Molecular-scale processes affecting growth rates of ice at moderate supercooling

Rui Wang, Li-Mei Xu, Feng Wang

Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 138116.

PDF(5578 KB)
PDF(5578 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 138116. DOI: 10.1007/s11467-018-0808-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Molecular-scale processes affecting growth rates of ice at moderate supercooling

Author information +
History +

Abstract

The growth kinetics of ice are modeled using the Water Potential from Adaptive Force Matching for Ice and Liquid (WAIL) potential with molecular dynamics. The all-atom WAIL model provides a good description of the properties of both ice and liquid with an equilibrium temperature of 270 K at 1 bar. The growth kinetics captured by this model can thus reflect those of real ice. Our simulation indicates that the growth rate of ice on the basal plane is fastest at approximately 20 K supercooling, consistent with experimental findings, where the growth rate increases monotonically as the supercooling increases to 18 K. The key factors that control the growth kinetics leading to the optimal growth temperature are investigated. The simulation revealed a bilayer-by-bilayer growth mechanism on the basal plane that proceeds in two steps. Whereas water molecules lose translational motion and become ice-like quickly, the establishment of orientational order to form ice is a slow and activated process. Enhanced by the templating effect of sublayers, the rapid reduction in translational motion in the formation of the prefreezing layer might explain the significantly faster growth rate relative to the nucleation rate of water. Whereas remelting of the prefreezing layer is observed at low supercooling and may be responsible for the lower growth rate close to the melting temperature, the slow orientational ordering of the prefreezing layer into the final ice conformation is partly responsible for the reduced growth rate at deeper supercooling.

Keywords

ice growth / interface water / dynamics of crystallization

Cite this article

Download citation ▾
Rui Wang, Li-Mei Xu, Feng Wang. Molecular-scale processes affecting growth rates of ice at moderate supercooling. Front. Phys., 2018, 13(5): 138116 https://doi.org/10.1007/s11467-018-0808-9

