa, A. Fujimori, T. Miyadai, N. Chandrasekharan, S. R. Krishnakumar, D. D. Sarma, H. Takahashi, N. Môri, and S. Suga, Photoemission study of the metal-insulator transition in NiS2−xSex, Phys. Rev. B 58(15), 9611 (1998)

[32]

S. Ogawa, Magnetic properties of 3d transition-metal dichalcogenides with the pyrite structure, J. Appl. Phys. 50(B3), 2308 (1979)

[33]

T. Okuda, A. Asamitsu, Y. Tomioka, T. Kimura, Y. Taguchi, and Y. Tokura, Critical behavior of the metalinsulator transition in La1−xSrxMnO3, Phys. Rev. Lett. 81(15), 3203 (1998)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1035KB)

757

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/