A novel hybrid sp-sp2 metallic carbon allotrope

Qun Wei, Quan Zhang, Mei-Guang Zhang, Hai-Yan Yan, Li-Xin Guo, Bing Wei

PDF(2603 KB)
PDF(2603 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 136105. DOI: 10.1007/s11467-018-0787-x
RESEARCH ARTICLE
RESEARCH ARTICLE

A novel hybrid sp-sp2 metallic carbon allotrope

Author information +
History +

Abstract

In this paper, we propose a novel hybrid sp-sp2 monoclinic carbon allotrope mC12. This allotrope is a promising light metallic material, the mechanical and electronic properties of which are studied based on first-principles calculations. The structure of this new mC12 is mechanically and dynamically stable at ambient pressure and has a low equilibrium density due to its large cell volume. Furthermore, calculations of the elastic constants and moduli reveal that mC12 has a rigid mechanical property. Finally, it exhibits metallic characteristics, owing to the mixture of sp-sp2 hybrid carbon atoms.

Keywords

metallic carbon allotrope / first-principles calculations / mechanical and electronic / properties

Cite this article

Download citation ▾
Qun Wei, Quan Zhang, Mei-Guang Zhang, Hai-Yan Yan, Li-Xin Guo, Bing Wei. A novel hybrid sp-sp2 metallic carbon allotrope. Front. Phys., 2018, 13(5): 136105 https://doi.org/10.1007/s11467-018-0787-x