References

[1]
V. De Michele, G. Romanelli, and A. Cupane, Dynamics of supercooled confined water measured by deep inelastic neutron scattering, Front. Phys. 13(1), 138205 (2018)
CrossRef ADS Google scholar
[2]
M. De Marzio, G. Camisasca, M. Rovere, and P. Gallo, Fragile to strong crossover and Widom line in supercooled water: A comparative study, Front. Phys. 13(1), 136103 (2018)
CrossRef ADS Google scholar
[3]
E. O. Rizzatti, M. A. A. Barbosa, and M. C. Barbosa, Core-softened potentials, multiple liquid–liquid critical points, and density anomaly regions: An exact solution, Front. Phys. 13(1), 136102 (2018)
CrossRef ADS Google scholar
[4]
F. Mallamace, C. Corsaro, D. Mallamace, Z. Wang, and S. H. Chen, The Boson peak in confined water: An experimental investigation of the liquid-liquid phase transition hypothesis, Front. Phys. 10(5), 106103 (2015)
CrossRef ADS Google scholar
[5]
F. Mallamace, C. Corsaro, D. Mallamace, N. Cicero, S. Vasi, G. Dugo, and H. E. Stanley, Dynamical changes in hydration water accompanying lysozyme thermal denaturation, Front. Phys. 10(5), 106104 (2015)
CrossRef ADS Google scholar
[6]
F. Mallamace, C. Corsaro, D. Mallamace, C. Vasi, N. Cicero, and H. E. Stanley, Water and lysozyme: Some results from the bending and stretching vibrational modes, Front. Phys. 10(5), 106105 (2015)
CrossRef ADS Google scholar
[7]
I. Piazza, A. Cupane, E. L. Barbier, C. Rome, N. Collomb, J. Ollivier, M. A. Gonzalez, and F. Natali, Dynamical properties of water in living cells, Front. Phys. 13(1), 138301 (2018)
CrossRef ADS Google scholar
[8]
D. Mallamace, S. Vasi, M. Missori, F. Mallamace, and C. Corsaro, NMR investigation of degradation processes of ancient and modern paper at different hydration levels, Front. Phys. 13(1), 138202 (2018)
CrossRef ADS Google scholar
[9]
F. Martelli, H. Y. Ko, C. C. Borallo, and G. Franzese, Structural properties of water confined by phospholipid membranes, Front. Phys. 13(1), 136801 (2018)
CrossRef ADS Google scholar
[10]
C. Corsaro, F. Mallamace, S. Vasi, S. H. Chen, H. E. Stanley, and D. Mallamace, Contrasting microscopic interactions determine the properties of water/methanol solutions, Front. Phys. 13(1), 138201 (2018)
CrossRef ADS Google scholar
[11]
A. Parmentier, C. Andreani, G. Romanelli, J. J. Shephard, C. G. Salzmann, and R. Senesi, Hydrogen mean force and anharmonicity in polycrystalline and amorphous ice, Front. Phys. 13(1), 136101 (2018)
CrossRef ADS Google scholar
[12]
H. Shen, M. Chen, Z. Sun, L. Xu, E. Wang, and X. Wu, Signature of the hydrogen-bonded environment of liquid water in X-ray emission spectra from first-principles calculations, Front. Phys. 13(1), 138204 (2018)
CrossRef ADS Google scholar
[13]
A. Gabrieli, M. Sant, S. Izadi, P. S. Shabane, A. V. Onufriev, and G. B. Suffritti, High-temperature dynamic behavior in bulk liquid water: A molecular dynamics simulation study using the OPC and TIP4P-Ew potentials, Front. Phys. 13(1), 138203 (2018)
CrossRef ADS Google scholar
[14]
T. Bartels-Rausch, Ten things we need to know about ice and snow, Nature 494(7435), 27 (2013)
CrossRef ADS Google scholar
[15]
J. Liang, M. Liu, R. Wang, and Y. Wang, Study on the glaze ice accretion of wind turbine with various chord lengths, IOP Conf. Ser.: Earth Environ. Sci. 121, 042026 (2018)
[16]
S. Zhang, J. Huang, Y. Cheng, H. Yang, Z. Chen, and Y. Lai, Bioinspired surfaces with superwettability for antiicing and ice-phobic application: Concept, mechanism, and design, Small 13(48), 1701867 (2017)
CrossRef ADS Google scholar
[17]
J. D. Atkinson, B. J. Murray, M. T. Woodhouse, T. F. Whale, K. J. Baustian, K. S. Carslaw, S. Dobbie, D. O’Sullivan, and T. L. Malkin, The importance of feldspar for ice nucleation by mineral dust in mixedphase clouds, Nature 498(7454), 355 (2013)
CrossRef ADS Google scholar
[18]
Y. Jin, Z. He, Q. Guo, and J. Wang, Control of ice propagation by using polyelectrolyte multilayer coatings, Angew. Chem. Int. Ed. Engl. 56(38), 11436 (2017)
CrossRef ADS Google scholar
[19]
I. K. Voets, From ice-binding proteins to bio-inspired antifreeze materials, Soft Matter 13(28), 4808 (2017)
CrossRef ADS Google scholar
[20]
Y. Xu, N. G. Petrik, R. S. Smith, B. D. Kay, and G. A. Kimmel, Homogeneous nucleation of ice in transientlyheated, supercooled liquid water films, J. Phys. Chem. Lett. 8(23), 5736 (2017)
CrossRef ADS Google scholar
[21]
C. A. Knight, A simple technique for growing large, optically “perfect” ice crystals, J. Glaciol. 42(142), 585 (1996)
CrossRef ADS Google scholar
[22]
A. Shibkov, Y. I. Golovin, M. Zheltov, A. Korolev, and A. Leonov, In situ monitoring of growth of ice from supercooled water by a new electromagnetic method, J. Cryst. Growth 236(1–3), 434 (2002)
CrossRef ADS Google scholar
[23]
Y. Qiu, N. Odendahl, A. Hudait, R. Mason, A. K. Bertram, F. Paesani, P. J. DeMott, and V. Molinero, Ice nucleation efficiency of hydroxylated organic surfaces is controlled by their structural fluctuations and mismatch to ice, J. Am. Chem. Soc. 139(8), 3052 (2017)
CrossRef ADS Google scholar
[24]
M. Matsumoto, S. Saito, and I. Ohmine, Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing, Nature 416(6879), 409 (2002)
CrossRef ADS Google scholar
[25]