References

[1]
H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature 318, 162 (1985)
CrossRef ADS Google scholar
[2]
S. Iijima, Helical microtubules of graphitic carbon, Nature 354, 56 (1991)
CrossRef ADS Google scholar
[3]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306, 666 (2004)
CrossRef ADS Google scholar
[4]
B. Winkler, C. J. Pickard, V. Milman, and G. Thimm, Systematic prediction of crystal structures, Chem. Phys. Lett. 337, 36 (2001)
CrossRef ADS Google scholar
[5]
M. Itoh, M. Kotani, H. Naito, T. Sunada, Y. Kawazoe, and T. Adschiri, New metallic carbon crystal, Phys. Rev. Lett. 102, 055703 (2009)
CrossRef ADS Google scholar
[6]
Y. Yao, J. S. Tse, J. Sun, D. D. Klug, R. Martoňák, and T. Iitaka, Comment on “new metallic carbon crystal”, Phys. Rev. Lett. 102, 229601 (2009)
CrossRef ADS Google scholar
[7]
X. L. Sheng, H. J. Cui, F. Ye, Q. B. Yan, Q. R. Zheng, and G. Su, Octagraphene as a versatile carbon atomic sheet for novel nanotubes, unconventional fullerenes, and hydrogen storage, J. Appl. Phys. 112, 074315 (2012)
CrossRef ADS Google scholar
[8]
C. He, L. Sun, C. Zhang, and J. Zhong, Two viable three-dimensional carbon semiconductors with an entirely sp2 configuration, Phys. Chem. Chem. Phys. 15, 680 (2013)
CrossRef ADS Google scholar
[9]
J. T. Wang, C. Chen, E. Wang, and Y. Kawazoe, A new carbon allotrope with six-fold helical chains in all-sp2 bonding networks, Sci. Rep. 4, 4339 (2014)
CrossRef ADS Google scholar
[10]
G. M. Rignanese and J. C. Charlier, Hypothetical threedimensional all-sp2 carbon phase, Phys. Rev. B 78, 125415 (2008)
CrossRef ADS Google scholar
[11]
Z. L. Lv, H. L. Cui, H. Wang, X. H. Li, and G. F. Ji, Theoretical study of the elasticity, ideal strength and thermal conductivity of a pure sp2 carbon, Diamond Relat. Mater. 71, 73 (2017)
CrossRef ADS Google scholar
[12]
Q. Li, Y. Ma, A. R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H. K. Mao, and G. Zou, Superhard monoclinic polymorph of carbon, Phys. Rev. Lett. 102, 175506 (2009)
CrossRef ADS Google scholar
[13]
C. He, L. Sun, C. Zhang, X. Peng, K. Zhang, and J. Zhong, new superhard carbon phases between graphite and diamond, Solid State Commun. 152, 1560 (2012)
CrossRef ADS Google scholar
[14]
X. L. Sheng, Q. B. Yan, F. Ye, Q. R. Zheng, and G. Su, T-carbon: A novel carbon allotrope, Phys. Rev. Lett. 106, 155703 (2011)
CrossRef ADS Google scholar
[15]
J. Zhang, R. Wang, X. Zhu, A. Pan, C. Han, X. Li, Z. Dan, C. Ma, W. Wang, H. Su, and C. Niu, Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol, Nat. Commun. 8, 683 (2017)
CrossRef ADS Google scholar
[16]
J. T. Wang, C. Chen, and Y. Kawazoe, Lowtemperature phase transformation from graphite to sp3 orthorhombic carbon, Phys. Rev. Lett. 106, 075501 (2011)
CrossRef ADS Google scholar
[17]
X. Zhang, Y. Wang, J. Lv, C. Zhu, Q. Li, M. Zhang, Q. Li, and Y. Ma, First-principles structural design of superhard materials, J. Chem. Phys. 138, 114101 (2013)
CrossRef ADS Google scholar
[18]
Q. Wei, M. Zhang, H. Yan, Z. Lin, and X. Zhu, Structural, electronic and mechanical properties of Imma-carbon, EPL 107, 27007 (2014)
CrossRef ADS Google scholar
[19]
K. Umemoto, R. M. Wentzcovitch, S. Saito, and T. Miyake, Body-centered tetragonal C4: A viable sp3 carbon allotrope, Phys. Rev. Lett. 104, 125504 (2010)
CrossRef ADS Google scholar
[20]
Z. Zhao, B. Xu, X. F. Zhou, L. M. Wang, B. Wen, J. He, Z. Liu, H. T. Wang, and Y. Tian, Novel superhard carbon: C-centered orthorhombic C8, Phys. Rev. Lett. 107, 215502 (2011)
CrossRef ADS Google scholar
[21]
C. Y. Niu, X. Q. Wang, and J. T. Wang, K6 carbon: A metallic carbon allotrope in sp3 bonding networks, J. Chem. Phys. 140, 054514 (2014)
CrossRef ADS Google scholar
[22]
Y. Cheng, R. Melnik, Y. Kawazoe, and B. Wen, Three dimensional metallic carbon from distorting sp3-bond, Crystal. Growth. Design. 16, 1360 (2016)
CrossRef ADS Google scholar
[23]
J. Q. Wang, C. X. Zhao, C. Y. Niu, Q. Sun, and Y. Jia, C20-T carbon: A novel superhard sp3 carbon allotrope with large cavities, J. Phys.: Conden. Matter 28, 475402 (2016)
CrossRef ADS Google scholar
[24]
Z. Li, F. Gao, and Z. Xu, Strength, hardness, and lattice vibrations of Z-carbon and W-carbon: First-principles calculations, Phys. Rev. B 85, 144115 (2012)
CrossRef ADS Google scholar
[25]