D. Rozmanov and P. G. Kusalik, Temperature dependence of crystal growth of hexagonal ice (Ih), Phys. Chem. Chem. Phys. 13(34), 15501 (2011)
CrossRef ADS Google scholar
[26]
H. Pruppacher, On the growth of ice crystals in supercooled water and aqueous solution drops,Pure and Applied Geophysics 68(1), 186 (1967)
CrossRef ADS Google scholar
[27]
J. Hallett, Experimental studies of the crystallization of supercooled water, J. Atmos. Sci. 21(6), 671 (1964)
CrossRef ADS Google scholar
[28]
N. Fukuta, Experimental studies on the growth of small ice crystals, J. Atmos. Sci. 26(3), 522 (1969)
CrossRef ADS Google scholar
[29]
D. Rozmanov and P. G. Kusalik, Anisotropy in the crystal growth of hexagonal ice Ih, J. Chem. Phys. 137(9), 094702 (2012)
CrossRef ADS Google scholar
[30]
A. A. Shibkov, M. A. Zheltov, A. A. Korolev, A. A. Kazakov, and A. A. Leonov, Crossover from diffusionlimited to kinetics-limited growth of ice crystals, J. Cryst. Growth 285(1–2), 215 (2005)
CrossRef ADS Google scholar
[31]
M. S. Razul and P. G. Kusalik, Crystal growth investigations of icewater interfaces from molecular dynamics simulations: Profile functions and average properties, J. Chem. Phys. 134(1), 014710 (2011)
CrossRef ADS Google scholar
[32]
E. R. Pinnick, S. Erramilli, and F. Wang, Predicting the melting temperature of ice-Ih with only electronic structure information as input, J. Chem. Phys. 137(1), 014510 (2012)
CrossRef ADS Google scholar
[33]
M. Fitzner, G. C. Sosso, S. J. Cox, and A. Michaelides, The many faces of heterogeneous ice nucleation: Interplay between surface morphology and hydrophobicity, J. Am. Chem. Soc. 137(42), 13658 (2015)
CrossRef ADS Google scholar
[34]
E. Sanz, C. Vega, J. R. Espinosa, R. Caballero-Bernal, J. L. Abascal, and C. Valeriani, Homogeneous ice nucleation at moderate supercooling from molecular simulation, J. Am. Chem. Soc. 135(40), 15008 (2013)
CrossRef ADS Google scholar
[35]
J. R. Espinosa, E. Sanz, C. Valeriani, and C. Vega, Homogeneous ice nucleation evaluated for several water models, J. Chem. Phys. 141(18), 18C529 (2014)
[36]
A. Haji-Akbari and P. G. Debenedetti, Direct calculation of ice homogeneous nucleation rate for a molecular model of water, Proc. Natl. Acad. Sci. USA 112(34), 10582 (2015)
CrossRef ADS Google scholar
[37]
G. E. Lindberg and F. Wang, Efficient sampling of ice structures by electrostatic switching,J. Phys. Chem. B 112(20), 6436 (2008)
CrossRef ADS Google scholar
[38]
D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. Berendsen, GROMACS: Fast, flexible, and free, J. Comput. Chem. 26(16), 1701 (2005)
CrossRef ADS Google scholar
[39]
T. L. Malkin, B. J. Murray, A. V. Brukhno, J. Anwar, and C. G. Salzmann, Structure of ice crystallized from supercooled water, Proc. Natl. Acad. Sci. USA 109(4), 1041 (2012)
CrossRef ADS Google scholar
[40]
K. Morishige and H. Uematsu, The proper structure of cubic ice confined in mesopores, J. Chem. Phys. 122(4), 044711 (2005)
CrossRef ADS Google scholar
[41]
J. Benet, L. G. MacDowell, and E. Sanz, A study of the ice-water interface using the TIP4P/2005 water model, Phys. Chem. Chem. Phys. 16(40), 22159 (2014)
CrossRef ADS Google scholar
[42]
T. L. Malkin, B. J. Murray, C. G. Salzmann, V. Molinero, S. J. Pickering, and T. F. Whale, Stacking disorder in ice I, Phys. Chem. Chem. Phys. 17(1), 60 (2015)
CrossRef ADS Google scholar
[43]
L. Scott, A primer on ice (in preparation) (2012)
[44]
S. Choi, E. Jang, and J. S. Kim, In-layer stacking competition during ice growth, J. Chem. Phys. 140(1), 014701 (2014)
CrossRef ADS Google scholar
[45]
P. Rein ten Wolde, M. J. Ruiz‐Montero, and D. Frenkel, Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling, J. Chem. Phys. 104(24), 9932 (1996)
CrossRef ADS Google scholar
[46]
E. B. Moore, E. de la Llave, K. Welke, D. A. Scherlis, and V. Molinero, Freezing, melting and structure of ice in a hydrophilic nanopore, Phys. Chem. Chem. Phys. 12(16), 4124 (2010)
CrossRef ADS Google scholar
[47]
A. H. Nguyen and V. Molinero, Identification of clathrate hydrates, hexagonal ice, cubic ice, and liquid water in simulations: The CHILL+ algorithm, J. Phys. Chem. B 119(29), 9369 (2015)
CrossRef ADS Google scholar
[48]
A. Reinhardt, J. P. Doye, E. G. Noya, and C. Vega, Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water, J. Chem. Phys. 137(19), 194504 (2012)
CrossRef ADS Google scholar
[49]
H. Tanaka, Simple view of waterlike anomalies of atomic liquids with directional bonding, Phys. Rev. B 66(6), 064202 (2002)
CrossRef ADS Google scholar
[50]
C. A. Angell, R. D. Bressel, M. Hemmati, E. J. Sare, and J. C. Tucker, Water and its anomalies in perspective: Tetrahedral liquids with and without liquid–liquid phase transitions, Phys. Chem. Chem. Phys. 2(8), 1559 (2000)
CrossRef ADS Google scholar
[51]
T. C. Hansen, M. M. Koza, P. Lindner, and W. F. Kuhs, Formation and annealing of cubic ice (II): Kinetic study, J. Phys.: Condens. Matter 20(28), 285105 (2008)
CrossRef ADS Google scholar
[52]
W. F. Kuhs, C. Sippel, A. Falenty, and T. C. Hansen, Extent and relevance of stacking disorder in “ice I(c)”, Proc. Natl. Acad. Sci. USA 109(52), 21259 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(5578 KB)

Accesses

Citations

Detail

Sections
Recommended

/