M. J. Rice, A. R. Bishop, and D. K. Campbell, Unusual soliton properties of the infinite polyyne chain, Phys. Rev. Lett. 51, 2136 (1983)
CrossRef ADS Google scholar
[26]
T. R. Chalifoux WA, Synthesis of polyynes to model the sp-carbon allotrope carbyne, Nat. Chem. 2, 967 (2010)
CrossRef ADS Google scholar
[27]
H. Hirai and K. I. Kondo, Modified phases of diamond formed under shock compression and rapid quenching, Science 253, 772 (1991)
CrossRef ADS Google scholar
[28]
W. L. Mao, H. k. Mao, P. J. Eng, T. P. Trainor, M. Newville, C. C. Kao, D. L. Heinz, J. Shu, Y. Meng, and R. J. Hemley, Bonding changes in compressed superhard graphite, Science 302, 425 (2003)
CrossRef ADS Google scholar
[29]
Y. Wang, J. E. Panzik, B. Kiefer, and K. K. Lee, Crystal structure of graphite under room-temperature compression and decompression, Sci. Rep. 2, 520 (2012)
CrossRef ADS Google scholar
[30]
S. Zhang, Q. Wang, X. Chen, and P. Jena, Stable threedimensional metallic carbon with interlocking hexagons, Proc. Natl. Acad. Sci. USA 110, 18809 (2013)
CrossRef ADS Google scholar
[31]
M. Hu, M. Ma, Z. Zhao, D. Yu, and J. He, Superhard sp2-sp3 hybrid carbon allotropes with tunable electronic properties, AIP Advances 6, 055020 (2016)
CrossRef ADS Google scholar
[32]
Y. Y. Zhang, S. Chen, H. Xiang, and X. G. Gong, Hybrid crystalline sp2-sp3 carbon as a high-efficiency solar cell absorber, Carbon 109, 246 (2016)
CrossRef ADS Google scholar
[33]
C. X. Zhao, C. Y. Niu, Z. J. Qin, X. Y. Ren, J. T. Wang, J. H. Cho, and Y. Jia, H18 carbon: A new metallic phase with sp2-sp3 hybridized bonding network, Sci. Rep. 6, 21879 (2016)
CrossRef ADS Google scholar
[34]
Y. Pan, M. Hu, M. Ma, Z. Li, Y. Gao, M. Xiong, G. Gao, Z. Zhao, Y. Tian, B. Xu, and J. He, Multithreaded conductive carbon: 1D conduction in 3D carbon, Carbon 115, 584 (2017)
CrossRef ADS Google scholar
[35]
Q. Wei, Q. Zhang, H. Yan, and M. Zhang, A new superhard carbon allotrope: Tetragonal C64, J. Mater. Sci. 52, 2385 (2017)
CrossRef ADS Google scholar
[36]
X. Wu, X. Shi, M. Yao, S. Liu, X. Yang, L. Zhu, T. Cui, and B. Liu, Superhard three-dimensional carbon with metallic conductivity, Carbon 123, 311 (2017)
CrossRef ADS Google scholar
[37]
P. D. Jarowski, M. D. Wodrich, C. S. Wannere, P. v. R. Schleyer, and K. N. Houk, How large is the conjugative stabilization of diynes? J. Am. Chem. Soc. 126, 15036 (2004)
CrossRef ADS Google scholar
[38]
H. Bu, M. Zhao, Y. Xi, X. Wang, H. Peng, C. Wang, and X. Liu, Is yne-diamond a super-hard material? EPL 100, 56003 (2012)
CrossRef ADS Google scholar
[39]
S. W. Cranford and M. J. Buehler, Mechanical properties of graphyne, Carbon 49, 4111 (2011)
CrossRef ADS Google scholar
[40]
N. Narita, S. Nagai, S. Suzuki, and K. Nakao, Electronic structure of three-dimensional graphyne, Phys. Rev. B 62, 11146 (2000)
CrossRef ADS Google scholar
[41]
Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82, 094116 (2010)
CrossRef ADS Google scholar
[42]
Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183, 2063 (2012)
CrossRef ADS Google scholar
[43]
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996)
CrossRef ADS Google scholar
[44]
W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965)
CrossRef ADS Google scholar
[45]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996)
CrossRef ADS Google scholar
[46]
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1999)
CrossRef ADS Google scholar
[47]
A. Togo, F. Oba, I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78, 134106 (2008)
CrossRef ADS Google scholar
[48]
A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, G. E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys. 125, 224106 (2006)
CrossRef ADS Google scholar
[49]
F. Mouhat and F. X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B 90, 224104 (2014)
CrossRef ADS Google scholar
[50]
R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A 65, 349 (1952)
CrossRef ADS Google scholar
[51]
Q. Zhang, Q. Wei, H. Yan, Q. Fan, X. Zhu, J. Zhang, and D. Zhang, Mechanical and electronic properties of P42/mnmsilicon carbides, Z. Naturforsch. A 71, 387 (2016)
CrossRef ADS Google scholar
[52]
S. F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Lond. Edinb. Dublin Philos. Mag. J. Sci. 45, 823 (1954)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2603 KB)

Accesses

Citations

Detail

Sections
Recommended

/